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Abstract
In this paper we present two short proofs of the Euler-type identities for compo-
sitions of positive integers. We also obtain several identities for the number of
compositions into parts greater than a given integer m. In addition, we obtain
identities for the number of palindromic compositions into parts greater than m.

1. Introduction

A composition of a positive integer n is a representation of n as a sequence of
positive integers called parts which sum to n. For example, the compositions of 4
are: (4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1). A palindromic
composition [9] of n is one that remains unchanged when the order of its parts
is reversed. For example, there are four palindromic compositions of 4, namely,
(4), (1, 2, 1), (2, 2), (1, 1, 1, 1).

A composition may be represented graphically by means of the MacMahon zig-
zag graph [5]. It is similar to the partition Ferrers graph except that the first dot of
each part is aligned with the last part of its predecessor. For instance, the zig-zag
graph of the composition (6,3,1,2,2) is shown in Figure 1.
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Figure 1. Zig-Zag Graph

The conjugate of a composition is obtained by reading its graph by columns
from left to right. We see that the figure demonstrates that the conjugate of the
composition (6, 3, 1, 2, 2) is (1, 1, 1, 1, 1, 2, 1, 3, 2, 1).

The following well-known partition identity is Euler’s Theorem [1, 2].
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Theorem 1.1 (Euler’s Theorem). The number of partitions of n into odd parts
equals the number of partitions of n in which no part is repeated.

Inspired by Euler’s Theorem, Andrew Sills [9] published a bijective proof of the
following identity for compositions.

Theorem 1.2 (Sills). The number of compositions of n into odd parts equals the
number of compositions of n + 1 into parts greater than 1.

Sills’ proof demonstrates a nice application of the MacMahon conjugate of a
composition. In the same spirit, Munagi [6] also obtained the following identities.
Here, the letter m denotes a positive integer greater than 1 in the following theorems.

Theorem 1.3 ([6]). The following sets of compositions are equinumerous:
(i) Compositions of n using only the parts 1 and m;
(ii) Compositions of n + 1 into parts congruent to 1 (mod m);
(iii) Compositions of n + m into parts greater than m� 1.

Theorem 1.4 ([6]). The number of compositions of n into parts congruent to
m (mod m + 1) equals the number of compositions of n + 1 without 1’s into parts
congruent to 1 (mod m).

Theorem 1.5 ([6]). The number of compositions of n into parts greater than
m (m 6= 1) equals the number of compositions of n � 2m into 1’s and 2’s with no
consecutive 2’s.

Making use of the zig-zag graph and the conjugate of compositions, Munagi [6]
gave bijective proofs of the above theorems. However, his proofs were relatively
longer. In this paper, we will present shorter and direct proofs of Theorems 1.3 and
1.4 in Section 2. In particular, we do not use the conjugate of a composition in our
proofs. In Section 3, we obtain several identities for the number of compositions
with parts greater than m. In addition, some identities for palindromic compositions
of n into parts greater than m are obtained.

2. Two Shorter Proofs

2.1 Proof of Theorem 1.3

Proof. (i) () (ii): Let C = (c1, c2, ..., ck) be a composition of n using only the
parts 1 or m. We first append 1 to the right end of C to obtain a composition B
of n + 1, then add 1 to all adjacent m’s on the left of it to form new parts from



INTEGERS: 19 (2019) 3

right to left in B. Therefore, we get a composition of n + 1 into parts congruent to
1 (mod m).

Conversely, let A be a composition of n + 1 into parts congruent to 1 (mod m).
We first replace every part mk + 1 by m + m + ... + m| {z }

k

+1 to obtain a composition

D of n+1 with parts of size 1 or m in which the last part is 1. Next, delete the part
1 on the right end of D to obtain a composition of n. Thus, we obtain a composition
of n using only parts 1 or m.

(i)() (iii): Let C = (c1, c2, ..., ck) be a composition of n using only the parts
1 or m. Appending m to the right end of C, we have a composition F of n + m
using only parts 1 or m in which the last part is m. Then we add m to all adjacent
1’s on the left of it to produce new parts from right to left in F . In this way, we
obtain a composition of n + m into parts greater than m� 1.

For example, let m = 4, then the process that the composition (1, 4, 1, 1, 1) of 8
transforms to the composition (5, 7) of 12 is as follows.

(1, 4, 1, 1, 1)! (1, 4, 1, 1, 1, 4)! (5, 7).

