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Abstract
Suppose that d € {2,3,4,6} and a € Z with a # —1 and a is not square. Let
Piq,4) be the number of primes p not exceeding x such that p = 1 (mod d) and

a?=D/d =1 (mod p). In this paper, we study the mean value of Pla,q)-

1. Introduction

Let IP denote the set of prime numbers and d > 0 be a squarefree integer. Moreover,
suppose that a € Z with a # —1 and a is not a square. Set

P ={p€P:p=1 (modd) and aP™ /4 =1 (mod p)}

and
Poa(z) = 4{p € Paay : p < z}.

It has long been known and studied [9, 5] that the estimation of P, 4) is connected
with Artin’s conjecture on primitive roots. This conjecture asserts that the number
of primes not exceeding x, and for which a is a primitive root, is asymptotically
cm(x) where ¢ is some explicitly defined constant whose expression involves a.

Assuming that truth of the Riemann hypothesis for the Dedekind zeta function
for the number field Q[/a, v/1], C. Hooley [5] proved that

Puay(x) = dfp(?c)l) li(z) + O (Valog(dx)), (1)

where ¢(d) is defined in the following way. Writing a = Im? with [ square free,
e(d)=2if Il =1 (mod 4) and 2I|d and £(d) = 1 otherwise. Using (1), Hooley was
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able to prove Artin’s conjecture conditionally. For a survey of this conjecture, we
refer the reader to [9].
S. Li [8] studied P4 qy(7) on average and proved that

1 m(x;1,d) xE(z,y) )
- P.a(z) = +0 < ,
y zgéy () d p(d)logz

where
E(x,y) = y /P ify < 2?3 and E(x,y) = e Yologxify > 2%/3.

In this paper, we improve the bound (2) for d =2, 3, 4 and 6.
In the case d = 2, we prove the following result.

Theorem 1. We have

logz . T
= gz =Y

1 ™
D IRIHICEE
2<a<y Valogz, if i <.

Additionally, for d = 3. 4 and 6, we have the following.

Theorem 2. Let e > 0 be given. If d € {3,4,6}, then

1 m(z;1,d .
= Y Paalr) - % < (zy) E(z,y),
Y 9<azy

where E(x,y) is defined piece-wise in the following way:

561/2, fo < y3/57

ZMBy1/2 if B/ < < /T
$3/4, ify6/7 <z < y6/57
2T/Oy=1/2 i 6/5 < g < B2

g10/9y=1/2 §y9/5 < g < y108/55
GL/2T/10 Gpy108/55 < < 1175
22/3y1/3, ify /5 < @ < 45/2,
zy /2, ifys/? < x.

Note that the O-terms in Theorems 1 and 2 are smaller than that in (2) in all
zy-ranges. Finally, we shall prove the following smoothed version of Theorem 1,
assuming the truth of the generalized Riemann hypothesis.
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Theorem 3. Suppose that x, Y > 1, U = z'/8Y/* and set
D(Y)={d:Y <d<2Y,d odd and square-free}.

Let Dy (t) be a non-negative smooth function supported on the interval (1,2) satis-
fying the condition @y (t) =1 fort € (1+1/U,2—-1/U) and

o () < U (3)
for all integers j > 0. Assuming the truth of the generalized Riemann hypothesis

for the Dirichlet L-functions, we have

1
#D(Y) > #*(a)Pgaz) (2)@y (%)
- (4)
7/8
= %x) +0 <loglogx + (% + %) log(mY)> )

Note that the strength of Theorem 3 is most prominent when Y is large compared
to x.

2. Preliminaries

We shall need the following lemma due to Pdlya and Vinogradov.

Lemma 1. Let x(n) be a non-principal character modulo ¢ and M € Z and N € N.
Then we have

> x(n)| <6y/qlogg.

M<n<M+N
Proof. This is a standard result and a proof can be found in [6, Theorem 12.5]. O

The following mean-value theorem for quadratic character sums will be useful
for us as well.

Lemma 2. Let x run over all real non-principal characters x(n) = (£) with |D| <

X. We have )

S x(n)| < XYlog® X.

x |n<Y

Proof. We refer the reader to [7, Lemma 5] for a proof of this lemma. O
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Lemma 3. Assume the truth of the generalized Riemann hypothesis for the Dirichlet
L-functions. Then for any non-principal Dirichlet character x (mod q), we have

> x(p) < X2 1og(gX).
p<X

Proof. This follows readily from [6, Proposition 5.25]. O

Lemma 4 (Large sieve inequality for certain fixed order characters). Let
(am)men be an arbitrary sequence of complex number and k € {3,4,6}. Then, for
any € > 0,
2
Z Z Z amX(m) < (QM)EA Z ‘am‘Qa (5)

Q<g<2Q x modgq M<m<2M M<m<2M
x*=x0,x7#x0

where
A= min{Q5/3 M, QM3 4+ QV2M, QM0 + Q¥3M, Q + Q3 MO/ + M12/5} .

