LOWER BOUNDS FOR NUMBERS WITH THREE PRIME FACTORS

Paul Kinlaw
Department of Mathematics, Husson University, Bangor, Maine
KinlawP@husson.edu

Received: 5/2/18, Revised: 11/27/18, Accepted: 2/21/19, Published: 3/15/19

Abstract

A \textit{k-almost prime number} is a product of \(k \) prime numbers, some of which may be repeated. By a 1900 theorem of Landau, the number of \(k \)-almost prime numbers not exceeding \(x \) is asymptotic to \(x (\log \log x)^{k-1}/((k-1)! \log x) \). We prove a numerically explicit lower bound for 3-almost prime numbers which is asymptotic to Landau’s formula, and hence to the actual count. It exceeds Landau’s formula for all \(x \geq 500194 \). We prove an analogous lower bound for products of three distinct prime numbers. This expands on previously known results for \(k \leq 2 \).

1. Introduction

For a natural number \(n \), the arithmetic functions \(\omega(n) \) and \(\Omega(n) \) denote the number of prime factors of \(n \), counted without (respectively with) repeated prime factors. Thus for \(n \) with prime factorization \(n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \), we have \(\omega(n) = k \) and \(\Omega(n) = a_1 + \ldots + a_k \).

Numbers \(n \) such that \(\Omega(n) = k \) are called \(k \)-almost primes. Let \(\pi_k(n) = |\{n \leq x : \omega(n) = \Omega(n) = k\}| \) denote the counting function of squarefree \(k \)-almost primes, and let \(\tau_k(n) = |\{n \leq x : \Omega(n) = k\}| \) denote the counting function of \(k \)-almost primes.

For \(k = 1 \) we have \(\tau_1(x) = \tau_1(x) = \pi(x) \), the prime counting function. The prime number theorem asserts that \(\pi(x) \) is asymptotic to \(x/\log x \). In 1900, Landau [6] proved that for each \(k \in \mathbb{N} \), the estimate

\[
\pi_k(x) = \frac{x (\log \log x)^{k-1}}{(k-1)! \log x} \left(1 + O \left(\frac{1}{\log \log x} \right) \right)
\]

holds, and that the same estimate also holds for \(\tau_k(x) \).

Selberg [11] proved that for any \(0 < \delta < 1 \), uniformly for all \(x \geq 3 \) and \(1 \leq k \leq (2 - \delta) \log \log x \), we have

\[
\tau_k(x) = G \left(\frac{k}{\log \log x} \right) \frac{x (\log \log x)^{k-1}}{(k-1)! \log x} \left(1 + O \left(\frac{k}{(\log \log x)^2} \right) \right),
\]
where
\[G(z) = F(1, z)/\Gamma(z + 1) \quad \text{and} \quad F(s, z) = \prod_p \left(1 - \frac{z}{p^s} \right)^{-1} \left(1 - \frac{1}{p^s} \right)^z. \]

Classic references \[5, 7\] provide details on these and similar results. A 1962 paper [10] of Rosser and Schoenfeld and contemporary work \[3, 4\] of Dusart give explicit bounds for \(\pi(x) \), see Lemma 1. A 2018 paper \[1\] of Bayless et al. established explicit upper bounds for \(\pi_k(x) \), \(\tau_2(x) \), and \(\tau_3(x) \), as well as explicit lower bounds for \(\pi_3(x) \) and \(\tau_2(x) \). In particular, it is shown \[1, \text{Thm. 3.5}\] that for all \(k \geq 2 \) and \(x \geq 3 \), we have
\[\pi_k(x) \leq \frac{1.028x(\log \log x + 0.26153)^{k-1}}{(k-1)! \log x}, \]
and \[1, \text{Thm. 5.2}\] that for all \(x \geq 10^{12} \), we have
\[\tau_2(x) \geq \frac{x(\log \log x + 0.1769)}{\log x} \left(1 + \frac{0.4232}{\log x} \right). \]
Furthermore \[1, \text{Thm. 5.3}\], for all \(x \geq 10^{12} \) we have
\[\tau_3(x) \leq \frac{1.028x((\log \log x + 0.26153)^2 + 1.055852)}{2 \log x}. \]

A relatively sharp explicit lower bound for \(\pi_3(x) \) requires more work, and aside from the explicit results above, the literature consists of implied constants. We prove explicit lower bounds for \(\pi_3(x) \) and \(\tau_3(x) \) which are asymptotic to Landau’s formula, and hence to the actual count. In particular, we prove the following three theorems.

Theorem 1. For all \(x \geq 500194 \),
\[\tau_3(x) > \frac{x(\log \log x)^2}{2 \log x}. \]

The constant 500194 is optimal, since the inequality is violated at \(x = 500194 - \epsilon \) for all sufficiently small \(\epsilon > 0 \). We also have an analogue of Theorem 1 for squarefree 3-almost primes, also called sphenic numbers.

Theorem 2. For all \(x \geq 10203553 \),
\[\pi_3(x) > \frac{x((\log \log x)^2 - 1)}{2 \log x}. \]

The constant 10203553 is also optimal. We also obtain the following.

Theorem 3. For all sufficiently large \(x \),
\[\pi_3(x) > \frac{x(\log \log x)^2}{2 \log x}. \]
Theorem 3 follows readily from the proof of Theorem 2 by comparing secondary terms, however the reader will see that x must be very large. Without more work, it is unclear where the optimal cutoff c_0 is for Theorem 3 to apply. Lifchitz and Renner [8] computed the values of $\pi_3(10^k)$ for $1 \leq k \leq 19$, and this data shows that $c_0 > 10^{19}$.

2. Notation and Preliminary Lemmas

Throughout the paper we let $p, q, \text{ and } r$ denote prime numbers and we let $\log x$ denote the natural logarithm. We define $L = \log \log x$, $x_0 = 10^{12}$, and $y_0 = x_0^{1/3} = 10^4$. Furthermore, $\pi(t)$ denotes the prime counting function and $T(t) = \sum_{p \leq t} 1/p$ denotes the sum of reciprocals of prime numbers $p \leq t$. We let $B = 0.2614972128 \ldots$ denote the Mertens constant and $c = 0.26146521$ (see Lemmas 2 and 3).

