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Abstract
A numerical semigroup S is a subset of the non-negative integers containing 0 that
is closed under addition. The Hilbert series of S (a formal power series equal to the
sum of terms tn over all n 2 S) can be expressed as a rational function in t whose
numerator is characterized in terms of the topology of a simplicial complex deter-
mined by membership in S. In this paper, we obtain analogous rational expressions
for the related power series whose coe�cient of tn equals f(n) for one of several
semigroup-theoretic invariants f : S ! R known to be eventually quasipolynomial.

1. Introduction

A numerical semigroup is a subset S ⇢ Z�0 containing 0 that is closed under ad-
dition and has finite complement, and a factorization of an element n 2 S is an
expression of n as a sum of generators of S. A clear trend that has emerged in
the study of numerical semigroups is the eventually quasipolynomial behavior of
arithmetic invariants derived from their factorization structure [14]. More specifi-
cally, each of these invariants (which we call S-invariants) is a function assigning
to each element n 2 S a value determined by the possible factorizations of n in S.
This includes invariants from discrete optimization such as maximum and minimum
factorization length [2], distinct factorization length count [11], and maximum and
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minimum 0-norm [1], as well as more semigroup-theoretic invariants like the delta
set [7], !-primality [12], and the catenary degree [6], each of which agrees with a
quasipolynomial for large input.

When (eventually) quasipolynomial functions arise in combinatorial settings,
there are several potential ways to study them: (i) directly, using tools specific to the
setting in question; (ii) via combinatorial commutative algebra, using Hilbert func-
tions of graded modules; and (iii) via rational generating functions. Approaches (ii)
and (iii) were largely pioneered by Stanley [17], among others, and carry with them
powerful algebraic tools. The eventually quasipolynomial behavior of each semi-
group invariant mentioned above was initially examined using standard semigroup-
theoretic tools, and more recently an approach using Hilbert functions was devel-
oped [11]. The goal of this paper is to initiate the use of approach (iii) in studying
S-invariants.

To date, rational generating functions have been used to study several aspects of
numerical semigroups [4, 8], primarily using the Hilbert series

H(S; t) =
X

n2S

tn =
K(S; t)

(1� tn1) · · · (1� tnk)

associated to each numerical semigroup S = hn1, . . . , nki. A natural consequence of
the Hilbert syzygy theorem from commutative algebra [10] states that the numer-
ator K(S; t) in the second expression above is a polynomial in t whose coe�cients
are obtained from the graded Betti numbers of the defining toric ideal of S. An
alternative characterization of the coe�cients of K(S; t) (stated formally in Theo-
rem 2) uses the topology of a simplicial complex determined by membership in S
[5]. One of the key selling points of the latter characterization is that it is given
entirely in terms of the underlying semigroup S, without the theoretical overhead
often necessary when incorporating commutative algebra techniques.

The primary goal of this paper is to obtain analogous rational expressions for
various augmented Hilbert series, which we define to be series of the form

Hf (S; t) =
X

n2S

f(n)tn

where f is some S-invariant admitting eventually quasipolynomial behavior. We
give two such expressions: (i) when f(n) counts the number of distinct factoriza-
tion lengths of n (Proposition 1) and (ii) when f(n) is the maximum or minimum
factorization length of n (Theorem 3). Examples 3 and 4 illustrate the need for
distinct rational forms for these invariants. We also specify how to obtain the dis-
sonance point of each quasipolynomial function f (i.e., the optimal bound on the
start of quasipolynomiality) from the numerator of its rational generating function
(Theorem 4). Lastly, we examine these rational expressions under the operation of
gluing numerical semigroups (Section 5) and give a closed form for each rational
expression in the special case when S has 2 generators (Section 6).



INTEGERS: 19 (2019) 3

2. Background

Definition 1. A numerical semigroup S is a cofinite, additive subsemigroup of Z�0.
When we write S = hn1, . . . , nki in terms of generators, we assume n1 < · · · < nk.
The Frobenius number of S is the largest integer F(S) lying in the complement of
S. A factorization of n 2 S is an expression

n = a1n1 + · · · + aknk

of n as a sum of generators of S, and the length of a factorization is the sum
a1 + · · · + ak. The set of factorizations of n 2 S is

ZS(n) = {a 2 Zk
�0 : n = a1n1 + · · · + aknk}

and the length set of n is the set

LS(n) = {a1 + · · · + ak : a 2 ZS(n)}

of all possible factorization lengths of n. The maximum and minimum factorization
length functions, and the length denumerant function, are defined as

MS(n) = maxLS(n) mS(n) = minLS(n) and lS(n) = |LS(n)|,

respectively. The Apéry set of an element n 2 S is the set

Ap(S;n) = {m 2 S : m� n /2 S}.