The implied constant in (5) depends on e, the star on the sum over x restricts the
sum to primitive characters and the asterisks attached to the sum over m indicates
that m ranges over square-free integers.

Proof. For k = 4 and k = 6, the outer sums on the left-hand side of (5) include
quadratic characters. We use [4, Theorem 1] to bound the contribution of those
characters. For the other characters, we use the results in [3, 1]. For k = 4, this
lemma is an improvement of [3, Theorem 1.2] and the proof goes along the same
line as Section 6 of [3]. The only difference is, instead of using [3, Theorem 1.1],
one uses [2, Theorem 1.3] at the appropriate places. For k = 3 and k = 6, this is
[1, Theorem 1.4] and [1, Theorem 1.5], respectively. O

3. Proof of Theorem 1

By considering the group structure of (Z/pZ)*, we easily conclude that aP—1/2 =1
(mod p) if and only if p1a and «a is a square modulo p. So

1 a
Paa@) =3 3 (@ +(%)).
2<p<lzx p
where x( is the principal character modulo p. Therefore, we get

S::l Z P((LQ)(Q)):% Z ZXO(G)J’_% Z Z<%>251+52’ (6)

Y alazy 2<p<x a<y 2<p<z a<y
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say. We easily have

5 = %MZS (m-]Y]) - %k; (v-L+om) ;
= @ +0 <loglogx+ 7T(y$)> )

where we have used the well-known bound

1
Z - < loglog x. (8)

p<z

v, 22052 20

2<p<z ay 2<p<z |a<ly
Applying Lemma 1, we get that
1 .’E3/2
So <<@Z\/;Blogp<<7, (9)

p<z

by the prime number theorem. On the other hand, using Cauchy-Schwarz inequality,
we conclude that
o\ 1/2

SIE(4) r@r | SIS ()] ] <o on

p<z |a<ly p<z |a<y

where the last inequality comes from Lemma 2 and the prime number theorem.
Hence,

1 logl/2
Sy <K gxyl/z log!/? & = x(ﬁTx. (10)

Finally, combining (6), (7), (9) and (10), we arrive at
3/2 1 1/2
S:@—FO loglogz+@+min z—,w .
2 Y y oy

The two terms in the minimum above are equal when 2/logz = y. The theorem
follows by an easy analysis.

4. Proof of Theorem 2

For d = 3, 4 and 6, an argument similar to that in the previous section gives that

1 1 1
S Pan =g 2 Doo@rg X3 3 xo=Si+s,

a<y p<z  a<y p<z a<y xmodp
p=1 mod d p=1mod d Xd:Xov XEX0
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say. As before,

01
g = @Ld (loglogx+

(11)

To estimate Sy, we note that for all @ € N, a can be written uniquely as {>m with
l,m € N and m square-free. Hence, using Cauchy’s inequality,

2

1 SHEED SE D Sl B SER(C ] YOI

< d <
p=tmod il M, 17T NSV
where the asterisks on the sum over m indicates that m runs over square-free in-
tegers. Now we will apply Lemma 5 to Se. Aided by table in [1, p. 897], we get
that

1 if x < y3/5
a6 Jyll2 if 5 < g < ST
()31/4 ify6/7<$§y6/5
@23yl 85 < g < 32
Sy < (zy)®/7(x;1,d) x xt/3 if y3/2 < o < y9/° . (12)
G118 Jyl/2 if 915 < g < 4/108/55
y7/10 if y108/55 g < 411/
G638 i 115 < g < g2
G222 < g

Now a quick analysis will give that the O-terms in (11) can be absorbed into the
bounds in (12) in all ranges. The result thus follows.

5. Proof of Theorem 3

Set
D(Y)={d:Y <d<2Y,dodd and square-free}.

It is easy to see that
#D(Y) ~ —. (13)

Now let @y (t) be a non-negative smooth function supported on the interval (1,2)
satisfying the conditions @y (¢t) =1 for t € (14 1/U,2 — 1/U) and such that

(ng)(t) < gl (14)
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for all integers j > 0. We need to find an asymptotic formula for

1 ) "
5= #T(Y) Z):_ 1 (a) Pgq,2) () Py (?)

- 55 Z(Z) Dolsady () (15)
s & X @ () e (3).

2<p<:c (a,2)=1
Let S; and S, respectively, denote the two sums above. We shall study them
separately.
Recalling that the support of ®y lies inside the interval (1,2) and the bound (3),
we have

Si=gppwy L | X @) +o ()
S (16)

1 2 m(z)
—_— u(a) + O (—> .
Z RN o

Y<a<2Y

Using Mobius inversion, we get

SN wa= D> D v D ud)

2<p<z (a,2p)=1 2<p<z (a,2)=1 d|(a,p)
y<a<2Y Y<a<2Y
2 a7)
Y S Y
2<p<z d|p (a,2)=1, d|a
Y <a<2Y

Now it is easy to see that the above can be recast as

Yo Y H@to|Y Yot D(Y)+0 YZ% . (18)