In bounding expressions, we will make use of manipulations such as

$$\log \log \frac{x}{a} = \log \log x + \log \left(1 - \frac{\log a}{\log x}\right),$$

the Maclaurin series expansion of the righthand term, and the bounds

$$\frac{1}{\log x} \left(1 + \frac{\log a}{\log x}\right) < \frac{1}{\log x} \leq \frac{1}{\log x} + \frac{1}{\log^2 x} \cdot \frac{\log a \log x_0}{\log x},$$

for $a > 1$ and $x \geq x_0$. We will use the following bounds [10, Thm. 2] of Rosser and Schoenfeld and [4, Cor. 5.2] of Dusart on the prime counting function.

Lemma 1 (Rosser, Schoenfeld, Dusart). We have

$$\frac{x}{\log x} < \pi(x)$$

for all $x \geq 17$. Additionally, we have

$$\frac{x}{\log x} \left(1 + \frac{1}{\log x}\right) \leq \pi(x) \leq \frac{x}{\log x} \left(1 + \frac{1.2762}{\log x}\right),$$

where the lower bound holds for all $x \geq 599$ and the upper bound holds for all $x > 1$. Furthermore, for all $x > 1$ we have

$$\pi(x) \leq \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2.53816}{\log^2 x}\right).$$

We also use the following bounds [10, Theorem 5] of Rosser and Schoenfeld and [3, Thm. 6.10], [4, Thm. 5.6] of Dusart which give numerically explicit versions of Mertens’ second theorem.
Lemma 2 (Rosser, Schoenfeld, Dusart). Let \(T(t) = \sum_{p \leq t} 1/p \) denote the reciprocal sum of prime numbers up to \(t \). We have

\[
T(t) = \log \log t + B + E(t),
\]

where \(B = 0.2614972128\ldots \) denotes the Mertens constant, and

\[
- \frac{1}{2 \log^2 t} < E(t) < \frac{1}{\log^2 t}
\]

for all \(t > 1 \),

\[
|E(t)| < \frac{1}{2 \log^2 t}
\]

for all \(t \geq 286 \),

\[
|E(t)| \leq \frac{1}{10 \log^2 t} + \frac{4}{15 \log^3 t}
\]

for all \(t \geq 10372 \), and

\[
|E(t)| \leq \frac{1}{5 \log^3 t}
\]

for all \(t \geq 2278383 \).

Combining bounds on the prime number reciprocal sum in [10, 4] readily yields the following lower bound.

Lemma 3. For \(x > 1 \),

\[
\sum_{p \leq x} \frac{1}{p} > \log \log x + 0.26146521.
\]

Proof. By Lemma 2, for all \(x \geq 2278383 \),

\[
\sum_{p \leq x} \frac{1}{p} > \log \log x + B - \frac{0.2}{\log^2 x}, \tag{1}
\]

where \(B \) is the Mertens constant. By [10, Thm 20],

\[
\sum_{p \leq x} \frac{1}{p} > \log \log x + B
\]

for all \(x \leq 10^8 \). Substituting \(10^8 \) in (1) gives the lemma. \(\Box \)
3. The Proof of Theorem 2

We have

$$\pi_3(x) = \left| \{ n = pqr : p < q < r \} \right|$$

where $p, q,$ and r denote prime numbers. To determine the count, we note the possible values for each of p, q, r. We have $p < x^{1/3}$, and $q^2 < qr \leq x/p$, so that $p < q < \sqrt{x/p}$. Since $pqr \leq x$, we also have $q < r \leq x/(pq)$. Therefore, $\pi_3(x)$ is equal to the sum of 1 over all possible values of p, q, r, so that

$$\pi_3(x) = \sum_{p < x^{1/3}} \sum_{p < q < \sqrt{x/p}} \sum_{q < r \leq \frac{x}{pq}} 1 = \sum_{p < x^{1/3}} \sum_{p < q < \sqrt{x/p}} \left(\pi \left(\frac{x}{pq} \right) - \pi(q) \right).$$

Here we have used the fact that the strict inequalities $p < x^{1/3}$ and $q < \sqrt{x/p}$ can be written to include the case of equality, since the quantity vanishes when $q = \sqrt{x/p}$ or when $p = x^{1/3}$. We checked the inequality using the computer program Pari/GP for the interval $10203553 \leq x \leq 10^{12}$. Thus we may assume $x \geq x_0$. By Lemma 1, since $x/(pq) \geq 599$ we have

$$\pi \left(\frac{x}{pq} \right) \geq \frac{x}{pq \log \frac{x}{pq}} \left(1 + \frac{1}{\log \frac{x}{pq}} \right) \geq \frac{x}{pq \log \frac{x}{pq}} \left(1 + \frac{1}{\log x} \right).$$

We thus have

$$\pi_3(x) \geq \left(1 + \frac{1}{\log x} \right) \sum_{p \leq x^{1/3}} S_1 - \sum_{p \leq x^{1/3}} S_2,$$

where

$$S_1 = \sum_{p < q \leq \sqrt{x/p}} \frac{x}{pq \log \frac{x}{pq}}$$

and

$$S_2 = \sum_{p < q \leq \sqrt{x/p}} \pi(q).$$

We determine a lower bound for S_1 and an upper bound for S_2. By Lemma 7 below, we have

$$\sum_{p \leq x^{1/3}} S_2 \leq x \left(\frac{2L + 0.1436}{\log^2 x} + \frac{10.9113L + 3.1227}{\log^3 x} \right).$$

