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Abstract
A prime labeling of a graph of order n is a labeling of the vertices with the integers
1 to n in which adjacent vertices have relatively prime labels. A coprime labeling
maintains the same criterion on adjacent vertices using any set of distinct positive
integers. In this paper, we consider several families of graphs or products of graphs
that have been shown to not have prime labelings, and answer the natural question
of how to label the vertices while minimizing the largest value in its set of labels.

1. Introduction

Consider G to be a simple graph with vertex set V in which |V | = n and edge set
E. Throughout this paper, we let pi be the ith prime number. A prime labeling of
G is a labeling of V using the distinct integers {1, . . . , n} such that the labels of
any pair of adjacent vertices are relatively prime. If such a labeling exists, we call
G a prime graph. More generally, a coprime labeling of G uses distinct labels from
the set {1, . . . ,m} for some integer m � n such that adjacent labels are relatively
prime. The minimum value m for which G has a coprime labeling is defined as
the minimum coprime number, denoted as pr(G), and a coprime labeling of G with
largest label being pr(G) is called a minimum coprime labeling of G. A prime graph
therefore has pr(G) = n as its minimum coprime number.

The concept of a prime labeling of a graph was first developed by Roger Entringer
and introduced in [15] by Tout, Dabboucy, and Howalla. While most research has
revolved around finding prime labelings for various classes of graphs, our focus is
on the problem of determining the minimum coprime number for graphs that have
been shown to not be prime, a question that was previously studied for complete



INTEGERS: 19 (2019) 2

bipartite graphs Kn,n by Berliner et al. [1]. A dynamic survey of results on the 35
year history of prime labelings is given by Gallian in [4].

It was conjectured by Entringer that all trees have prime labelings, and many
classes of trees such as paths, stars, complete binary trees, and spiders have been
shown by Fu and Huang in [3] to be prime. Salmasian [10] showed that for every
tree T with n vertices (n � 50), pr(T )  4n. Pikhurko [7] improved this by showing
that for any integer c > 0, there is an N such that for any tree T of order n > N ,
pr(T ) < (1 + c)n. Additionally, many graphs that are not trees have been proven
to be prime, including cycles, helms, fans, flowers, and books for all sizes; see [2],
[12], and [14]. There is a large collection of graphs whose primality depends on the
size of its vertex set. The complete graph Kn, for example, is clearly prime only
if n  3. Additionally, the wheel graph Wn, which consists of a cycle of length n
where each vertex on the cycle is adjacent to a central vertex, is prime if and only
if n is even. Section 2 examines the minimum coprime number for complete graphs
with at least 4 vertices and wheel graphs in which n is odd.

While paths and cycles on n vertices, denoted as Pn and Cn, respectively, are
known to be prime, combinations of these through common graph operations often
result in a graph that is not prime. Recall the disjoint union of graphs G and H is
the graph G[H with vertex set V (G)[V (H) and edge set E(G)[E(H). Deretsky
et al. [2] proved that C2k [ Cn is prime for all integers k and n. However, if both
of the cycles are of odd length, their disjoint union is not prime. Determining the
minimum coprime number in this case of the union of odd cycles will be our first
focus in Section 3. We also consider the union of the complete graph with either a
path or the star graph, denoted as Sn where n is the number of degree 1 vertices,
also called pendant vertices. Youssef and El Sakhawi [16] studied these two union
graphs, concluding that Km [ Pn is prime if and only if 1  m  3 or m = 4
with n � 1 being odd. They also determined Km [ Sn is prime if and only if the
number of primes less than or equal to m + n + 1 is at least m. Another graph
operation that we will examine is the corona operation, which is defined as follows.
The corona of a graph G with a graph H, in which |V (G)| = n, is denoted by G�H
and is obtained by combining one copy of G with n copies of H by attaching the ith

vertex in G to every vertex within the ith copy of H. In particular, we examine the
corona of a complete graph on n vertices with an empty graph on 1 or 2 vertices.
We examine the non-prime cases for these unions and coronas to determine their
minimum coprime number in Section 3.

Given a graph G, the kth power of G, denoted Gk, is defined as the graph with
the same vertex set as G but with an edge between each u, v 2 V (G) for which
d(u, v)  k in G. Here the value d(u, v) is the distance between u and v, or the
length of the shortest path between the two vertices. The square of paths and cycles,
denoted as P 2

n and C2
n, were shown not to be prime by Seoud and Youssef in [14].

This implies that higher powers of these are also not prime since Gk is a subgraph
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of G` for integers k  `. Section 4 explores the minimum coprime numbers for the
square and cube of both the path and cycle graphs.

The join of two disjoint graphs G and H, denoted as G+H, consists of a vertex
set V (G) [ V (H) with an edge added to connect each vertex in G to those in H,
resulting in an edge set E(G) [ E(H) [ {uv : u 2 V (G), v 2 V (H)}. Seoud, Diab,
and Elsahawi [12] studied the primality of the join of paths with the empty graph
Km on m isolated vertices. They proved that Pn +K2 is prime if and only n = 2 or
n is odd, and that the join graph Pn + Km is not prime for all m � 3. Since these
two classes of graphs are subgraphs of Pn + P2 and Pn + Pm, respectively, the join
of paths follow similar criteria for not being prime. Analogous reasoning applies for
the join of two cycles or of a path and a cycle. We will find the minimum coprime
number for certain cases of these join graphs depending on the relationship between
m and n within Section 5.

Our final section concludes with open problems for further research. While there
are still many unanswered questions about the primality of graphs such as con-
jectures on trees and unicyclic graphs being prime, we focus on open questions
regarding the minimum coprime number of particular classes of graphs.

2. Complete Graphs and Wheels

Consider the complete graph Kn on n vertices. It is easy to see that Kn is prime
if and only if n  3. The clearest way to determine when a graph is not prime is
based on the independence number of the graph, defined as the size of the largest
set of vertices S (called an independent set) in which no pair of these vertices are
adjacent. In order to possibly have a prime labeling, a graph needs an independence

number of at least
�
|V |
2

⌫
in order for an independent set of vertices to exist for the

even labels (a fact first noted in [3]). The graph Kn has an independence number
of 1 since all vertices are adjacent to each other, hence we examine the minimum
coprime number for the complete graph with 4 or more vertices.

Proposition 1. Let n � 4. The minimum coprime number of Kn is pr(Kn) =
pn�1.

Proof. Since each vertex is adjacent to every other vertex, only prime numbers and
1 can be used as vertex labels to keep each pair of vertices relatively prime. Thus,
we can label the graph with a minimum coprime labeling by using the first n � 1
primes along with 1.

Next we consider the wheel graph Wn. We name the vertices v1, . . . , vn as shown
in Figure 1 with v1 representing the center vertex and the remaining vi listed in
clockwise order with v2 being adjacent to vn+1. Lee, Wui, and Yeh [5] demonstrated
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Figure 1: The graph Wn

that Wn is prime if and only if n is even. The following result determines the
minimum coprime number for the odd case.

Proposition 2. Let n be odd. Then the minimum coprime number of Wn is
pr(Wn) = n + 2.

Proof. We label the vertices vi as i for each i 2 {1, . . . , n} and vn+1 as n + 2. This
labeling is coprime since each adjacent pair of labels falls into one of four cases: the
center label 1 is in the pair, the labels are consecutive integers, the labels are n and
n + 2 which are consecutive odd numbers, or the labels are 2 and the odd integer
n + 2. The labeling is a minimum coprime labeling since it was proven in [5] to
be not prime, hence a labeling with maximum label being the number of vertices,
n + 1, is impossible to achieve.