It can be easily shown that |Ap(S;n)| = n for any n 2 S.

Notation 1. Unless otherwise stated, thoughout the paper, S = hn1, . . . , nki de-
notes a numerical semigroup with a fixed generating set n1 < · · · < nk.

Definition 2. A function f : Z ! R is an S-invariant if f(n) = 0 for all n /2 S.

Definition 3. A function f : Z ! R is an r-quasipolynomial of degree ↵ if

f(n) = a↵(n)n↵ + · · · + a1(n)n + a0(n)

for periodic functions a0, . . . , a↵, whose periods all divide r, with a↵ not identi-
cally 0. We say f is eventually quasipolynomial if the above equality holds for all
n � 0.

Theorem 1 ([2, 11]). For su�ciently large n 2 S,

MS(n + n1) = MS(n) + 1, mS(n + nk) = mS(n) + 1,
and lS(n + n1nk) = lS(n) + 1

d (nk � n1),
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where d = gcd{ni � ni�1 : i = 2, . . . , d}. In particular, the S-invariants MS, mS,
and lS are each eventually quasilinear.

Definition 4. The Hilbert series of S is the formal power series

H(S; t) =
X

n2S

tn 2 Z[[t]].

Given n 2 S, the squarefree divisor complex �n is a simplicial complex on the
ground set [k] = {1, . . . , k} where F 2 �n if n�nF 2 S, where nF =

P
i2F ni. The

Euler characteristic of a simplicial complex � is the alternating sum

�(�) =
X

F2�n

(�1)|F |.

Remark 1. The definition of Euler characteristic above di↵ers slightly from the
usual topological definition, but has the advantage that �(�) = 0 for any con-
tractible simplicial complex �.

Theorem 2 ([5]). The Hilbert series of S can be written as

H(S; t) =
X

n2S

tn =

P
a2Ap(S;n1)

ta

1� tn1
=

P
m2S �(�m)tm

(1� tn1) · · · (1� tnk)
,

where both numerators have finitely many terms.

Example 1. For S = h6, 9, 20i, Theorem 2 yields

H(S; t) =
1 + t9 + t20 + t29 + t40 + t49

1� t6
=

1� t18 � t60 + t78

(1� t6)(1� t9)(1� t20)
.

Here, Ap(S; 6) = {0, 49, 20, 9, 40, 29} and each entry is distinct modulo 6. The
elements

18 = 3 · 6 = 2 · 9 and 60 = 4 · 6 + 4 · 9 = 3 · 20

are, respectively, the first element that can be factored using 6’s and 9’s and the
first element that can be factored using 6’s, 9’s, and 20’s. In particular, these two
elements encode minimal relations between the generators of S, viewed as minimal
“trades” from one factorization to another. Moreover,

78 = 7 · 6 + 4 · 9 = 2 · 9 + 3 · 20

is the first element in which two distinct sequences of trades between factorizations
are possible: one can perform the exchange 3 · 6  2 · 9 followed by 4 · 6 + 4 ·
9  3 · 20, or these trades can be applied in the reverse order. This represents a
“relation between minimal relations”. These properties are encoded in the element’s
respective squarefree divisor complexes, since �18 and �60 are each disconnected,
and �78 is connected but has nontrivial 1-dimensional homology.
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Remark 2. One remarkable aspect of Theorem 2 is that simple algebraic manip-
ulation of the rational expression of the Hilbert series reveals additional structural
information about the underlying semigroup. Indeed, cancelling all common factors
in Example 1 yields PS(t)/(1� t) (see [8]), where

PS(t) = 1� t + t6 � t7 + t9 � t10 + t12 � t13 + t15 � t16 + t18

� t19 + t20 � t22 + t24 � t25 + t26 � t28 + t29 � t31 + t32

� t34 + t35 � t37 + t38 � t43 + t44

has significantly more terms than the numerator of either form in Theorem 2. This is
not a coincidence: since they represent the same power series, the fewer terms that
appear in a particular expression, the more information each term must encode.