We next consider S_1. We have

$$S_1 = \frac{x}{p} \sum_{p < q \leq \sqrt{x/p}} \frac{1}{q \log \frac{x}{q}}.$$
where \(y = x/p > x^{2/3} \geq x_0^{2/3} \). Recall that the function \(T(t) = \sum_{p \leq t} 1/p \) denotes the prime reciprocal sum up to \(t \). We bound \(S_1 \) below by applying partial summation to obtain
\[
\sum_{p < q \leq \sqrt{y}} \frac{1}{q \log \frac{y}{q}} = \frac{T(\sqrt{y})}{\log \sqrt{y}} - \frac{T(p)}{\log \frac{y}{p}} \int_p^{\sqrt{y}} \frac{T(t)}{t \log^2 \frac{y}{t}} \, dt.
\] (2)

By Lemma 2 this is bounded below by the expression
\[
\frac{2(\log \log \sqrt{y} + B - \frac{1}{2 \log \sqrt{y}})}{\log y} - \frac{\log \log p + B + \frac{1}{\log y}}{\log \frac{y}{p}} - \int_p^{\sqrt{y}} \frac{\log \log t + B + \frac{1}{\log y}}{t \log^2 \frac{y}{t}} \, dt.
\]

Substituting \(u = \log t \) and integrating, this is equal to
\[
\frac{-4}{\log^3 y} - \frac{\log \log p}{\log y} - \frac{1}{\log^2 p \log \frac{y}{p}} + \frac{\log \log \frac{y}{p}}{\log y} + \frac{\log p \log \log p}{\log y \log \frac{y}{p}} + \frac{1}{\log^2 y \log \frac{y}{p}} - \frac{2 \log \log \frac{y}{p}}{\log^2 y} + \frac{2 \log \log p}{\log^2 y}.
\]

Thus a lower bound for \(S_1 \) is
\[
\frac{x}{p \log \frac{p}{x}} \left(\log \log \frac{x}{p^2} + \frac{\log \log \log p}{\log \frac{p}{x}} + \frac{1}{\log \frac{p}{x} \log \frac{p}{x^2}} + \frac{2 \log \log p}{\log^2 \frac{p}{x}} \right)
\]
\[
- \frac{x}{p \log \frac{x}{p}} \left(\frac{4}{\log^2 \frac{x}{p}} + \log \log p \cdot \frac{\log \frac{x}{p}}{\log \frac{x}{p} \log \frac{p}{x}} + \frac{1}{\log^2 \frac{x}{p}} \log \frac{x}{p} \log \frac{x}{p^2} + \frac{1}{\log \frac{p}{x} \log \frac{x}{p} \log \frac{x}{p^2}} + \frac{2 \log \log \frac{x}{p}}{\log^2 \frac{x}{p^2}} \right).
\] (3)

To simplify this expression, we compare the second (respectively, third) term of the first line above to the second (respectively, first) term of the second line. We have
\[
\frac{\log \log p \log p}{\log \frac{p}{x}} - \log \log p \cdot \frac{\log \frac{x}{p}}{\log \frac{x}{p} \log \frac{p}{x}} = -\log \log p.
\]

Also, \(1/(\log(x/p) \log(x/p^2)) > 1/\log^2(x/p) \). Therefore, a lower bound for expression (3) is
\[
\frac{x}{p \log \frac{p}{x}} \left(\log \log \frac{x}{p^2} + \frac{2 \log \log p}{\log^2 \frac{p}{x}} \right)
\]
\[
- \frac{x}{p \log \frac{x}{p}} \left(\log \log p + \frac{3}{\log^2 \frac{x}{p}} + \frac{1}{\log^2 \frac{p}{x} \log \frac{x}{p}} + \frac{1}{\log \frac{p}{x} \log \frac{x}{p} \log \frac{x}{p^2}} + \frac{2 \log \log \frac{x}{p}}{\log^2 \frac{x}{p^2}} \right).
\] (4)
Write the sum of this expression over $p \leq x^{1/3}$ as\[x \left(S_5 + S_6 - (S_7 + S_8 + S_9 + S_{10} + S_{11}) \right). \]

Since $2 \log \log p - 3$ is negative for $p < 89$ and positive for $p \geq 89$,

\[S_6 - S_8 = \sum_{p \leq x^{1/3}} \frac{2 \log \log p - 3}{p \log^2 \frac{x}{p}} \geq \frac{1}{\log^3 x} \sum_{p < 89} \frac{2 \log \log p - 3 \log^3 x_0}{p \log^3 \frac{x_0}{p}} + \frac{1}{\log^3 x} \sum_{89 \leq p \leq y_0} \frac{2 \log \log p - 3}{p} \geq -3.9322 \frac{\log^3 x}{\log^3 x}. \]

Note that

\[S_{10} = \sum_{p \leq x^{1/3}} \frac{1}{p \log p \log^2 \frac{x}{p}} \leq \frac{1}{\log^2 x} \sum_{p \leq y_0} \frac{1}{p \log p} \frac{\log^2 x_0}{p \log^2 \frac{x_0}{p}} + \frac{2.25}{\log^2 x} \sum_{y_0 < p} \frac{1}{p \log p} \leq 1.7496 \frac{\log^2 x}{\log^2 x} + \frac{2.25(0.1085)}{\log^2 x} \leq 1.9938 \frac{\log^2 x}{\log^2 x}. \]

Here we verified the value $\sum_{p \leq x^{1/3}} 1/(p \log p) = 1.63661 \ldots$ found to much higher precision [2, p. 6] by H. Cohen. Similarly,

\[S_9 = \sum_{p \leq x^{1/3}} \frac{1}{p \log^2 p \log \frac{x}{p}} \leq \sum_{p \leq y_0} \frac{1}{p \log^2 p} \left(\frac{1}{\log x} + \frac{1}{\log^2 x} \log \frac{x_0}{p} \right) + \frac{3}{\log x} \sum_{y_0 < p \leq x^{1/3}} \frac{1}{p \log^2 p} \leq 1.5151 \frac{\log x}{\log^2 x} + 3.5585 \frac{\log x}{\log^2 x} \frac{\log^2 x}{\log^2 x} + 3.5585 \frac{\log x}{\log^2 x}. \]