3. Disjoint Union and Corona Operations

The following observation is straightforward from the definitions of prime and co-
prime labelings and will be useful in some of our upcoming proofs. We first recall
that if G and H are graphs with V (G) = V (H) and E(G) ✓ E(H), then we say H
is a spanning supergraph of G, and G is a spanning subgraph of H.

Observation 1. If G is not prime, then a spanning supergraph of G is not prime.
If G is prime, then any spanning subgraph of G is also prime.

The disjoint union of two graphs has been shown to be prime for a variety of
graphs under certain conditions. In [2], the disjoint union of cycles was shown to
be prime when at least one of the cycles has an even number of vertices; that is,
C2k [Cn is prime for all positive k, n 2 Z. Examining the case in which both cycles
are odd, we see that, similarly to the wheel graph in Proposition 2, we only need
the largest label to be |V (G)| + 1 to achieve a minimum coprime labeling.
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Theorem 2. For all k, ` � 1, the minimum coprime number of the disjoint union
of two odd-length cycles is

pr(C2k+1 [ C2`+1) = 2(k + `) + 3.

Proof. We label the vertices of the graph, as shown in Figure 2, using the labels
1, 3, 4, . . . , 2k + 1, 2k + 2 in this order on the cycle C2k+1 and the labels 2, 2k +
3, 2k + 4, . . . , 2(k + `) + 1, 2(k + `) + 3 on the cycle C2`+1. Most of the edges
have endpoints with labels of the form {m,m + 1}, which are relatively prime as
consecutive integers. The remaining edges either include 1 as an endpoint, connect
2 to an odd label, or have consecutive odd labels 2(k + `) + 1 and 2(k + `) + 3
assigned to its vertices, which are all relatively prime pairs.
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Figure 2: Minimum coprime labeling of C2k+1 [ C2`+1

It remains to show that this labeling is minimum, which is accomplished by
demonstrating that the graph does not have a prime labeling since 2(k + `) + 3 is
one larger than the size of the vertex set V of C2k+1 [ C2`+1. No prime labeling
exists because the independence number for the graph is k + `, which is smaller

than the required

�
|V |
2

⌫
= k + `+ 1 independent vertices. Therefore, our labeling

is a minimum coprime labeling.

We now find a minimum coprime labeling for the union of the complete graph
with a path or a star graph. These classes of graphs, Km [ Pn and Km [ Sn, were

Figure 2: Minimum coprime labeling of C2k+1 [ C2`+1

It remains to show that this labeling is minimum, which is accomplished by
demonstrating that the graph does not have a prime labeling since 2(k + `) + 3 is
one larger than the size of the vertex set V of C2k+1 [ C2`+1. No prime labeling
exists because the independence number for the graph is k + `, which is smaller

than the required
�
|V |
2

⌫
= k + ` + 1 independent vertices. Therefore, our labeling

is a minimum coprime labeling.

We now find a minimum coprime labeling for the union of the complete graph
with a path or a star graph. These classes of graphs, Km [ Pn and Km [ Sn, were
investigated by Youssef and El Sakhawi in [16]. They proved that Km[Pn is prime
if and only if 1  m  3 or m = 4 and n � 1 is odd. See Figure 3 for an example
of such a graph with a minimum coprime labeling.
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Figure 3: Minimum coprime labeling of K8 [ P5 when n  r

Theorem 3. Let m and n be positive integers, and if m � 5, we let r = pm�1 �
2m + 4. The minimum coprime number for Km [ Pn is

pr(Km [ Pn) =

8
>>>>>><

>>>>>>:

m + n if 1  m  3 or m = 4 and n is odd
m + n + 1 if m = 4 and n is even
pm�1 if m � 5 and n  r

2m + n� 4 if m � 5, n > r, and n is odd
2m + n� 3 if m � 5, n > r, and n is even.

Proof. The case when 1  m  3 or m = 4 and n is odd was already shown in [16]
since Km [ Pn is prime under those conditions. When m = 4 and n is even, we
can label K4 with 1, 2, 3, 5 and use the integers 6, 7, . . . , n + 5 to label Pn. Hence
pr(Km [ Pn) = m + n + 1 since the graph is not prime.

Suppose that m � 5 and n  r. It is clear by our discussion on Km that pr(Km[
Pn) � pm�1 since Km is a subgraph of Km [ Pn. As was done in Proposition 1,
label the vertices of Km with 1 and the first m�1 primes. Consider the vertices on
the path as V (Pn) = {v1, . . . , vn}, which we will label using the following sequence
X = {xi}1i=1. When n is even, we assign the value xi to the vertex vi for i = 1, . . . n.
When n is odd, we alter this slightly by assigning xi to vi for i = 1, . . . n � 1, and
we label vn by 4:

X = 8, 9, 14, 15, 16, 21, 22, 25, 26, 27, 28, 33, 34, 35, 38, 39, 44, 45, 46, 49, . . .

The sequence is defined after the initial two terms by including each integer starting
with 14 except we skip each prime pi for all i � 7 along with the following three
cases, determined partly by whether pi and pi+1 are twin primes (i.e., pi+2 = pi+1):
we skip pi�1 if pi is not the first of two twin primes and 3|(pi�1), as in the case of
p12 = 37; skip pi�1 and pi+1�1 if pi and pi+1 are twin primes and 5|(pi�1), such
as the case of p13 = 41 and p14 = 43; and skip pi + 1 for all other prime numbers.

It is clear that each pair of adjacent labels in Km are relatively prime. The same
is true for the labels on Pn since the distance between any such pair is at most 5,
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and we ensure, through the first two cases of values that were skipped, that no pair
of adjacent labels are divisible by 3 or 5. This is because if pi � 1 is divisible by 3
for pi being a non-twin prime, then the vertices with labels pi � 2 and pi + 1 will
be adjacent with gcd(pi� 2, pi +1) = 1. Likewise, if pi� 1 is divisible by 5 when pi

is the first of a twin prime pair, then the vertices with labels pi � 2 and pi + 3 will
be adjacent with gcd(pi � 2, pi + 3) = 1. Therefore, this is a coprime labeling.

Notice that the largest label on Pn will be odd since the sequence X is increasing,
and we use 4 as the final label if n is odd. There are pm�1+1

2 odd numbers less than or
equal to pm�1. Of these, m�1 of them are odd prime numbers that we used as labels
on Km, leaving pm�1+1

2 �m+1 odd integers that are smaller than pm�1as labels for
Pn. Then our path can include up to 2

⇣
pm�1+1

2 �m + 1
⌘

+1 = pm�1�2m+4 = r

vertices while maintaining that all of its labels are smaller than pm�1. By our
assumption of n  r, pr(Km [ Pn) = pm�1 in this case.

Next suppose that m � 5 and n > r. We label Km as before, label the first r� 1
vertices of Pn using x1, . . . , xr�1, and label vr by 4. For the remaining vertices, if
n is even, we label vr+1, . . . , vn by the sequence

pm�1 + 2, pm�1 + 3, . . . , pm�1 + n� r + 1.

If n is odd, we label vr+1, . . . , vn�1 by the above sequence up to pm�1 + n� r, but
we label vn by 8 and reassign the label for v1 as 10 if m > 5. Note that if m = 5,
this reassignment for n odd is not needed because r = 1 and hence the first label in
the path is 4. The labeling is coprime based on the discussion in the last case about
labeling the path using the sequence X, and the fact that any newly adjacent pairs
of labels are consecutive, an odd integer adjacent to 4 or 8, or potentially the labels
10 and 9 at the beginning of the path. It is a minimum coprime labeling since our
maximum label is an odd integer, either pm�1 +n�r+1 if n is even or pm�1 +n�r
if n is odd, and our labeling includes every odd value up to this maximum while
using as many even labels as possible on the path. Our result for pr(Km [ Pn)
follows since pm�1 + n� r + 1 = 2m + n� 3 and pm�1 + n� r = 2m + n� 4.