3. Numerators of Augmented Hilbert Series

In this section, we formally introduce augmented Hilbert series of a general semi-
group invariant f (Definition 5), present two rational expressions in the spirit of
Theorem 2 (Proposition 1 and Theorem 3), and illustrate and compare their use
when f is one of the S-invariants appearing in Theorem 1 (Examples 3 and 4).

Definition 5. Fix an S-invariant f . The augmented Hilbert series of S with respect
to f is the formal power series

Hf (S; t) =
X

n2S

f(n)tn.

Given n 2 S, the weighted Euler characteristic of �n is defined as

�f (�n) =
X

F2�n

(�1)|F |f(n� nF ),

and the augmented Euler characteristic of �n is defined as

b�f (�n) =
X

F2�

(�1)|F |(f(n� nF ) + |F |).

Example 2. Let S = h6, 9, 20i. The complex �138 is given in Figure 1, and each
face F is labeled with the value MS(138�nF ). Together with MS(138) = 23 as the
label for the empty face, we obtain

�MS (�138) = b�MS (�138) = 0,

in part because the label of each face containing the vertex 6 matches its label on
the face obtained by deleting 6.
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Figure 1: The complex �138 in S = h6, 9, 20i in Example 2.

Proposition 1. Fix an S-invariant f . For any fixed p 2 Z�1, we have

Hf (S; t) =
P

n2S(f(n)� 2f(n� p) + f(n� 2p))tn

(1� tp)2
=

P
n2S �f (�n)tn

Qk
i=1(1� tni)

.

Proof. Clearing respective denominators yields

(1� tp)2
X

n2S

f(n)tn =
X

n2S

f(n)tn �
X

n2S

2f(n)tn+p +
X

n2S

f(n)tn+2p

=
X

n2S

(f(n)� 2f(n� p) + f(n� 2p))tn,

which proves the first equality, and the second equality follows from
X

m2S

�f (�m)tm =
X

m2S

X

F✓[k]
m�nF2S

(�1)|F |f(m� nF )tm =
X

A✓[k]

X

n2S

(�1)|A|f(n)tn+nA

=

✓ X

A✓[k]

(�1)|A|tnA

◆✓ X

n2S

f(n)tn

◆
=

✓ kY

i=1

(1� tni)

◆✓ X

n2S

f(n)tn

◆
,

where the second step uses the substitution m = n + nA.

Example 3. For S = h9, 10, 23i, we have
X

n2S

�MS (n)tn = t9 + t10 + t18 + t20 + t23 + t27 + t30 + t36 + t40 + t45

� t46 � 3t50 + t54 � t55 � t56 � t59 � 4t63 � t64 � t66

� t68 + 2t73 � t76 � t77 + 3t86 � t90 + t113,

whereas
X

n2S

b�MS (n)tn = � 2t46 � 4t50 � 5t63 + 5t73 + 6t86 � t90 + t113.

This di↵erence in number of terms occurs in nearly every example of HMS (S; t) the
authors have computed, and illustrates the primary reason for Theorem 3: filtering
many of the extraneous terms from the first expression above. At play here is
the philosophy discussed in Remark 2, namely that expressions with fewer terms
necessarily encode more combinatorial information per term.
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Example 4. For S = h9, 10, 23i as in Example 3, the polynomials
X

n2S

�lS (n)tn = 1� t140

and
X

n2S

b�lS (n)tn = 1� t9 � t10 � t18 � t20 � t23 � t27 � t30 � t36 � t40

� t45 � t46 � t50 � t54 + t55 + t56 + t59 � t63 + t64

+ t66 + t68 + 3t73 + t76 + t77 + 3t86 � t140

also di↵er greatly in the number of terms, but in the opposite direction. This is in
part because L(0) = {0} for every numerical semigroup S, as the lack of a constant
term in HlS (S; t) adds many erroneous terms in the numerator of Proposition 1 that
the constant term 1 in HlS (S; t) avoids. Additionally, this example illustrates that
examining S-invariants via generating functions will sometimes require specialized
expressions, rather than a “one-size-fits-all” characterization.