Here we computed the sum over $y_0 < p \leq 10^9$ using Pari/GP and then applied partial summation together with Lemmas 2 and 3 to bound the sum over $p > 10^9$. By Lemma 8,

\[S_6 - S_7 \geq \frac{0.5L^2 + 1.21434L - 0.22}{\log x} + \frac{-1.5244L + 1.112}{\log^2 x} + \frac{-2L^2 + 2.9067L + 2.5389}{\log^3 x}, \]

and by Lemma 5,

\[S_{11} \leq \frac{2L^2 + 1.3972L}{\log^3 x}. \]
Finally, note that the application of the bounds

$$L + c < T(x) < L + B + \frac{1}{\log^2 x},$$

valid for all $x > 1$, incur error terms which are particularly large for small values of x. We may improve our bounds as follows. In equation (2) we replaced the quantity $-T(p)/(p \log(x/p^2))$ with

$$- \frac{\log \log p + B + \frac{1}{\log^2 p}}{p \log \frac{x}{p^2}}.$$

Thus we may add the following expression to the lower bound:

$$\sum_{p \leq x^{1/3}} \frac{\log \log p + B + \frac{1}{\log^2 p} - T(p)}{p \log \frac{x}{p^2}}.$$

A computation gives a lower bound of

$$\frac{1}{\log \frac{x}{y_0}} \sum_{p \leq x^{1/3}} \frac{\log \log p + B + \frac{1}{\log^2 p} - T(p)}{p} \geq \frac{0.9}{\log \frac{x}{4}} \geq \frac{0.9}{\log x} \left(1 + \frac{\log 4}{\log x} + \frac{\log^2 4}{\log x}\right).$$

Again considering equation (2) and the following displayed expression, we may add to the lower bound

$$\sum_{p \leq x^{1/3}} \int_{t} \log \log t + B + \frac{1}{\log^2 t} - T(t) \frac{t \log^2 \frac{x}{pt}}{p} dt \geq \frac{1}{\log \frac{x}{4}} \sum_{k \leq 128} k \int_{\log p_k + 1} \left(\log u + B + \frac{1}{u^2} - T(p_k)\right) du \geq 20.4395 \frac{\log^2 x}{\log^2 x}.$$

Here p_k denotes the k-th prime number. Combining all bounds, we obtain

$$\pi_3(x) \geq \frac{x(0.5L^2 + 0.121434L - 0.8528)}{\log x} + \frac{x(0.5L^2 - 4L + 15)}{\log^2 x} - \frac{x(4L^2 + 10.9262L)}{\log^4 x} \geq \frac{x(0.5L^2 + 0.121434L - 0.8528)}{\log x} + \frac{x(0.5L^2 - 4L + 12)}{\log^2 x} \geq \frac{x(0.5L^2 + 0.121434L - 0.8528)}{\log x} + \frac{4x}{\log^2 x} \geq \frac{x((\log \log x)^2 - 1)}{2 \log x} + \frac{4x}{\log^2 x}$$

for all $x \geq x_0$. This completes the proof of Theorem 2.
4. Additional Lemmas

We prove several lemmas used in the proof of Theorem 2.

Lemma 4. For $x \geq x_0$, we have

$$
\sum_{p \leq x^{1/3}} \frac{1}{p^{\log^2 x / p}} \leq \frac{L + 0.071781}{\log^2 x}.
$$

Proof. For $x_0 \leq x \leq 10372^3$, we have

$$
\sum_{p \leq x^{1/3}} \frac{1}{p^{\log^2 x / p}} \leq \frac{1}{\log^2 x} \sum_{p \leq 10372} \log^2 x_0 \frac{p^{\log^2 x / p}}{p} \leq \frac{\log \log x_0 - 0.0279}{\log^2 x} \leq \frac{L}{\log^2 x},
$$

by directly computing the sum over $p \leq 10372$. Suppose next that $x > 10372^3$. By Lemmas 2 and 3 and partial summation,

$$
\sum_{p \leq x^{1/3}} \frac{1}{p^{\log^2 x / p}} = \frac{T(x^{1/3})}{\log^2(x^{2/3})} - \int_{2}^{x^{1/3}} \frac{2T(t) \, dt}{t \log^3 \frac{t}{x}}
$$

$$
\leq \frac{2}{3} \left(\log \log x^{1/3} + 0.26300402 \right) \frac{\log^2 x}{\log^2 x} - \int_{2}^{x^{1/3}} \frac{2(\log \log t + c) \, dt}{t \log^3 \frac{t}{x}},
$$

recalling that $c = 0.26146521$. The integral is equal to

$$
\left[\frac{\log \log t + c + \log \log \frac{t}{x} - \log \log t}{\log^2 x} \frac{1}{\log x \log \frac{t}{x}} \right]_{2}^{x^{1/3}}.
$$

Subtracting and bounding the resulting expression, we obtain

$$
S_3 \leq \frac{\frac{2}{3} (0.26300402 - c) - \log 2 + \frac{1}{2} + c + \log \log \frac{2}{x}}{\log^2 x} \leq \frac{L + 0.071781}{\log^2 x},
$$

for all $x \geq 10372^3$, and therefore for all $x \geq x_0$. \qed

Lemma 5. For $x \geq x_0$, we have

$$
\sum_{p \leq x^{1/3}} \frac{1}{p^{\log^3 x / p}} \leq \frac{L + 0.6986}{\log^3 x}.
$$