The last class of disjoint union graphs we will investigate is the union of a com-
plete graph and a star, Km[Sn, where Sn has n pendant vertices. See Figure 4 for
an example of the union of K9 and the star S6 with a minimum coprime labeling.
By [16], Km[Sn is prime when ⇡(m+n+1) � m where ⇡(m+n+1) is the number
of prime numbers less than or equal to m + n + 1. To find the minimum coprime
labeling of such a graph, we first define three numbers and provide examples of
each.

Definition 4. For positive integers t and b, we let '(t, b) be the number of com-
posite integers not equal to 1 that are less than or equal to b and relatively prime
with t.
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Example 5. We observe that '(25, 31) = 14, since there are eleven composite
numbers less than 25 that are relatively prime with 25, and three such numbers
that are between 25 and 31.

Next, we define a number kb that will potentially be used in our minimum coprime
labeling as the center of the star Sn.

Definition 6. Given positive integers m and n, and a composite integer b in the
interval [pm�1, pm], we let kb = min({q2 : q2 < b,'(q2, b) � n, and q is prime}).
In the case that no such q exists in which q2 fits the required inequalities, we define
kb =1.

Example 7. When m = 10 and n = 10, the smallest prime squares that fit the
required inequalities for b = 27 is k27 = 25 yet when b = 28, we see that k28 = 9.
On the other hand, when m = 4 and n is any positive integer, we find that when
b = 6, k6 =1 since the only q2 < b is 4 and '(4, 6) = 0 < n.

In the upcoming labeling, the integer b will represent the largest label assigned
to a pendant vertex of the star Sn. The center of the star will be labeled by the
integer kb, resulting in the largest label among the vertices of Sn being the following
value.

Definition 8. For m,n 2 N, we let ↵ = min({max(kb, b) : b 2 (pm�1, pm)}).

Again, note it is possible for kb = 1 for each b value, particularly if n is su�-
ciently large compared to b, and in this case ↵ =1 as well. We now formalize our
labeling in the following result.

9
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Figure 4: Minimum coprime labeling of K9 [ S6 with ⇡(m + n + 1) < m, n > r,
and ↵  pm

Theorem 9. Let m,n be positive integers, p be the largest prime number such that
p2 < pm�1, and r = pm�1 �m �

j
pm�1

p

k
+ 1. The minimum coprime number for
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Km [ Sn is

pr(Km [ Sn) =

8
>>><

>>>:

m + n + 1 if ⇡(m + n + 1) � m,
pm�1 if ⇡(m + n + 1) < m and n  r

↵ if ⇡(m + n + 1) < m, n > r, and ↵  pm

pm otherwise.

Proof. By the work in [16], if ⇡(m + n + 1) � m then pr(Km [ Sn) = m + n + 1.
Now suppose that ⇡(m + n + 1) < m. Since pr(Km) = pm�1 by Proposition 1,
pr(Km [ Sn) � pm�1. It is clear that Km [ Sn will not be prime in this case. We
first suppose that n  r. Again, label the vertices of Km using 1 and the first
m � 1 primes. Let the center of the star be labelled as p2. There are pm�1 �m
positive integers that are not used on the labels of Km. Since the center of the star
is labeled p2, there are at most

j
pm�1

p

k
� 1 positive integers less than pm�1 that

we can use to label the pendant vertices of Sn. Since we assumed for this case that
n  r = pm�1 �m�

j
pm�1

p

k
+ 1, we have pr(Km [ Sn) = pm�1.

Now suppose that n > r. There are many options for the label of the center of the
star, so we aim to use the smallest composite number less than pm that is relatively
prime with at least n composite numbers less than some fixed value b 2 (pm�1, pm).
Since q2 (q prime) is relatively prime with at least the same number of composite
numbers as qt for some integer t > 1 with t 6= q, we would choose q2 over qt as the
label for the center of the star. Thus kb is defined to be a candidate for the center of
the star for each integer b 2 (pm�1, pm). If this were a minimum coprime labeling
then its minimum coprime number is max(kb, b). Hence we look for the minimum
among all of these maximums and denote such a value as ↵. By construction, there
are more than n relatively prime composite numbers less than ↵ that are not 1, so
the pendant vertices of the star can be labeled by these. Thus, this is a coprime
labeling. We choose ↵ to be minimum and thus the result follows if ↵  pm.

If we find that ↵ > pm, then we instead use the first m primes on Km, and use
1 as the label of the center of the star, in which case pr(Km [ Sn) = pm as long as
the assumption ⇡(m + n + 1) < m still holds.

Next we consider the corona of a complete graph with the empty graph of one or
two vertices. In [16], it was shown that Kn�K1 and Kn�K2 are prime under certain
conditions, particularly if n  7 for K1 and if n  16 for K2. Later, El Sonbaty,
Mahran, and Seoud [13] showed that Kn�Km is not prime if n > ⇡(n(m + 1)) + 1
and conjectured that Kn�Km is prime if n < ⇡(n(m+1))+1. We give the minimum
coprime number for Kn�K1 and Kn�K2 below. An example of K8�K1 is given
in Figure 5.

Theorem 10. If n is an integer with n > 7, then pr(Kn �K1) = pn�1.
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Figure 5: Minimum coprime labeling of K8 �K1

Proof. By Proposition 1, pr(Kn � K1) � pn�1 � 17. Let u1, u2, . . . , un be the
vertices in Kn, and for each i 2 {1, . . . , n}, let vi be the vertices adjacent to ui for the
n copies of K1. Label the vertices ui with pi�1 for i 2 {2, . . . , n} and label u1 with
1. Then label vi with pi�1 � 1 for i 2 {4, . . . , n}. We label v1, v2, v3 with 15, 9, 14,
respectively. Since these three labels are specifically chosen to be relatively prime
with their neighbors 1, 2, and 3, and all other pendant edges connect labels that are
consecutive, this labeling is coprime. This results in pr(Kn�K1)  pn�1, combining
with the previous inequality to prove our claim of pr(Kn �K1) = pn�1.
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Figure 6: Minimum coprime labeling of K17 �K2
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An example of K17 �K2 is given in Figure 6.

Theorem 11. If n is an integer with n > 16, then pr(Kn �K2) = pn�1.

Proof. By Proposition 1, pr(Kn � K1) � pn�1 � 53. We will label the vertices
in Kn and the first 16 corresponding copies of K2, and then we will label the
remaining vertices in a more structured manner. Let u1, u2, . . . , un be the vertices
in Kn and vi,1, vi,2 be the vertices for the n copies of K2. Label the vertices ui for
i 2 {2, 3, . . . , n} with pi�1 and label u1 with 1. We label the sequence of vertices
v1,1, v1,2, v2,1, v2,2, v3,1, v3,2, . . . , v16,2, respectively, with the following sequence of
labels:

4, 6, 9, 15, 8, 14, 12, 16, 10, 18, 20, 21, 22, 24, 25, 26, 27, 28,
30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48.