Notation 2. In what follows, we make heavy use of the power series

z(t) =
kY

i=1

1
1� tni

and �(t) =
kX

i=1

tni

1� tni
,

the second of which often occurs in the form z(t)�(t) (for instance, in Theorem 3).
The coe�cient of tn in the series z(t) (usually notated as H@(S; t) in the literature)
equals the number of factorizations of n 2 S (known as the denumerant of n), while
the coe�cients of z(t)�(t) are described in Lemma 1.

Lemma 1. The power series z(t)�(t) is given by

z(t)�(t) =
X

n2S

`(n)tn,

where `(n) denotes the sum of the lengths of every factorization of n 2 S.

Proof. Rewrite z(t)�(t) as

z(t)�(t) =
kX

i=1

tni

(1� tni)2

✓Y

j 6=i

1
1� tnj

◆
=

kX

i=1

✓ X

ai�0

ait
aini

◆✓Y

j 6=i

✓ X

aj�0

tajnj

◆◆
.

In the final expression above, when expanding the product inside the outermost
sum, the term tn appears once for each factorization of n in S, with coe�cient
equal to the number of copies of ni appearing in that factorization. As such,

z(t)�(t) =
kX

i=1

X

n2S

X

a2Z(n)

ait
n =

X

n2S

X

a2Z(n)

|a|tn =
X

n2S

`(n)tn,

as desired.
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Theorem 3. Fix an S-invariant f . The augmented Hilbert series of f is given by

Hf (S; t) = z(t)�(t)
X

n2S

�(�n)tn + z(t)
X

n2S

b�f (�n)tn

= �(t)H(S; t) +
P

n2S b�f (�n)tn

(1� tn1) · · · (1� tnk)
.

Proof. Multiplying both sides by the denominator of z(t), Proposition 1 implies

✓ kY

i=1

(1� tni)
◆ X

n2S

f(n)tn =
X

m2S

X

F2�m

(�1)|F |f(m� nF )tm.

In the second term on the right-hand side of the claimed equality, we have
X

m2S

b�f (�m)tm =
X

m2S

X

F2�m

(�1)|F |(f(m� nF ) + |F |)tm

=
X

m2S

X

F2�m

(�1)|F |f(m� nF )tm +
X

m2S

X

F2�m

(�1)|F ||F |tm,

so it su�ces to show that
✓ kX

i=1

tni

1� tni

◆ X

m2S

X

G2�m

(�1)|G|tm +
X

m2S

X

F2�m

(�1)|F ||F |tm = 0.

Indeed, multiplying the first part by
Qk

j=1(1� tnj ) yields

kX

i=1

tni

✓ kY

j 6=i

(1� tnj )

◆ X

m2S

X

G2�m

(�1)|G|tm =
X

m2S

kX

i=1

X

A✓[k]
i2A

(�1)|A|�1
X

G2�m

(�1)|G|tm+nA

=
X

m2S

X

A✓[k]

(�1)|A|�1|A|
X

G2�m

(�1)|G|tm+nA

=
X

m2S

X

F2�m

(�1)|F |�1|F |
X

G2�m

(�1)|G|tm

and multiplying the second part by the same factor yields

✓ kY

j=1

(1� tnj )
◆ X

m2S

X

F2�m

(�1)|F ||F |tm =
X

m2S

X

A✓[k]

(�1)|A|
X

F2�m

(�1)|F |tm+nA

=
X

m2S

X

G2�m

(�1)|G|
X

F2�m

(�1)|F |tm

which completes the proof.
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4. The Dissonance Point

The numerator of each rational expression in Proposition 1 and Theorem 3 has
finite degree when f is any S-invariant listed in Theorem 1. This follows from
Theorem 1 and general facts from the theory of generating function [18], but we
prove this fact in Proposition 2 using weighted and augmented Euler characteristics,
as a demonstration of their utility.

The other main result of this section is Theorem 4, which demonstrates that
when f = MS or f = mS , we can recover from the degree of

P
n2S b�f (�n)tn the

minimum integer input after which f becomes truly quasipolynomial. Note that by
Proposition 1, this fact is immediate if the coe�cients �f (�n) are used in place of
b�f (�n) for any eventually quasipolynomial function f .