Proof. Note that for $x_0 \leq x \leq 10372^3$, we have

$$
\sum_{p \leq x^{1/3}} \frac{1}{p^{\log^3 x / p}} \leq \sum_{p \leq 10372} \frac{1}{p^{\log^3 x / p}} \leq \frac{L + 0.5411}{\log^3 x},
$$

and so on.
by directly computing the sum over \(p \leq 10372 \). Suppose next that \(x \geq 10372^3 \). By partial summation,

\[
\sum_{p \leq x^{1/3}} \frac{1}{p \log^2 \frac{x}{p}} = \frac{T(x^{1/3})}{\log^3 x^{2/3}} - \int_2^{x^{1/3}} \frac{3T(t) \, dt}{t \log^4 \frac{x}{t}} \\
\leq \frac{\log \log x^{1/3} + 0.26300402}{\log^3 x^{2/3}} - \int_2^{x^{1/3}} \frac{3(\log \log t + c) \, dt}{t \log^4 \frac{x}{t}},
\]

using Lemmas 2 and 3. The integral is equal to

\[
\left[\frac{\log \log t + c}{\log^3 \frac{x}{t}} + \frac{\log \frac{t}{x} - \log \log t}{\log^3 x} - \frac{1}{\log^2 x \log \frac{x}{t}} - \frac{1}{2 \log x \log^2 \frac{x}{t}} \right] \frac{x^{1/3}}{2}.
\]

Subtracting and bounding the resulting expression, we find that

\[
\sum_{p \leq x^{1/3}} \frac{1}{p \log^2 \frac{x}{p}} \leq 27 (0.26300402 - c) - \log 2 + \frac{9}{x} + \log \log \frac{x}{2} + c, \frac{1}{\log^3 x},
\]

from which we obtain the lemma.

\[\square \]

Lemma 6. For \(x \geq x_0 \) we have

\[
\sum_{p \leq x^{1/3}} \frac{1}{p \log^2 \frac{x}{p}} \leq \frac{0.4383 x^{1/6}}{\log x}.
\]

Proof. Let \(x \geq x_0 \). By partial summation,

\[
\sum_{p \leq x^{1/3}} \frac{1}{p \log^2 \frac{x}{p}} \leq \frac{1.5}{\log x} \sum_{p \leq x^{1/3}} \frac{1}{\sqrt{p}} \\
= \frac{1.5}{\log x} \left(\frac{\pi(x^{1/3})}{x^{1/6}} + \frac{1}{2} \int_2^{x^{1/3}} \frac{\pi(t) \, dt}{t^{3/2}} \right) \\
\leq \frac{1.5}{\log x} \left(\frac{\pi(x^{1/3})}{x^{1/6}} + 16.85461 + \frac{1}{2} \int_{y_0}^{x^{1/3}} \frac{\pi(t) \, dt}{t^{3/2}} \right).
\]

By Lemma 1, an upper bound for this expression is therefore

\[
\frac{1.5}{\log x} \left(\frac{3.4154822 x^{1/6}}{\log x} + 16.85461 + 0.06180521 \int_{y_0}^{x^{1/3}} \frac{dt}{t^{1/2}} \right),
\]

from which the lemma readily follows.

\[\square \]
Lemma 7. For \(x \geq x_0 \) we have

\[
\sum_{p \leq x^{1/3}} S_2 \leq x \left(\frac{2L + 0.1436}{\log^2 x} + \frac{10.9113L + 3.1227}{\log^4 x} \right).
\]

Proof. We have the general formula

\[
\sum_{q \leq t} \pi(q) = 1 + 2 + \ldots + \pi(t) = \frac{1}{2} (\pi(t)^2 + \pi(t)).
\]

Therefore,

\[
S_2 = \frac{1}{2} \left(\pi \left(\sqrt{\frac{x}{p}} \right)^2 - \pi \left(\sqrt{\frac{x}{p}} \right)^2 - \pi(p)^2 - \pi(p) \right).
\]

We will address the third term below and drop the fourth term. Let \(x \geq x_0 \). By Lemma 1, we have

\[
\frac{1}{2} \pi \left(\sqrt{\frac{x}{p}} \right) \leq \frac{1.1385 \sqrt{x}}{\sqrt{p} \log \frac{x}{p}}
\]

and

\[
\frac{1}{2} \pi \left(\sqrt{\frac{x}{p}} \right)^2 \leq \frac{2x}{p \log^2 \frac{x}{p}} \left(1 + \frac{2.551155}{\log \frac{x}{p}} \right)^2 \leq \frac{2x}{p \log^2 \frac{x}{p}} + \frac{10.9113x}{p \log^4 \frac{x}{p}}.
\]

We thus have

\[
\sum_{p \leq x^{1/3}} S_2 \leq x \sum_{p \leq x^{1/3}} \left(\frac{2}{p \log^2 \frac{x}{p}} + \frac{10.9113}{p \log^4 \frac{x}{p}} + \frac{1.1385}{\sqrt{x}} \sqrt{\frac{x}{p}} \right).
\]

Combining Lemmas 4, 5, and 6, we obtain

\[
\sum_{p \leq x^{1/3}} S_2 \leq x \left(\frac{2L + 0.1436}{\log^2 x} + \frac{10.9113L + 7.6227}{\log^4 x} + \frac{1.1}{\log^4 x} \right).
\]

We now return to consider the remaining term:

\[
\frac{1}{2} \sum_{p \leq x^{1/3}} \pi(p)^2 = \frac{1}{2} \cdot \frac{\pi(x^{1/3})(\pi(x^{1/3}) + 1)(2\pi(x^{1/3}) + 1)}{6}
\]

\[
\geq \frac{\pi(x^{1/3})^3}{6}
\]

\[
\geq \frac{1}{6} \left(\frac{x^{1/3}}{\log x^{1/3}} \left(1 + \frac{1}{\log x^{1/3}} \right) \right)^3
\]

\[
\geq \frac{4.5x}{\log^3 x} \left(1 + \frac{9}{\log x} \right)
\]

\[
= \frac{4.5x}{\log^3 x} + 40.5x
\]

Here we have used Lemma 1. Combining these bounds, we obtain the lemma. \(\square \)
Lemma 8. For all $x \geq x_0$, we have
\[
S_5 - S_7 \geq \frac{0.5L^2 + 0.121434L - 0.22}{\log x} + \frac{-1.5244L + 1.112}{\log^2 x} + \frac{-2L^2 + 2.9067L + 2.5389}{\log^3 x}.
\]