For i > 16, if pi�1 is not a twin prime, we label vi,1, vi,2 with pi�1 � 2, pi�1 � 1. If
instead pi�1 and pi are twin primes, we label vi,1, vi,2 with pi�1 � 3, pi�1 � 2 and
label vi+1,1, vi+1,2 with pi�1�1, pi�1 +1. One can see by inspection that the labels
on the first 16 vertices in Kn are relatively prime with the corresponding pendant
labels from the sequence, and the coprime condition is also upheld for pendant edges
from the other vertices vi with i > 16 since each label pi�1 is within distance 3 from
each of its adjacent labels. Therefore, we have obtained our result since this is a
minimum coprime labeling with largest label being pn�1.

As long as n is su�ciently large compared to m, the authors believe that the
minimum prime labeling of Kn �Km is pn�1. It is likely that several subsequent
cases beyond m = 2 can be proven in a similar manner to Theorem 11, but a
generalization for all m eludes discovery. As such, we leave this as an open problem
in Section 6 and a conjecture below.

Conjecture 1. For all m > 0, there exists an M > m such that for all n > M ,
pr(Kn �Km) = pn�1.

4. Powers of Paths and Cycles

We next consider the graph P 2
n with n � 6 vertices. Seoud and Youssef [14] proved

that this graph is not prime when n = 6 and n � 8. We will construct a minimum
coprime labeling of P 2

n for these cases. A lower bound for the minimum coprime
number for the graph would be obtained by using the maximum amount of even
labels that can be used based on the independence number of P 2

n , shown in [14] to
be

ln

3

m
, along with the smallest possible odd labels. Figure 7 shows a minimum

coprime labeling of the graph P 2
6 and P 2

10, and in the former case, the path is
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represented as v1, v2, . . . , v6 with the horizontal edges connecting vertices of distance
2. Since the independence number of P 2

6 is 2, we can only use two even labels, which
prevents a prime labeling. Instead, a minimum coprime labeling can be achieved
with pr(P 2

6 ) = 7.

2
v1

v2
1

v3 v5

v4 v6

3

4

5

7

10
v1

v2
1

v3 v5

v4 v6

3

4

5

7

v8

v7
8

v9
11

9 2
v10

Figure 7: Minimum coprime labeling of P 2
6 (left) and P 2

10 (right)

The following theorem regarding the minimum coprime number of the path
squared was verified for the n = 6 case through the labeling in Figure 7, and
the general case of n � 8 will be proven by a series of lemmas.

Theorem 12. Let n = 6 or n � 8. The minimum coprime number of P 2
n is given

by

pr(P 2
n) =

(
4k � 1 if n = 3k or 3k + 1
4k + 1 if n = 3k + 2.

Assume that n � 8 for the following lemmas that will prove the general case of
Theorem 12. To construct a minimum coprime labeling of P 2

n , we define a sequence
X = {xi}1i=1 of integers for which the first n numbers will be used as labels for
the vertices {v1, . . . , vn}. The sequence X consists of a length 45 segment with the
repeated pattern of even, odd, and odd integers, with the subsequent terms of the
sequence defined by shifting the initial entries by multiples of 60. The first 30 odd
numbers are included in the initial segment along with the first 15 even numbers
that are not multiples of 3 or 5. The definition of the sequence is the following:

{x1, . . . , x45} = {2, 1, 3, 4, 5, 7, 8, 9, 11, 14, 13, 15, 16, 17, 19, 22, 21, 23, 26, 25, 27, 28,
29, 31, 32, 33, 35, 34, 37, 39, 38, 41, 43, 44, 45, 47, 46, 49, 51, 52, 53,
55, 56, 57, 59},

and for i > 45, we recursively define xi = xi�45 + 60.
In order to examine whether adjacent vertices will have relatively prime labels,

the following fact about the distance between the labels of such vertices will be
quite useful.

Lemma 1. Given adjacent vertices vi and vj in P 2
n for some 1  i, j  n, the labels

in the sequence {x1, . . . , xn} satisfy |xi � xj |  5.
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Proof. Based on the structure of P 2
n , the neighborhood of a vertex vi with i =

3, . . . , n� 2 is the set {vi�2, vi�1, vi+1, vi+2}. By inspection of the 45 labels in the
initial segment of the sequence, we can verify that xi is within distance 5 of the
label of any adjacent vertex when i  43.

For adjacent vertices vi and vj where vi 2 {v1, . . . , v45} and vj 2 {v46, . . . , v90},
we only need to consider the labels x44 = 57, x45 = 59, x46 = 62, and x47 = 61,
where the latter two labels are the result of shifting x1 and x2 by 60. We see
that our desired inequality |xi � xj |  5 is satisfied by each adjacent pair such as
|x44 � x46| = 5.

Adjacent vertices with indices that are both larger than 45 will also satisfy |xi�
xj |  5 because xi = xa + 60m and xj = xb + 60m for some integers 1  a, b  47
and positive integer m. Since xa and xb satisfy the inequality as shown above,
the shifted values xi and xj also maintain a distance of 5 or less, which covers the
remaining possible cases of indices i and j.

Note that if we continued to define x46, . . . , x54 in the manner of the first 45
terms by including all even numbers that are not multiples of 3 or 5, then we would
have x52 = 64 and x54 = 71. This would have contradicted Lemma 1 and eventually
would result in the sequence containing adjacent labels that are both multiples of 7.
Shifting the x1, . . . , x45 segment by 60 to have x46 = 62 skips the even number 58
and maintains that the distance between adjacent labels remain small enough to
guarantee a coprime labeling, as shown in the following lemma.

Lemma 2. The labels {x1, . . . , xn} are a coprime labeling of P 2
n.

Proof. By Lemma 1, the distance between the labels of adjacent vertices is at most 5;
hence, no two adjacent vertices will have labels with a factor of 6 or higher in
common. By design, even labels are not adjacent, eliminating the possibility of
labels sharing a factor of 2. None of the even labels are divisible by 3 or 5, and
any two odd labels both divisible by 3 or 5 are spaced out enough to avoid being
adjacent, resulting in no adjacent labels having a 3 or 5 as a common factor. Thus
our labeling is coprime.

Lemma 3. If max (x1, . . . , xn) is odd, then the labels {x1, . . . , xn} are a minimum
coprime labeling of P 2

n.

Proof. Notice that even integer labels cannot be 1 or 2 indices apart, which corre-
sponds to the independence number of our graph being

ln

3

m
. Hence, we have used

as few odd labels as possible, while also using all of the odd numbers from 1 to
max(x1, . . . , xn). Thus we cannot make pr(P 2

n) any smaller.

For the case of the maximum label within {x1, . . . , xn} being even, we alter the
sequence of labels to achieve a minimum labeling. Through examination of the
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first 45 terms of the sequence and the fact that remaining terms are simply shifted
from this initial segment, we see that this situation can only occur when n = 3k +1
or 3k + 2. Additionally, we observe that the largest even label in either case is in
position 3k + 1. We create a new sequence {x⇤i }n

i=1 by defining x⇤1 = 10, x⇤3k+1 = 2,
and x⇤i = xi for i 2 {2, . . . , n} \ {3k + 1}.

Lemma 4. If max (x1, . . . , xn) is even, then the labels {x⇤1, . . . , x⇤n} are a minimum
coprime labeling of P 2

n.

Proof. As described above, to be in the case of the maximum label being even, we
know that n = 3k+1 or 3k+2. By inspection of the initial segment of our sequence
of labels, the first such n � 8 with an even label being the largest in the sequence
{x1, . . . , xn} would be n = 10 in which x10 = 14. For this case, or for any larger
such n value, replacing x1 and x3k+1 (which we note is xn or xn�1) with x⇤1 = 10
and x⇤3k+1 = 2 would result in the maximum of the labels falling into the case of
Lemma 3 since one can observe that the second largest label in {x1, . . . , xn} will
always be odd if the largest one is even.