Definition 6. Fix an S-invariant f that agrees with a quasipolynomial function
g : Z ! R for su�ciently large input values. The dissonance point of f is the largest
integer n � F(S) such that f(n) 6= g(n). We say the semigroup S is f-harmonic if
f(n) = g(n) for every n 2 S.

Example 5. Let S = h9, 10, 23i from Example 3. The dissonance point of MS is 71,
since Z(71) = {(2, 3, 1)} but Z(80) = {(3, 3, 1), (0, 8, 0)}, so

8 = MS(80) > MS(71) + 1 = 7.

In particular, the longest factorization of 80 does not have any copies of the first
generator. Generally, longer factorizations will involve more small generators than
large generators, but even though (3, 3, 1) has more copies of the smallest generator,
it has enough larger generators to a↵ord (0, 8, 0) higher e�ciency. This is exacer-
bated by the fact that 9 and 10 are close together, while 23 is significantly larger
than both.

On the other hand, S = h6, 9, 20i is MS-harmonic, since

MS(n + 6) = MS(n) + 1

for every n 2 S by Theorem 1 and exhaustive computation for small n using, for
instance, the GAP package numericalsgps [9].

Proposition 2. If f is one of the S-invariants appearing in Theorem 1, thenP
n�0 �f (�n)tn and

P
n�0 b�f (�n)tn have finitely many terms.

Proof. We must show
�f (�n) = b�f (�n) = 0

for all su�ciently large n. If f = mS , then f satisfies f(n + nk) = f(n) + 1 for
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su�ciently large n, so provided that n > F(S) + n[k] also holds, we have

�f (�n) =
X

F✓[k]

(�1)|F |f(n� nF )

=
X

F✓[k�1]

(�1)|F |f(n� nF ) +
X

F✓[k�1]

(�1)|F |+1f(n� nF � nk)

=
X

F✓[k�1]

(�1)|F |(f(n� nF )� f(n� nF � nk)) =
X

F✓[k�1]

(�1)|F | = 0.

Additionally,
b�f (�n)� �f (�n) =

X

F✓[k]

(�1)|F ||F | = 0,

which proves b�f (�n) = 0. Replacing nk with n1 throughout the above argument
proves the same equalities hold for f = MS , leaving only the case f = lS . By The-
orem 1, we have f(n) = 1

d (M(n) � m(n)) � l0(n) for large n, where l0 is some
n1nk-periodic function. As such,

X

n2S

f(n)tn =
1
d

✓ X

n2S

M(n)tn �
X

n2S

m(n)tn
◆
�

X

n2S

l0(n)tn,

and by Proposition 1, each power series on the right-hand side is rational with
denominator dividing

Qk
i=1(1 � tni). This proves �f (�n) = 0 for large n. Just as

above, b�f (�n) = 0 then readily follows for large n, so the proof is complete.

Theorem 4. If f = MS or f = mS, then the dissonance point of f is d � n[k],
where

d = deg
✓ X

n�0

b�f (�n)tn
◆

.

Proof. Suppose f = mS , and let m 2 S denote the largest element of S such that
m(m� nk) + 1 6= m(m). Clearly m  d� n[k], since each n > m + n[k] must have
b�f (�n) = 0 by the proof of Proposition 2. Moreover,

b�f (�d) =
X

F✓[k]

(�1)|F |�f(d� nF ) + |F |
�

= (�1)k
�
1 + f(d� n[k])� f(d� n[k�1])

�

is nonzero, proving the claim when f = mS . The case f = MS follows analogously.

5. Augmented Hilbert Series of Gluings

Gluing (Definition 7) is a method of combining two numerical semigroups S1 and S2

to obtain a numerical semigroup S = d1S1 +d2S2 whose factorization structure can
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be expressed explicitly in terms of the factorizations of S1 and S2 [16]. Several
families of numerical semigroups of interest in the literature (e.g., complete inter-
section, supersymmetric, telescopic) are described in terms of gluings. Moreover,
the Hilbert series of S can be concisely expressed as

H(S; t) = (1� td1d2)H(S1; td1)H(S2; td2)

in terms of the Hilbert series of S1 and S2 (see [8]).
One might hope that a similar relation can be obtained for augmented Hilbert

series, but unfortunately this is not the case. In fact, even gluing two harmonic
numerical semigroups need not yield a harmonic numerical semigroup; see Exam-
ple 6. However, if the gluing is su�ciently well-behaved (see Definition 8), then an
expression for the augmented Hilbert series of S can be obtained (Theorem 5).