Proof. Recall the definitions
\[
S_5 = \sum_{p \leq x^{1/3}} \frac{\log \log x}{p \log \frac{x}{p}}, \quad S_7 = \sum_{p \leq x^{1/3}} \frac{\log x}{p \log \frac{x}{p}}.
\]

We apply partial summation with $f(t) = \log \log \frac{x}{t^2} / \log \frac{x}{t}$ to obtain
\[
S_5 = \frac{T(x^{1/3}) \log \log x^{1/3}}{\log x^{2/3}} - \int_2^{x^{1/3}} \frac{T(t) \log \log \frac{x}{t}}{t \log^2 \frac{x}{t}} \, dt + \int_2^{x^{1/3}} \frac{2T(t) \, dt}{t \log \frac{x}{t} \log \frac{x}{t^2}}.
\]

We next apply partial summation with $g(t) = \log \log \frac{x}{t} / \log \frac{x}{t}$ to obtain
\[
S_7 = \frac{T(x^{1/3}) \log \log x^{1/3}}{\log x^{2/3}} - \int_2^{x^{1/3}} \frac{T(t) \log \log t \, dt}{t \log^2 \frac{x}{t}} - \int_2^{x^{1/3}} \frac{T(t) \, dt}{t \log t \log \frac{x}{t}}.
\]

Subtracting,
\[
S_5 - S_7 = -I_1 + I_2 + I_3 + I_4,
\]
where
\[
I_1 = \int_2^{x^{1/3}} \frac{T(t) \log \log \frac{x}{t} \, dt}{t \log^2 \frac{x}{t}},
\]
\[
I_2 = \int_2^{x^{1/3}} \frac{2T(t) \, dt}{t \log \frac{x}{t} \log \frac{x}{t^2}},
\]
\[
I_3 = \int_2^{x^{1/3}} \frac{T(t) \log \log t \, dt}{t \log^2 \frac{x}{t}},
\]
and
\[
I_4 = \int_2^{x^{1/3}} \frac{T(t) \, dt}{t \log t \log \frac{x}{t}}.
\]
Let $x \geq x_0$. Splitting the interval at $x^{1/6}$,

\[I_1 \leq \left(L - \log \frac{3}{2} \right) \int_{x^{1/6}}^{x^{1/3}} \frac{T(t)}{t \log^2 \frac{x}{t}} \, dt + L \int_{2}^{x^{1/6}} \frac{T(t)}{t \log^2 \frac{x}{t}} \, dt \]

\[\leq \left(L - \log \frac{3}{2} \right) \int_{x^{1/6}}^{x^{1/3}} \log \log t + B + \frac{1}{\log^2 t} \, dt + L \int_{2}^{x^{1/6}} \log \log t + B + \frac{1}{\log^2 t} \, dt \]

\[= \left(L - \log \frac{3}{2} \right) \left(F(x^{1/3}) - F(x^{1/6}) \right) + L \left(F(x^{1/6}) - F(2) \right) \]

\[= L \left(F(x^{1/3}) - F(2) \right) - \left(\log \frac{3}{2} \right) \left(F(x^{1/3}) - F(x^{1/6}) \right) , \]

where the antiderivative F is given by

\[\frac{\log \log \frac{x}{t}}{\log x} + \frac{\log t \log \log t}{\log x \log \frac{x}{t}} + \frac{B}{\log^2 x \log \frac{x}{t}} + \frac{1}{\log^2 x \log \frac{x}{t}} \]

\[- \frac{1}{\log^2 x \log t} - \frac{2 \log \log \frac{x}{t}}{\log^3 x} + \frac{2 \log \log t}{\log^3 x} . \]

Bounding the resulting expression gives

\[I_1 \leq \frac{0.5L^2 - 0.94565L + 0.1361}{\log x} + \frac{2.2153L}{\log^2 x} + \frac{2L^2 - 2.9067L - 2.0810}{\log^3 x} , \]

where we made use of the identity

\[\log \log \frac{x}{2} = \log \log x + \log \left(1 - \frac{2}{\log x} \right) \]

and bounded the Maclaurin series of the right term by comparison to a geometric series. We next bound

\[I_2 \geq \int_{2}^{x^{1/3}} \frac{2(\log \log t + c)}{t \log^2 \frac{x}{t}} \, dt = \int_{\log 2}^{\log x^{1/3}} \frac{2(\log u + c)}{\log x - u}(\log x - 2u) \, du \]

Integrating, a lower bound for I_2 is

\[\frac{2}{\log x} \left[\text{Li}_2 \left(\frac{\log t}{\log x} \right) - \text{Li}_2 \left(\frac{\log^2 t}{\log x} \right) + (\log \log t + c) \left(\log \log \frac{x}{t} - \log \log \frac{x}{t^2} \right) \right]_{2}^{x^{1/3}} \]

\[= \frac{2}{\log x} \left(\text{Li}_2 \left(\frac{1}{3} \right) - \text{Li}_2 \left(\frac{2}{3} \right) + (\log 2)(L - \log 3 + c) \right) \]

\[+ \frac{2}{\log x} \left(-\text{Li}_2 \left(\frac{\log 2}{\log x} \right) + \text{Li}_2 \left(\frac{\log 4}{\log x} \right) + (\log \log 2 + c) \log \left(1 - \frac{2}{\log x^2} \right) \right) \]

\[\geq \frac{(\log 4)L - 2.0947}{\log x} + \frac{(\log 4)(1 - \log \log 2 - c)}{\log^2 x} + \frac{\log^2 2}{2 \log^3 x} . \]
Here \(\text{Li}_2 \) denotes the dilogarithm, defined by the improper integral

\[
\text{Li}_2(z) = - \int_0^z \frac{\log(1-t)}{t} \, dt.
\]

For the terms \(\log 4 / \log^2 x + (\log^2 2) / (2 \log^3 x) \) above, we have used the fact that the dilogarithm is concave up, together with the expansion

\[
\text{Li}_2(z) = \sum_{k \geq 1} \frac{z^k}{k^2}
\]

for \(|z| < 1\), putting \(z = \log 2 / \log x \), to bound

\[
\text{Li}_2 \left(\log \frac{4}{\log x} \right) - \text{Li}_2 \left(\log \frac{2}{\log x} \right) \geq \text{Li}_2 \left(\frac{\log 4 - \log 2}{\log x} \right) - \text{Li}_2(0)
\]

\[
= \text{Li}_2 \left(\frac{\log 2}{\log x} \right) \geq \frac{\log 2}{\log x} + \frac{\log^2 2}{4 \log^2 x}.
\]

We have also used the bound \(- \log(1-z) \geq z\), putting \(z = \log 2 / \log(x/2) \) and noting that \(\log 2 + c < 0 \).