Following the reasoning of the previous lemma, the labeling {x⇤1, . . . , x⇤n} is a
minimum coprime labeling as long as we show it is still a coprime labeling. This
sequence matches the original sequence except for two values; hence, the only adja-
cent vertex pairs that need to be checked as still having relatively prime labels are
the vertices v1 and v3k+1 with their respective neighbors. In the case of n = 3k +1,
v3k+1 = vn is only adjacent to vn�1 and vn�2. Since both labels for these vertices
are odd, the label x⇤n = 2 is relatively prime with its adjacent labels. Similarly if
n = 3k + 2, then v3k+1 = vn�1 is only adjacent to vn�3, vn�2, and vn. Again, all
of these vertices will be labeled by odd numbers, which are relatively prime to 2.
Likewise, the label x⇤1 = 10 is only adjacent to the second and third vertices with
labels x⇤2 = 1 and x⇤3 = 3, so the labels are once again relatively prime. Thus, the
labeling {x⇤1, . . . , x⇤n} is a minimum coprime labeling of P 2

n .

Proof of Theorem 12. The previous lemmas in this section have shown that the
sequence {x1, . . . , xn} or {x⇤1, . . . , x⇤n} provides a minimum coprime labeling of P 2

n .
It only remains to show that the maximum value in the labeling sequence, which
was shown to be odd, is in fact 4k�1 or 4k+1 depending on the value of n (mod 3).
In the case of n = 3k, there are

ln

3

m
= k even labels used, so pr(P 2

n) is the (n�k)th

odd number, which is 2(n � k) � 1 = 4k � 1. The other two cases follow similarly
to give us the value of pr(P 2

n).

We next consider the square of the cycle, C2
n, for n � 4. Seoud and Youssef [14]

showed this graph is not prime when n � 4 and that its independence number isjn

3

k
, which will be the maximum allowable number of even labels. Note the only

di↵erence compared to the squared path graph is the additional edges v1vn�1, v1vn,
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and v2vn. These do require some alterations to our labeling of P 2
n in some cases

to maintain the coprime property, which results in the following for the minimum
coprime number. See Figure 8 for an example of a minimum coprime labeling of C2

8 .

2

1

3

4

5

7

9

11

Figure 8: Minimum coprime labeling of C2
8

Theorem 13. Let n � 4. The minimum coprime number of C2
n is given by

pr(C2
n) =

8
><

>:

4k � 1 if n = 3k
4k + 1 if n = 3k + 1
4k + 3 if n = 3k + 2.

Proof. For the case of n = 3k, the labeling of vertices v1, . . . , vn using the sequence
{x1, . . . , xn} still provides a minimum coprime labeling as it did with the P 2

n . This
is because x1 = 2 and x2 = 1 while the final two labels xn�1 and xn are odd, so the
additional three new edges maintain our coprime property.

The other two cases cannot simply use the same labeling as the squared path
graph since the independence number is 1 smaller for C2

n compared to P 2
n . Also note

that we will only need to adjust the sequence {x1, . . . xn} instead of {x⇤1, . . . , x⇤n}
even in the cases of n = 3k + 1 and 3k + 2 that needed the largest even label
reassigned as 2 in the path squared labeling. This is because this largest even label
will instead be reassigned as an odd number in the following cases.

When n = 3k + 1, the edge v1vn would result in a common factor of 2 between
the labels x1 = 2 and xn since xn is even. Hence, we reassign xn = 4k + 1, which
is the lowest available odd label. This label will now be relatively prime with its
adjacent vertices whose labels are 1, 2, 4k � 1, and 4k � 3, making {x1, . . . , xn} a
minimum coprime labeling.

Similarly, when n = 3k + 2, the edge v1vn�1 leads to adjacent vertices with
even labels. We correct this while keeping the labeling minimum by reassigning
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xn�1 = 4k + 1 and xn = 4k + 3, which we note are the smallest available odd
labels. The newly assigned xn�1 and xn are coprime with any adjacent vertices’
labels since their neighbors are only labeled by 1, 2, or an odd number of distance
2 or 4 from xn�1 or xn. In each case, we obtain a minimum coprime labeling using
the maximum amount of even labels and the smallest possible odd labels with the
largest label being 4k � 1, 4k + 1, and 4k + 3 in the respective cases.

Now we consider taking the third power of the path graph, P 3
n , which has addi-

tional edges from vi to vi+3 for i = 1, . . . , n� 3. Since this graph contains P 2
n as a

spanning subgraph, it is also not prime when n = 6 and n � 8 by Observation 1.
It is known that the independence number for the cubed path is

ln

4

m
, which will

determine how many even labels can be placed on its vertices. This fact results in
P 3

n not being prime for the additional cases of n = 4 and n = 7, but note that the
path cubed on 4 vertices is simply the complete graph. It is, however, prime when
n = 5, in which the path can be labeled using 2, 1, 3, 5, 4.

Theorem 14. Let n � 6. The minimum coprime number of P 3
n is given by

pr(P 3
n) =

8
><

>:

6k � 1 if n = 4k or 4k + 1
6k + 1 if n = 4k + 2
6k + 3 if n = 4k + 3.

Similar to our construction for the coprime labeling of P 2
n , we define a sequence of

finite length, with the subsequent terms determined by shifting the initial sequence.
For P 3

n , our initial sequence consists of 140 entries, and the shift is by 210 from
yi to yi+140. Note that the sequence below is a repetition of even, odd, odd, and
odd entries with the smallest possible odd numbers included and all even multiples
of 3, 5, and 7 excluded. Additionally, some other even numbers were removed to
maintain the inequality in Lemma 5 regarding the distance between adjacent labels.
We define the labeling sequence as follows, where vertex vn of P 3

n is labeled by yn:

{y1, . . . , y140} = {2, 1, 3, 5, 4, 7, 9, 11, 8, 13, 15, 17, 16, 19, 21, 23, 22, 25, 27, 29, 26, 31,
33, 35, 32, 37, 39, 41, 38, 43, 45, 47, 44, 49, 51, 53, 52, 55, 57, 59, 58,
61, 63, 65, 62, 67, 69, 71, 68, 73, 75, 77, 74, 79, 81, 83, 82, 85, 87, 89,
86, 91, 93, 95, 92, 97, 99, 101, 104, 103, 105, 107, 106, 109, 111, 113,
116, 115, 117, 119, 118, 121, 123, 125, 122, 127, 129, 131, 128, 133,
135, 137, 134, 139, 141, 143, 142, 145, 147, 149, 146, 151, 153, 155,
152, 157, 159, 161, 158, 163, 165, 167, 164, 169, 171, 173, 172, 175,
177, 179, 176, 181, 183, 185, 184, 187, 189, 191, 188, 193, 195, 197,
194, 199, 201, 203, 202, 205, 207, 209}
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and yi = yi�140 + 210 for i > 140.
We prove this theorem as was done for squared paths by using a sequence of

lemmas.

Lemma 5. Given adjacent vertices vi and vj in P 3
n for some 1  i, j  n, the labels

in the sequence {y1, . . . , yn} satisfy |yi � yj |  9.

Proof. The graph P 3
n has a neighborhood for each vertex vi consisting of {vi�3, vi�2,

vi�1, vi+1, vi+2, vi+3} with i = 4, . . . , n � 3. Through careful inspection of the 140
initial labels, the maximum distance between labels of a vertex vi with i  137 and
any of its neighbors is 9, which is attained for example by vertices v9 and v12 having
labels 8 and 17, respectively.