Remark 3. All results and definitions in this section are stated in terms of the max-
imum factorization length S-invariant MS , but analogous results (with analogous
proofs) also hold for the minimum factorization length S-invariant mS .

Definition 7. Fix numerical semigroups S1 and S2, and elements d1 2 S2 and
d2 2 S1 that are not minimal generators of their respective semigroups. We say
S = d1S1 + d2S2 is a gluing of S1 and S2 if gcd(d1, d2) = 1.

Example 6. Let S1 = h6, 10, 15i and S2 = h5, 7i, and let

S = 23S1 + 27S2 = h138, 230, 345, 135, 162i.

Both S1 and S2 are MS-harmonic (and supersymmetric, one of the most well-
behaved families of numerical semigroups under gluing), but the glued numerical
semigroup S fails to satisfy MS(n + n1) = MS(n) + 1 for each n in the set

8
<

:

831, 969, 993, 1061, 1131, 1155, 1199, 1223, 1291, 1293,
1317, 1361, 1385, 1429, 1453, 1455, 1479, 1523, 1547, 1591,
1615, 1617, 1685, 1709, 1753, 1777, 1847, 1915, 1939, 2077

9
=

;

(this can be verified using the GAP package numericalsgps [9]). The primary issue
is that the images of the smallest generators of S1 and S2 are relatively close in S,
a property that was observed by the second author when writing [2] to correlate
with a large dissonance point for maximum factorization length.

Definition 8. Resume notation from Definition 7. We say S is a MS-harmonic
gluing if every n 2 S satifies MS(n) = MS1(n0) + MS2(n00), where n = d1n0 + d2n00

for n0 2 S1, n00 2 S2, and n0 maximal among all such expressions. Note that this
property is dependent on the order of S1 and S2. We define an mS-harmonic gluing
analogously, where the expression n = d1n0+ d2n00 is chosen so that n00 is maximal.
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Theorem 5. If S = d1S1 + d2S2 is an MS-harmonic gluing, then

HMS (S; t) = H(S1; td1)
✓ X

n2A2

MS2(n)(td2)n

◆
+ HMS1

(S1; td1)
✓ X

n2A2

(td2)n

◆
,

where A2 = Ap(S2; d1), and if S is an mS-harmonic gluing, then

HmS (S; t) =
✓ X

n2A1

mS1(n)(td1)n

◆
H(S2; td2) +

✓ X

n2A1

(td1)n

◆
HmS2

(S2; td2),

where A1 = Ap(S1; d2)

Proof. The key is that whenever n = d1n0 + d2n00 2 S with n0 2 S1 and n00 2 S2,
we have n0 maximal among all such expressions for n if and only if n00 2 Ap(S2; d1).
Indeed, if n00 � d1 2 S2, then we can write n = d1(n0 + d2) + d2(n00 � d1), and
the converse holds since gcd(d1, d2) = 1. This implies the coe�cient of tn obtained
from expanding the right-hand side of the first equality is MS1(n0) + MS2(n00), so
the harmonic assumption on S proves the first equality. An analogous argument
proves the second equality.

6. Numerical Semigroups With 2 Generators

In this section, we restrict our attention to the case S = hn1, n2i.

Theorem 6. If S = hn1, n2i, then
X

n2S

b�MS (�n)tn = �n1t
n1n2 and

X

n2S

b�mS (�n)tn = �n2t
n1n2 .

Proof. It su�ces to prove the first equality, as the second follows analogously. We
use the well-known fact that

Ap(S;n1) = {0, n2, . . . , (n1 � 1)n2},

every element of which is uniquely factorable, and that MS(n + n1) = MS(n) + 1
for every n 2 S [16]. As such,

b�MS (�n1n2) = MS(n1n2)� (MS(n1n2 � n1) + 1)� (MS(n1n2 � n2) + 1)
= n2 � (n2 � 1 + 1)� (n1 � 1 + 1) = �n1.