We now turn to \(I_3 \). In order to bound \(I_3 \) in the right direction, we write

\[
I_3 = \int_2^c \frac{T(t) \log \log t \, dt}{t \log^2 \frac{x}{t}} + \int_c^{x^{1/3}} \frac{T(t) \log \log t \, dt}{t \log^2 \frac{x}{t}}.
\]

The first integral is equal to

\[
\frac{1}{2 \log x} \left(\log \left(1 - \frac{1 - \log 2}{\log \frac{x}{2}} \right) - \frac{\log 2 \log \log 2}{\log \frac{x}{2}} \right) \geq -0.0304 \frac{1}{\log^2 x}.
\]

A lower bound for the second integral is

\[
\int_c^{x^{1/3}} \frac{(\log \log t + c) \log \log t \, dt}{t \log^2 \frac{x}{t}} = \int_1^{\log x^{1/3}} \frac{(\log u + c) \log u \, du}{(\log x - u)^2}
\]

\[
= \frac{1}{\log x} \left[c \log \left(1 - \frac{u}{\log x} \right) + \frac{cu \log u}{\log x - u} + 2 \text{Li}_2 \left(\frac{u}{\log x} \right) \right]_{\log x^{1/3}} + \frac{1}{\log x} \left[2(\log u) \log \left(1 - \frac{u}{\log x} \right) + \frac{u \log^2 u}{\log x - u} \right]_{\log x^{1/3}}
\]

\[
\geq 0.5L^2 - 1.77881L + 1.9771 + \frac{c - 2}{\log^2 x} - 0.5188 \frac{1}{\log^3 x}.
\]

Next, note that the use of the inequality \(T(t) > \log \log t + c \) allows us to add to the
lower bound
\[
\int_3^{x^{1/3}} \frac{(T(t) - (\log \log t + c)) \log \log t}{t \log^2 \frac{x}{t}} dt \\
\geq \frac{1}{\log^2 \frac{x}{3}} \sum_{2 \leq k \leq 1228} \int_{\log p_k}^{\log p_{k+1}} (T(p_k) - c - \log u) \log u \\du \\
\geq \frac{0.3099}{\log^2 x} \left(1 + \frac{\log 9}{\log x} \right).
\]
We therefore have
\[
I_3 \geq \frac{0.5L^2 - 1.77881L + 1.9771}{\log x} - \frac{1.4591}{\log^2 x} + \frac{0.1621}{\log^3 x}.
\]
We now consider
\[
I_4 = \int_2^{x^{1/3}} \frac{T(t)}{t \log t \log \frac{x}{t}} dt \geq \int_2^{x^{1/3}} \frac{(\log \log t + c)}{t \log t \log \frac{x}{t}} dt = \int_{\log 2}^{\log x^{1/3}} \frac{(\log u + c) du}{u(\log x - u)}.
\]
Integrating, we obtain the expression
\[
\frac{1}{\log x} \left[c \log u - (\log u) \log \left(1 - \frac{u}{\log x} \right) - c \log(\log x - u) - \text{Li}_2 \left(\frac{u}{\log x} \right) + \frac{\log^2 u}{2} \right]_{\log 2}^{\log x^{1/3}}.
\]
We bound this expression to obtain
\[
I_4 \geq \frac{0.5L^2 - 0.4317L - 0.3608}{\log x} + \frac{0.7658}{\log^2 x} + \frac{0.0556}{\log^3 x}.
\]
Note that the inequality \(T(t) > \log \log t + c\) was used to bound \(I_4\). We may therefore add the following expression to the lower bound:
\[
\int_2^{x^{1/3}} \frac{T(t) - (\log \log t + c)}{t \log t \log \frac{x}{t}} dt \geq \frac{1}{\log^2 \frac{x}{2}} \int_2^{x^{1/3}} \frac{T(t)}{t \log t} dt.
\]
Splitting the interval \([2, y_0]\) into subintervals between primes \([p_k, p_{k+1}], k = 1, 2, \ldots, 1228\), and using the numerical value of \(T(p_k)\) in each subinterval, we find by computation in Pari/GP that
\[
\frac{1}{\log^2 \frac{x}{2}} \int_2^{x^{1/3}} \frac{T(t) - (\log \log t + c)}{t \log t} dt \geq \frac{0.3945}{\log \frac{x}{2}} \geq \frac{0.3945}{\log x} \left(1 + \frac{\log 2}{\log x} \right).
\]
A similar argument allows us to improve our upper bound on the integral \(I_1\) in equation (6). Here we used the upper bound
\[
L \int_2^{x^{1/6}} \frac{T(t)}{t \log^2 \frac{x}{t}} dt \leq L \int_2^{x^{1/6}} \frac{\log \log t + B + \frac{1}{\log^2 \frac{x}{t}}}{t \log^2 \frac{x}{t}} dt.
\]
Bounding the difference in the interval $[2, 100]$, we add $0.6909L/\log^2 x$ to the lower bound. Combining the bounds for I_1, I_2, I_3, and I_4 completes the proof of Lemma 8.

\[\Box \]

5. The Proof of Theorem 1

We now prove Theorem 1. Note that $\tau_3(x) = \pi_3(x) + N(x)$, where $N(x) = |\{n \leq x : n = p^2q\}|$, and p and q denote (possibly equal) primes. For each such p, the number of possibilities for q is $\pi(x/p^2)$, and we thus have

\[N(x) = \sum_{p \leq \sqrt{x}} \pi \left(\frac{x}{p^2} \right). \]

The range $500194 \leq x \leq 10^{12}$ was checked using the computer program Pari/GP. Thus we may assume $x \geq x_0$. Now, a lower bound for $\pi_3(x)$ is given in Theorem 2. The contribution from $N(x)$ is given by the following lemma, from which Theorem 1 follows by an argument analogous to that of inequality (5) in the proof of Theorem 2.