Conversely, let A be a composition of n + m into parts greater than m� 1, and
the last part is d, where d � m. We directly delete d if d = m; if d > m, we first
replace d by (d�m), and then replace (d�m) with 1, 1, · · · , 1 (d�m times). So
we obtain a composition H of n. Next, we replace every part greater than m with
1, 1, ..., 1,m in H. In this way, we obtain a composition of n with parts only 1’s and
m’s.

For example, let m = 4, then the process that the composition (5, 7) of 12
transforms to the composition (1, 4, 1, 1, 1) of 8 is as follows.

(5, 7)! (5, 3)! (5, 1, 1, 1)! (1, 4, 1, 1, 1).

This completes the proof.

2.2 Proof of Theorem 1.4

In order to prove the theorem, Munagi gave the following lemma in [6].

Lemma 2.1. The number of compositions of n into parts congruent to r (mod m)
equals the number of compositions of n into parts r and m in which the first part is
r.

Proof of Theorem 1.4. From Lemma 2.1, we need to proof that the number of
compositions of n + 1 without 1’s into parts congruent to 1 (mod m) equals the
number of compositions of n with parts m and m + 1 in which the first part is m.
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Let ↵ be a composition of n+1 without 1’s into parts congruent to 1 (mod m) in
which the first part is d. We replace d by d�1, and replace (d�1) with m,m, ...,m.
Then the other parts of ↵ are replaced by m + 1,m, ...,m. Therefore, we obtain a
composition of n with parts m and m + 1 in which the first part is m.

For example, when m = 3, the process that the composition (4, 4, 7) of 15 pro-
duces the composition of 14 is as follows.

(4, 4, 7) �! (3, 4, 7) �! (3, 4, 4, 3).

Conversely, let � be a composition of n into parts m and m+1 in which the first
part is m. We first append 1 to the left end of � to obtain a composition � of n+1.
Next, we add 1 to all adjacent m’s to the right of it to produce a new part as the
first part of �. Meanwhile, we adjoin m+1 and all adjacent m’s to the right of it to
produce new parts from left to right in �. Consequently, we obtain a composition
of n + 1 without 1’s into parts congruent to 1 (mod m).

For example, when m = 3, the process that the composition (3, 4, 3, 4) of 14
produces the composition of 15 is as follows.

(3, 4, 3, 4) �! (1, 3, 4, 3, 4) �! (4, 7, 4).

This completes the proof.

3. Several Identities for Special Compositions

We state a stronger version of Theorem 1.5 which will account for the number of
1’s separating two 2’s as follows.

Theorem 3.1. The number of compositions of n into parts greater than m (m 6= 1)
equals the number of compositions of n� 2m into 1’s and 2’s such that there are at
least m� 1 ones between every pair of consecutive 2’s.

Proof. Without loss of generality, Munagi has given the proof of the case m = 2
in [6]. We now consider the case m = 3. The zig-zag graph of a composition into
parts greater than 3, say (4, 4, 5, 6), is shown in Figure 2 below.
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Figure 2. Zig-Zag Graph of (4, 4, 5, 6)

Notice that such graph always has at least 3 nodes before the first stack of vertical
nodes, and at least 3 nodes after the last stack. Also the large sizes (� 4) of the parts
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insures that each stack contains exactly two vertical nodes, with at least two nodes
between successive pairs of vertical nodes. Thus on deleting the first 3 nodes, and
the last 3 nodes, we find that the conjugate of the remaining graph is a composition
of the second type, (2, 1, 1, 2, 1, 1, 1, 2, 1, 1), is shown in Figure 3 below.
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Figure 3. Zig-Zag Graph of (1, 4, 5, 3)

Therefore, we know that there are at least m � 1 ones between every pair of con-
secutive 2’s in a composition of the second type. This completes the proof.

And we obtain the following results for the compositions into parts greater than
m (m 6= 1).

Theorem 3.2. Let m > 1 be an integer. Then the number of compositions of n
into parts greater than m equals the number of compositions of n � 2m + 1 into
parts of size 1 or 3 such that there are at least m � 2 ones between every pair of
consecutive 3’s.

Proof. For any composition C of n into parts greater than m, we first obtain a
composition C1 of n � 2m into 1’s or 2’s such that there are at least m � 1 ones
between every pair of consecutive 2’s by Theorem 3.1. Next, we append 1 to the
right end of C1 to obtain a composition C2 of n� 2m + 1 into 1’s or 2’s such that
there are at least m�1 ones between every pair of consecutive 2’s, and the last part
of C2 is 1. Finally, we add 1 to 2 on the left of it to form new parts from right to
left in C2. As a result, we obtain a composition of n� 2m + 1 into parts of size 1
or 3 such that there are at least m� 2 ones between every pair of consecutive 3’s.