We next examine adjacent vertices with labels with one from the initial sequence
{y1, . . . , y140} and one from the shifted sequence {y141, . . . , y280}. Since y138 = 205,
y139 = 207, y140 = 209, y141 = 212, y142 = 211, and y143 = 213, the adjacent labels
in this case with greatest distance apart are |y138 � y141| = 7, which is within the
desired distance.

As in Lemma 1, adjacent vertices with indices larger than 140 maintain the same
distance for their labels as their corresponding vertices with indices between 1 and
143, making the inequality hold for all adjacent vertices.

Lemma 6. The labels {y1, . . . , yn} are a coprime labeling of P 3
n.

Proof. By Lemma 5, the distance between adjacent labels is at most 9; thus, no
adjacent labels have a common factor of 10 or higher. The construction of the
sequence results in even labels being four indices apart and hence not adjacent, so
no labels share a common factor of 2. The even labels were chosen to not contain
a factor of 3, 5, or 7, and any pair of odd labels that both contain a multiple of 3,
5, or 7 have indices that are at least 4 apart, so they are not adjacent. Thus, each
pair of adjacent labels are relatively prime.

Lemma 7. If max(y1, . . . , yn) is odd, then the labels {y1, . . . , yn} are a minimum
coprime labeling of P 3

n.

Proof. Since the independence number of P 3
n is

ln

4

m
, our sequence of labels uses the

maximum number of even labels. Therefore, the fact that we have used every odd
number up to max(y1, . . . , yn) implies that we have achieved a minimum coprime
labeling.

As with P 2
n , we define an altered labeling sequence for the case of max(y1, . . . , yn)

being even to switch out this largest even label to ensure the maximum is odd. We
create our new sequence {y⇤i }n

i=1 by defining y⇤1 = 14, y⇤m = 2, and y⇤i = yi for all
i 2 {2, . . . , n} \ {m}, where ym was the maximum label of {y1, . . . , yn}. It can be
observed from the initial sequence {y1, . . . , y140} that m = n or n� 1.
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Lemma 8. If max(y1, . . . , yn) is even, then the labels {y⇤1 , . . . , y⇤n} are a minimum
coprime labeling of P 3

n.

Proof. Through examination of the sequence {y1, . . . , yn}, the first n value such
that an even integer is the largest value in the sequence is n = 69 and n = 70 with
y69 = 104. Replacing the maximum even label with 2 and the first label with 14
will result in there now being an odd label as the maximum. This allows us to apply
Lemma 7 if our labeling remains a coprime labeling. Reassigning the label of v1

to be 14 maintains our coprime property since it is only adjacent to the labels 1, 3,
and 5. The vertex vm, whose maximum label was reassigned as the label 2, is only
adjacent to vertices with odd labels; hence, the adjacent labels remain relatively
prime.

Proof of Theorem 14. The preceding lemmas have proven that P 3
n has a mimimum

coprime labeling using either {y1, . . . , yn} or {y⇤1 , . . . , y⇤n}, leaving us to verify that
the correct minimum coprime number was attained. The labels consist of

ln

4

m
even

labels, so we consider the cases of n (mod 4). For the case of n = 4k,
ln

4

m
= k

even labels were used. Therefore, pr(P 3
n) is the (n � k)th odd number, which is

2(n� k)� 1 = 6k� 1. The other three cases follow similarly to find their minimum
coprime numbers.

We next demonstrate a minimum coprime labeling of C3
n, which we note has an

independence number of
jn

4

k
. Also observe that C3

n = Kn for n  7.

Theorem 15. Let n � 8. The minimum coprime number of C3
n is given by

pr(C3
n) =

8
>>><

>>>:

6k � 1 if n = 4k
6k + 1 if n = 4k + 1
6k + 5 if n = 4k + 2
6k + 7 if n = 4k + 3.

Proof. We begin by considering the labeling sequence {y1, . . . , yn} that was used
for P 3

n on the vertices v1, . . . , vn of the cycle. Before considering each case, it is
important to note that the vertex vn is adjacent to v3, which is labeled by y3 = 3,
in C3

n since their distance in the cycle graph is 3. Observe from our labeling sequence
that yn is a multiple of 3 if and only if n = 4k + 3.

For n = 4k, the labeling {y1, . . . , yn} is a minimum coprime labeling of C3
n. The

additional edges in C3
n that were not in P 3

n have endpoints with relatively prime
labels because y3 = 3 with yn not being a multiple of 3 as previously stated above,
y2 = 1, and y1 = 2 with the three labels yn�2, yn�1, and yn all being odd.

When n = 4k+1, the independence number being
jn

4

k
implies that the sequence

{y1, . . . , yn} cannot be used for the labeling since it would include k+1 even labels.
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Instead, we reassign yn = 6k + 1, which is the smallest unused odd label. This
label is not a multiple of 3, so it is relatively prime with y3 = 3. This final label
yn = 6k + 1 is also clearly relatively prime with the labels 2 and 1 of the vertices
v1 and v2, in addition to the odd labels of yn�3 = 6k � 5, yn�2 = 6k � 3, and
yn�1 = 6k � 1 since it is not a multiple of 3, resulting in a minimum coprime
labeling.

Assuming n = 4k + 2, as in the previous case, there are too many even labels
which requires a reassignment of the last even label to be yn�1 = 6k + 1. This
label is again relatively prime with y1 and y2. The last label, yn, which originally
was also 6k + 1, cannot be reassigned to be the next smallest odd label of 6k + 3,
which is a multiple of 3. This is because vn is adjacent to v3, which is labeled as
v3 = 3. Furthermore, labels that are multiples of 3 cannot be shifted in any way to
accommodate 6k + 3 because of the independence number being

jn

4

k
= k and the

fact that there are already k multiples of 3 in our labeling sequence. Thus, we set
yn = 6k + 5, the smallest possible label that is not even or a multiple of 3. Since it
is coprime with the odd labels of yn�3 = 6k� 3, yn�2 = 6k� 1, and yn�1 = 6k + 1,
as well as y1 and y2, we have a minimum coprime labeling.

We use the same reasoning for the n = 4k+3 to reassign the labels yn�2 = 6k+1,
yn�1 = 6k + 5 (to avoid the multiple of 3), and yn = 6k + 7. The labeling is again
minimum because the independence number limits the number of even integers and
multiples of 3 that can be used.

The next logical step would be to generalize our constructions for P k
n and Ck

n or
at least continue with finding a minimum coprime labeling of P 4

n . However, to keep
even labels spaced out enough, a sequence for P 4

n would require repetition of the
pattern of even, odd, odd, odd, and odd. Using the smallest possible odd numbers
fails quickly though as it would begin 2, 1, 3, 5, 7, 4, 9, resulting in the labels 3 and
9 being adjacent due to their vertices being distance 4 apart. Having to frequently
skip odd numbers within our label sequence greatly increases the di�culty of finding
minimum coprime labeling of P k

n for k � 4, so we leave this as an open problem in
Section 6.

5. The Join of Paths and Cycles

In this section we will establish the minimum coprime number for the join of two
paths, two cycles, or a cycle and a path. As we did in Section 4, we will use the
results on paths to find solutions for the join of cycles. In [12, 14], it was shown
that Pm + K1 = Pm + P1 is prime, Pm + K2 is prime if and only if m � 3 is odd,
and Pm + Kn is not prime for n � 3. We will consider similar join graphs in which
edges are added to Kn to create a path Pn.
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We will exploit the size of the gap between prime numbers in order to ensure we
can form a minimum coprime labeling. We define the gap between two primes as
g(pn) = pn+1 � pn. By the prime number theorem, for all " > 0, there exists an
integer N such that for all n > N , g(pn) < "pn. More specifically, particular values
for " and N are mentioned in [8].