Lemma 9. For all $x \geq x_0$ we have

\[\sum_{p \leq \sqrt{x}} \pi \left(\frac{x}{p^2} \right) \geq x \left(\frac{\alpha}{\log x} + \frac{0.9861}{\log^2 x} + \frac{1.2861}{\log^3 x} \right), \]

where $\alpha = \sum_p 1/p^2 = 0.4522474\ldots$ denotes the reciprocal sum of squares of primes.

Proof. Let $x \geq x_0$. We wish to apply the lower bound $\pi(t) > t/\log t$, valid for $t \geq 17$, in Lemma 1. Thus we write

\[\sum_{p \leq \sqrt{x}} \pi \left(\frac{x}{p^2} \right) = \sum_{p \leq \sqrt{x}} \pi \left(\frac{x}{p^2} \right) + \sum_{\sqrt{x} < p \leq \sqrt{x}} \pi \left(\frac{x}{p^2} \right). \]

The right sum is

\[\sum_{\sqrt{x} < p \leq \sqrt{x}} \pi \left(\frac{x}{p^2} \right) = -6 \cdot \pi \left(\sqrt{\frac{x}{17}} \right) + \pi \left(\sqrt{\frac{x}{13}} \right) + \ldots + \pi \left(\sqrt{\frac{x}{2}} \right). \]

Also by Lemma 1, this expression is bounded below by

\[2\sqrt{x} \left(-6 \cdot \frac{1.0972}{\sqrt{17} \log \frac{x}{17}} + \sum_{k=1}^{6} \frac{1}{\sqrt{pk \log \frac{x}{pk}}} \right) \geq \frac{1.8188 \sqrt{x}}{\log x}, \]
where p_k denotes the k-th prime number. For the remaining term, let $S(t) = \sum_{p \leq t} (1/p^2)$. By partial summation,

$$
\sum_{p \leq \sqrt{\frac{t}{17}}} \frac{1}{p^2 \log \frac{p}{17}} = \frac{S(\sqrt{\frac{t}{17}})}{\log 17} - \int_2^{\sqrt{\frac{t}{17}}} \frac{2S(t) \, dt}{t \log^2 \frac{t}{17}}
$$

$$
= \frac{S(\sqrt{\frac{t}{17}})}{\log 17} - \int_2^{\sqrt{\frac{t}{17}}} \frac{2 \alpha \, dt}{t \log^2 \frac{t}{17}} + \int_2^{\sqrt{\frac{t}{17}}} \frac{2(\alpha - S(t)) \, dt}{t \log^2 \frac{t}{17}}.
$$

Now,

$$
\int_2^{\sqrt{\frac{t}{17}}} \frac{2 \alpha \, dt}{t \log^2 \frac{t}{17}} = \frac{\alpha}{\log 17} - \frac{\alpha}{\log \frac{t}{17}} \leq \frac{\alpha}{\log 17} - \frac{\alpha}{\log x} \left(1 + \frac{\log 4}{\log x}\right).
$$

Also,

$$
\int_2^{\sqrt{\frac{t}{17}}} \frac{2(\alpha - S(t)) \, dt}{t \log^2 \frac{t}{17}} \geq \sum_{k \leq 21433} (\alpha - S(p_k)) \left[\frac{1}{\log \frac{p_k+1}{p_k}} \right] \left[\frac{\log \frac{p_k+1}{p_k}}{\log \frac{p_k}{p_k+1}} \right] \left[\frac{\log \frac{p_k}{p_k+1}}{\log \frac{x}{p_k+1}} \right]
$$

$$
\geq \sum_{k \leq 21433} \left(\frac{0.3592}{\log \frac{3}{4} \log \frac{t}{17}} \right)
$$

$$
\geq \frac{0.3592}{\log^2 x} \left(1 + \frac{\log 9}{\log x}\right) \left(1 + \frac{\log 4}{\log x}\right)
$$

$$
\geq \frac{0.3592}{\log^2 x} + \frac{1.2872}{\log^3 x} .
$$

Thus,

$$
\sum_{p \leq \sqrt{\frac{t}{17}}} \frac{1}{p^2 \log(p/17)} \geq \frac{\alpha}{\log x} \left(1 + \frac{\log 4}{\log x}\right) + \frac{0.3592}{\log^2 x} + \frac{1.2872}{\log^3 x} - \frac{1}{\log 17} \sum_{p > \sqrt{\frac{t}{17}}} \frac{1}{p^2}.
$$

By [9, Lem. 2.7], we have

$$
\frac{1}{\log 17} \sum_{p > \sqrt{\frac{t}{17}}} \frac{1}{p^2} < \frac{1}{\sqrt{\frac{t}{17}}} \log \frac{\sqrt{t/17}}{17} = \frac{2\sqrt{17}/\log 17}{\sqrt{x} \log \frac{\sqrt{t}{17}}} \leq \frac{3.2431}{\sqrt{x} \log x}.
$$

Combining these bounds, we obtain Lemma 9.

Acknowledgements. The author is very grateful to Jonathan Bayless, Dominic Klyve, and Larry Wilson for helping to improve the mathematics and computer programming, and to the anonymous referee for helpful suggestions improving the quality of the paper.
References