For example, let m = 3, then the process that the composition (5, 4, 6) of 15
produces the composition (1, 3, 1, 3, 1, 1) of 10 is as follows.

(5, 4, 6) �! (1, 2, 1, 1, 2, 1, 1) �! (1, 2, 1, 1, 2, 1, 1, 1) �! (1, 3, 1, 3, 1, 1).

Obviously, this correspondence is one-to-one. This completes the proof.

If m = 2 in Theorem 3.2, we have the following corollary.

Corollary 3.1. The number of compositions of n into parts greater than 2 equals
the number of compositions of n� 3 into parts of size 1 or 3.

Now we consider a special case of Theorem 1.3. If m = 3, we know that the
number of compositions of n using only parts 1 or 3 equals the number of compo-
sitions of n + 1 into parts congruent to 1 (mod 3). Hence we naturally obtain the
following identity by Corollary 3.1.
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Corollary 3.2. The number of compositions of n into parts greater than 2 equals
the number of compositions of n� 2 into parts congruent to 1 (mod 3).

We may see that Corollary 3.2 explains (ii)() (iii) of Theorem 1.3 in another
way when m = 3.

Similar to proof of Theorem 3.2, we take the following theorem.

Theorem 3.3. Let m > 2 be an integer. Then the number of compositions of n
into parts greater than m equals the number of compositions of n � 2m + 2 into
parts of size 1 or 4 such that there are at least m � 3 ones between every pair of
consecutive 4’s.

Further, we present the following general conclusion.

Theorem 3.4. Let m,k be positive integers, m > 1,m � k � 2 � 0. Then the
number of compositions of n into parts greater than m equals the number of compo-
sitions of n� 2m + (k � 1) into parts of size 1 or k + 1 such that there are at least
m� k ones between every pair of consecutive (k + 1)’s.

When m = k in Theorem 3.4, we have the following corollary.

Corollary 3.3. The number of compositions of n into parts greater than m equals
the number of compositions of n�m� 1 into parts of size 1 or m + 1.

We know that Corollary 3.3 explains (i) () (iii) of Theorem 1.3 in another
way.

Furthermore, we study the palindromic compositions, and obtain the following
results for the palindromic compositions.

Theorem 3.5. The number of palindromic compositions of n into parts greater
than m (m 6= 1) equals the number of palindromic compositions of n� 2m into 1’s
or 2’s such that there are at least m� 1 ones between every pair of consecutive 2’s.

Theorem 3.6. The number of palindromic compositions of n into parts greater
than 2 equals the number of palindromic compositions of n� 2 into parts congruent
to 1 ( mod 3).

Theorem 3.7. The number of palindromic compositions of n into parts greater
than m (m 6= 1) equals the number of palindromic compositions of n� 2m + 1 into
parts of size 1 or 3 such that there are at least m � 2 ones between every pair of
consecutive 3’s.

Theorem 3.8. The number of palindromic compositions of n into parts greater
than m (m > 2) equals the number of palindromic compositions of n� 2m + 2 into
parts of size 1 or 4 such that there are at least m � 3 ones between every pair of
consecutive 4’s.
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Theorem 3.9. Let m,k be positive integers, m > 1,m � k � 2 � 0. Then the
number of palindromic compositions of n into parts greater than m equals the number
of palindromic compositions of n� 2m + (k � 1) into parts of size 1 or k + 1 such
that there are at least m� k ones between every pair of consecutive (k + 1)’s.

From Munagi’s proof of Theorem 1.5 in [6], we can easily know that the palin-
dromic compositions of n into parts greater than m correspond to the palindromic
compositions of n�2m into 1’s or 2’s such that there are at least m�1 ones between
every pair of consecutive 2’s. This is Theorem 3.5. Using the proof of Theorem 3.2
we assert Theorem 3.7 is true. Furthermore, the proofs of all other theorems are
true. Therefore, we omitted the proofs of the above theorems. We only o↵er the
following example to illustrate Theorem 3.8.

Example 3.1. If n = 14,m = 3, then there are 4 palindromic compositions of 14
into parts greater than 3 as follows: (14), (7, 7), (5, 4, 5), (4, 6, 4). Similarly, there are
4 palindromic compositions of 10 into parts of size 1 or 4 as follows.

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (4, 1, 1, 4), (1, 4, 4, 1), (1, 1, 1, 4, 1, 1, 1).
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