Theorem 16. [6, 9, 11] Let " > 0. For any positive integer n > N , g(pn) < "pn

where (N, ") 2 {(9, 1/5), (118, 1/13), (2010760, 1/16597)}.

We first investigate a minimum coprime labeling of Pm +P2. We know from [14]
that Pm + K2 is prime if and only if m is odd or m = 2. By Observation 1, adding
an edge to create the second path results in Pm + P2 not being prime when m is
even and m � 4. Note that P2 + P2 would also not be prime, but this graph is
simply K4.

Theorem 17. If m � 4 is even, then pr(Pm + P2) = m + 3.

Proof. For the case of m = 4, Figure 9 shows an example of a minimum coprime
labeling of P4 + P2. Since Pm + P2 is known to not be prime and the maximum
label is |V (P4 + P2)| + 1, we see that pr(P4 + P2) = 7.

For m = 6, label the vertices of V (P6) = {v1, . . . , v6} using the sequence
2, 9, 4, 5, 8, 3, and label P2 using 1 and 7. Then it is clear the result follows. Sup-
pose that m � 8 is even. We label the vertices of V (Pm) = {v1, . . . , vm} using the
sequence

2,m + 3, 4, 3, 10, 9, 8, 5, 6, p4, 12, p5, 14, 15, 16, p6, 18, . . . .

Notice that pi is the label of vpi+1�1 for i � 4. By Theorem 16, m is large enough
so that pi+1 < 1.2pi. Since the smallest number that is divisible by pi that is not
pi is 2pi, we know pi is relatively prime with the labels pi+1 � 1 and pi+1 + 1 that
are adjacent to vpi+1�1 for all i � 4. Let p0 be the largest prime that is less than or
equal to m + 1, which we note is not a label on Pm based on our shift of the prime
numbers within our labeling sequence. Then we label the vertices of P2 using the
labels 1 and p0.

It is clear that this is a coprime labeling based on our discussion of pi being
relatively prime to its adjacent labels in the sequence. It is a minimum coprime
labeling with pr(Pm + P2) = m + 3 since the graph is not prime and the maximum
label is |V (Pm + P2)| + 1.

See Figure 9 for an example of the labeling in the following theorem when m = 12.

Theorem 18. If m � 3, then the minimum coprime number of Pm + P3 is

pr(Pm + P3) =

(
m + 4 if m is odd
m + 5 if m is even.
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Figure 9: Minimum coprime labeling of P4 + P2 (left), P12 + P3 (right)

Proof. Based on the independence number of Pm + P3 being
⌃

m
2

⌥
, a minimum

coprime labeling can at best use the smallest
⌅

m
2

⇧
+ 3 odd integers. This would

correspond to the largest label being m+4 if m is odd or m+5 if m is even. Thus,
constructing labelings using these as the maximum label would prove our result.

Let V (Pm) = {v1, . . . , vm}. For the initial cases of m = 3, 4, 5, and 6, by using
the sequence 2, 3, 4, 9, 8, 11 as the labels for v1, . . . , v6, respectively, and labeling the
vertices in P3 with 1, 5, 7, we see that pr(P3+P3) = 7, pr(P4+P3) = pr(P5+P3) = 9,
and pr(P6 + P3) = 11. By using the sequence 6, 5, 4, 3, 2, 9, 8, 13, 10 as the labels
for v1, . . . , v9, respectively, and labeling the vertices in P3 with 1, 7, 11, we have
pr(P7 + P3) = 11 and pr(P8 + P3) = pr(P9 + P3) = 13. By using the sequence
6, 5, 4, 3, 2, 9, 10, 7, 8, 15, 14 as the labels for v1, . . . , v11, respectively, and labeling
the vertices in P3 with 1, 11, 13, we see that pr(P10 + P3) = pr(P11 + P3) = 15.

Suppose that m � 12. We label the vertices of V (Pm) = {v1, . . . , vm} using the
first m entries in the sequence

2, a, 6, 5, 12, 7, 4, b, 8, 9, 10, 3, 14, 15, 16, p5, 18, p6, 20, 21, 22, p7, . . .

where a and b are the values of m0 and m0+2, with m0 being the smallest odd number
larger than m + 1. If m0 is not a multiple of 3, we set a = m0 and b = m0 + 2, but
if 3 | m0, we set b = m0 and a = m0 + 2 to avoid a multiple of 3 being adjacent to
the label 6. We know that m0 will either be m + 2 or m + 3 depending on whether
m + 1 is even or odd, implying the largest label is m0 + 2 = m + 4 or m + 5, as
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described in our claim for pr(Pm + P3).
Notice that pi is the label of vpi+2�1 for i � 5. By Theorem 16, m is large enough

so that pi+2 < 1.44pi, thus pi is relatively prime with the labels pi+2�1 and pi+2+1
on either side of vpi�1 for all i � 5. Let p0 and p00 be the two largest primes in
the sequence 2, 3, 4, . . . ,m + 1. Then we label the vertices in P3 using the sequence
1, p0, p00. It is clear that this sequence is a coprime labeling, and since we achieved
the goal of using a maximum label of m + 4 and m + 5 for the odd and even cases,
respectively, it is also a minimum coprime labeling.

Next, we consider the join of a path Pm with P4, where we note the cases of
m < 4 have already been covered by previous results.

Theorem 19. If m � 4, then the minimum coprime number of Pm + P4 is given
by

pr(Pm + P4) =

(
m + 6 if m is odd
m + 7 if m is even.

Proof. Observe that the independence number of Pm + P4 is once again
⌃

m
2

⌥
, as it

was for Pm + P3. We now have one additional odd label that must be used in our
labeling, meaning pr(Pm + P4) � m + 6 for m odd and m + 7 for m even. We now
construct labelings that use this as the maximum label.

Let V (Pm) = {v1, . . . , vm}. By using the sequence 2, 3, 4, 9, 8, 13, 6 as the labels
for v1, . . . , v7, respectively, and labeling the vertices of P4 with 1, 5, 7, 11, we have
pr(Pm + P4) = 11, 11, 13, 13 for the cases of m = 4, 5, 6, 7, respectively. By using
the sequence 6, 5, 4, 3, 10, 9, 8, 15, 2, 17, 16, 19, 18 as the labels for v1, . . . , v13, respec-
tively, and labeling the vertices of P4 with 1, 7, 11, 13, we see that pr(Pm + P4) =
m + 6 for each m = 9, 11, 13 and m + 7 for m = 8, 10, 12.

Suppose that m � 14. We label the vertices of V (Pm) = {v1, . . . , vm} using the
first m values of the sequence

2, a, 6, b, 10, 3, 4, c, 8, 9, 14, 5, 12, 15, 16, p4, 18, p5, 20, 21, . . .

where {a, b, c} = {m0,m0+2,m0+4}, with m0 being the smallest odd number larger
than m + 1. Note that at most two of m0, m0 + 2, and m0 + 4 can be divisible by 3
or 5, or at most one can be divisible by both 3 and 5. In the case of one of the three
being a multiple of three and a di↵erent value being a multiple of 5, set a to equal
the multiple of 5, c to be the multiple of 3, and b to be the other value. If one of
m0, m0 + 2, or m0 + 4 is a multiple of 3 and 5, set c to be that value, and set a and
b to be the other two values. Again, whether m + 1 is even or odd will determine if
m0 is m + 2 or m + 3, resulting in the largest label being m0 + 4 = m + 6 or m + 7.