For all other elements n 6= n1n2, the complex �n is either (i) the a single vertex 1,
(ii) the single vertex 2, or (iii) the full simplex 2[2]. In each case, one readily checks
that b�MS (�n) = 0, thereby completing the proof.
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Remark 4. It is known that for S = hn1, n2i, no two factorizations of a given
element n 2 S have the same length, so

X

n2S

lS(n)tn =
X

n2S

|ZS(n)|tn = z(t) =
1

(1� tn1)(1� tn2)

Remark 5. The disparity between �MS (�n) and b�MS (�) is perhaps most exempli-
fied in the case S = hn1, n2i. Indeed, for S = h9, 11i, we have

P
n2S b�MS (�n)tn =

�9t99 by Theorem 6, whereas
X

n2S

�MS (�n)tn = t9 + t11 + t18 + t22 + t27 + t33 + t36 + t44 + t45 + t54

+ t55 + t63 + t66 + t72 + t77 + t81 + t88 + t90 � 7t99

has one additional term for each element of Ap(S;n1) and Ap(S;n2).

7. Future Work

The !-primality invariant !S , a semigroup-theoretic measure of nonunique factor-
ization [13], is also known to be eventually quasilinear over numerical semigroups.
More precisely, for all su�ciently large n 2 S,

!(n + n1) = !(n) + 1.

Additionally, it is known [3] that the domain of !S can be naturally extended to the
quotient group Z, i.e., !S : Z ! Z�0, in such a way that su�ciently negative input
values yield 0. In many cases, after the domain is extended in this way, the lower
bound on n after which quasilinearity holds for !S can be significantly lowered.

Problem 1. Find rational expressions for the power series
P

n2S !S(n)tn and its
extension

P
n2Z !S(n)tn in the style of Proposition 1 or Theorem 3.

There are eventually quasipolynomial S-invariants that arise naturally in study-
ing numerical semigroups whose period does not divide the product n1 · · ·nk. For
example, writing `1(a) for the component-wise maximum of a 2 Zk

�0, it is not hard
to show

n 7! min{`1(a) : a 2 Z(n)}

is eventually quasilinear in n with period dividing n1 + · · · + nk. As this often
does not divide the product n1 · · ·nk, the rational expressions in Proposition 1 and
Theorem 3 will not have numerators with finite degree.

Problem 2. Develop an analogue of Proposition 1 and Theorem 3 for S-invariants
whose periods do not divide the product n1 · · ·nk.



INTEGERS: 19 (2019) 14

Given n 2 S, define the simplicial complex rn with vertex set Z(n) where
F ⇢ Z(n) is a face of rn whenever there is some generator appearing in every
factorization in F . The complex rn is topologically equivalent to �n (this was
first observed in [15]), and thus is sometimes used in place of �n when examining
Hilbert series of numerical semigroups via Theorem 2.

Problem 3. Find labelings of the simplicial complex rn so that the weighted and
augmented Euler characteristic matches those of �n.
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[8] E. Ciolan, P. Garćıa-Sánchez, and P. Moree, Cyclotomic numerical semigroups, SIAM J. Dis-
crete Math. 30 (2016), no. 2, 650–668.

[9] M. Delgado, P. Garćıa-Sánchez, and J. Morais, NumericalSgps, A package for numerical
semigroups, Version 1.1.10 (2018), (Refereed GAP package), https://gap-packages.github.
io/numericalsgps/.

[10] E. Miller and B. Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathe-
matics, 227, Springer-Verlag, New York, 2005.

[11] C. O’Neill, On factorization invariants and Hilbert functions, J. Pure Appl. Algebra 221
(2017), no. 12, 3069–3088.

[12] C. O’Neill and R. Pelayo, On the linearity of !-primality in numerical monoids, J. Pure
Appl. Algebra 218 (2014), no. 9, 1620–1627.



INTEGERS: 19 (2019) 15

[13] C. O’Neill and R. Pelayo, How do you measure primality?, Amer. Math. Monthly 122 (2015),
no. 2, 121–137.

[14] C. O’Neill and R. Pelayo, Factorization invariants in numerical monoids, Contemp. Math.
685 (2017), 231–249.

[15] I. Ojeda and A. Vigneron-Tenorio, Simplicial complexes and minimal free resolution of mono-
mial algebras, J. Pure Appl. Algebra 214 (2010), no. 6, 850–861.
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