Notice that pi is the label for vpi+3 � 1 for i � 4. By Theorem 16, m is large
enough so that pi+3 < 1.728pi and so pi is relatively prime with the numbers on
either side of the position of pi+3 for all i � 4. Let q1, q2, q3 be the three largest
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primes in the sequence 2, 3, 4, . . . ,m + 1. Then we label the vertices in P4 using
the sequence 1, q1, q2, q3. It is clear that this sequence is a coprime labeling. Since
its maximum label matches the lower bound for the minimum coprime number, the
result follows.

We now consider the more general join of paths Pm and Pn with restrictions
set on m and n, particularly a larger lower bound for m. It is likely the case that
pr(Pm + Pn) satisfies the equality below for m  118, but the task of completing
these cases is better left to a computer.

Theorem 20. Let m > 118 and 2  n  10 be positive integers. Then the minimum
coprime number of Pm + Pn is given by

pr(Pm + Pn) =

(
m + 2n� 2 if m is odd
m + 2n� 1 if m is even.

Proof. Since m > n, the independence number of the general Pm + Pn is still
⌃

m
2

⌥

as in the previous proofs. A coprime labeling could be minimized by using the
smallest

⌅
m
2

⇧
+ n odd integers, resulting the smallest possible minimum coprime

number being m + 2n� 2 if m is odd and m + 2n� 1 if m is even.
Theorems 17, 18, and 19 prove the smallest cases of n, so we let 5  n  10. We

label the vertices of Pm = {v1, . . . , vm} using the first n terms of the sequence

2,x1, 4, x2, 8, x3, 16, x4, 32, x5, 64, x6, 10, x7, 20, x8, 40, x9, 50, 7, 6, 5, 12, 31, 18, 37,
24,17, 30, 19, 36, 11, 42, 25, 48, 35, 54, 49, 60, 13, 66, 65, 72, 23, 78, 29, 70, 3, 14, 9, 28,
15,56, 39, 22, 21, 26, 27, 34, 33, 38, 45, 44, 51, 46, 55, 52, 57, 58, 63, 62, 75, 68, 77, 74,
69,76, p13, 80, 81, 82, p12, 84, 85, 86, 87, 88, p14, 89, 90, 91, 92, 93, 94, 95, 96, p15, 98,
99,100, p16, 102, p17, 104, . . .

where x1, x2, . . . , x9 are the 9 smallest odd integers larger than m+1. Observe that
at most two of the integers in the sequence x1, . . . , x9 are divisible by 5. Hence
there are at least 4 integers not divisible by 5 that we will use to label the vertices
v12, v14, v16, v18 to avoid adjacent pairs with a common factor of 5.

If n < 10 then the 10 � n largest of the labels in {x1, x2, . . . , x9} will be reas-
signed to use 10 � n of the smallest primes in {p14, p15, . . . , p22}, and the place-
ment of the primes will shift by 10 � n prime positions lower than they cur-
rently are in the sequence above. Whether m + 1 is even or odd will deter-
mine if m0 = min({x1, . . . , x9}) is m + 2 or m + 3. The largest label will be
m0 + 2n� 4 = m + 2n� 2 or m + 2n� 1 depending on the parity of m.

By Theorem 16, m is large enough so that pi+n�10 < (14/13)9 < pi and hence
pi is relatively prime with the labels on either side of vpi+n�10�1 for all i � 4. Let
q1, q2, . . . , qn�1 be the n� 1 largest primes in the sequence 2, 3, 4, . . . ,m + 1. Then
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we label the vertices in V (Pn) using the sequence 1, q1, q2, . . . , qn�1. It is clear that
this sequence is a coprime labeling using the desired minimum coprime label which
is our claim for pr(Pm + Pn).

By applying similar methods as shown in the proofs of Theorem 19 and 20, the
authors believe the following conjecture to be true.

Conjecture 2. For any positive integer N , there exists a positive integer M such
that for all m > M and n  N , the minimum coprime number of Pm + Pn is

pr(Pm + Pn) =

(
m + 2n� 2 if m is odd
m + 2n� 1 if m is even.

Consequently, a stronger conjecture may be posed based solely on the size of
m + n.

Conjecture 3. Let m and n be positive integers such that m � n. Then the
minimum coprime numbers of Pm + Pn is

pr(Pm + Pn) =

(
m + 2n� 2 if m is odd
m + 2n� 1 if m is even.

We now move our discussion to the join of two cycles. We will use our work on
the join of two paths to find the following results with relative ease. Notice that by
Observation 1, Cm + Cn, Cm + Pn are not prime labelings when m,n � 2.

Theorem 21. Let m and n be positive integers such that m � n, n  10, and
m > 118 when n � 5. Then the minimum coprime number of Cm + Cn is given by

pr(Cm + Cn) =

(
m + 2n if m is odd
m + 2n� 1 if m is even.

Proof. Consider the vertices of Cm to be {v1, . . . , vm} and those of Cn to be
{u1, . . . , un}. Assume m is even. From the join of paths, two edges v1vm and
u1un are added to form Cm + Cn. For the labelings developed in Theorems 17, 18,
19, and 20, the label on v1 (it is 2 in each case) is relatively prime with the odd
integer label on vm, and the label 1 on u1 is relatively prime with any integer, so
the result follows.

Suppose that m is odd. The labels on Cn still satisfy the coprime property. The
labeling sequences from the previous Pm + Pn results all have m + 1 as the label
of vm in the case of m being odd, but this label is even and thus is not relatively
prime with the label of v1. We can reassign the label on vm to the next available odd
number which will only increase the coprime labeling number by 2 from pr(Pm+Pn),
which is necessary since the independence number of Cm is m�1

2 .
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The following corollary is directly from combining Observation 1 with Theo-
rem 21 and from our reasoning in the previous result about the edge u1un not
violating the coprime condition.

Corollary 1. Let m and n be positive integers such that m � n, n  10, and
m > 118 when n � 5. Then we have

pr(Cm + Pn) =

(
m + 2n if m is odd, m 6= n

m + 2n� 1 if m is even,

and

pr(Pm + Cn) =

(
m + 2n� 2 if m is odd
m + 2n� 1 if m is even.

6. Concluding Remarks

We conclude by posing several open questions regarding minimum coprime numbers.

Question 1. Can the minimum coprime number be determined for P k
n and Ck

n for
k � 4?

Question 2. Trees and grid graphs are conjectured to be prime, meaning their
minimum coprime number would match their order. Can the bound shown by
Salmasian in [10] that pr(T )  4n for a tree T of order n be improved, and can a
similar upper bound be found for the grid graph Pm ⇥ Pn?

Question 3. Berliner et al. [1] investigated the minimum coprime number of Kn,n,
but were not able to determine this number for all n. Does there exist a formula for
pr(Kn,n), and can one determine the minimum coprime number more generally for
all complete bipartite graphs Km,n in the cases in which there is no prime labeling?

Question 4. Many graphs that are not always prime are left to study in terms
of minimum coprime labelings, such as Möbius ladders and K1,n + K2. Can their
minimum coprime numbers be determined?

Question 5. Is the following true: If mn  pn�1�n�1 then pr(Kn�Km) = pn�1?

Question 6. Is the following true: If mn > pn�1 � n � 1 then pr(Kn � Km) =
mn + n + 1?
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