2<p<z Y<a<2Y p<z Y <a<2Y p<z
(a,2)=1 “pla

Now combining (16), (17), (18) and (8), we arrive at
m(x) m(x)

Y
5 +O<#D(Y) loglogac—I—T). (19)

The treatment of So will be more complicated. Let z be a positive number to be
chosen later. We start with

p?(a) = M, (a) + R.(a), where M.( Z w(l) and R, ( Z,u

?|a
1<z l>z

S1 =
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We split S5 as

Sy =521+ 522 (20)
where
So1 = Z Z ( ) 3% (%)
2<p<;E (a,2)=
and

S22 = 2#1) Z 2 Rl ( ) (%)

2<p<:c (a,2)=1

We first deal with Sp 5. Interchanging summations gives us

e T o ()] ()

l>z m>1 2<p<z p
(m,2)=1
Using Lemma 3, we get that the above is
1/21 Y
1/2 #D(Y) z'/?1og(2Y 2)
S22 << E E < > log(l x) K % B . (21)

l>z m>1

We now evaluate the inner sum of S;; following a method of K. Soundararajan
in [10] by applying the Poisson summation formula to the sum over d. For all odd
integers k and all integers m, we introduce the Gauss-type sums

= B @)= (5 (F) ) oo

a (mod k)

We quote [10, Lemma 2.3] which determines G, (k).

Lemma 5. If (k1,ks) = 1 then Gp(kika) = Gu(k1)Gm(ka). Suppose that p® is
the largest power of p dividing m (put a = oo if m = 0). Then for b > 1 we have

0 if b < a is odd,
o(p®) if b < a is even,
Gm(p?) = —p° ifb=a+1 is even,
(M)pe /B ifb=a+1 is odd,
0 ifb>a+2.

For a Schwartz function F', let

F(¢) = L+ zﬁ'(ﬁ) + 1 ; iF(—f) = / (cos(2méx) + sin(2néx)) F(z)dz.  (22)

Moreover, we shall need Lemma 2.6 of [10], quoted below, which determines the
inner sum of Sg ;.
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Lemma 6. Let ® be a non-negative, smooth function supported in (1,2). For any
odd integer k,

i (5)e(x)-% () = M G (15 ).

where ® is as defined in (22).

Applying Lemmas 5 and 6, we transform 5’2’1 into

m ~ [ mY
2<p<a: a<lz m
(a,2p)=1
Y 1 p(a) <m> ~ <mY > (23)
44#D(Y) 2<,.Z<x VP O;z a2 m%:o( ) P 202p
- (a,2p)=1
= Sm=0 + Sm;ﬂj,

where Sy,—g is the part of Sy ; with m being a square and S,,0 the complementary
sum. We shall also use the notations m = O and m # O to mean, respectively, m
is a square and m is not a square.

Now

Y = m?Y
S0 =, 0 2 L X R (5) @

2<p<lzx \/]_7 alz m:l
(a,2p)=1 (m,p)=1

Note that trivially estimating the integral in (22) gives

®(¢) <1,
and integration by parts yields
1+1/U 2
. ~1
9 e 1/ +2 ‘1//U (a:)(sm( méx) — cos( ﬂfl‘))dm < |£|

These bounds for ® give

2a°p D
<2ap)\<< RS mY@ﬁ

m<(20%p/Y)1/?  m>(2a2p/Y)1/2

m=
So inserting the above estimate into (24), we get

Yy1/2y

Sm:D < #T(Y,)

log 2. (25)
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The estimation of .S, +n is more complicated. Re-arranging the orders of summation
and using ( ) to detect the condition (2, p) = 1, we get
,u 40’m\ 1 = [ mY
S, = (=)™ — | —— ).
v = ) 2 e 2 (0 (M) 5 (e

a<z m##0,0 p<z
((y 2)=1

Using integration by parts and Lemma 3, we get that the inner-most sum in the

above displayed equation is

o

< log(a(|m| + 2)x)

Thus
Smzo < Ri + Ry + Rs, (26)
where v
~(m
R, = #D Z Zlog (Im] +2)X) ‘q) (2@21‘) ,
Y 1 [ log(a(m| +2)V) |- [ mY
SIS - )
R #D(Y) g 2 /Z v 2027 )|V
a<z 1Tom
and

log(a \m\+2)) 5
s = #D Za4/z ‘m@ <2a2v>’dv'

Now observe that
(i mY
202z

Zlog (|m| +2)x)

atz?U
< ) logla(ml+22)+ Y logla(m|+2)z) o (27)
m<2a?z/Y m>20’x/Y
o’x log(ax)a’x log(ar)a’?x
<5 log(ax) + v U v U

and similarly, using (14),

-, [ mY atV2U?
> log(a(m| +2)V) ‘mfb' (MV) ‘ <log(aV)— 75— (28)
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From (27), it follows that

xU xU
R < — log(azr) < —==zlog(zx 29
1 #D(Y) (%:z ( ) #D(Y) ( ) ( )
and Y
Ry < _U_ Z/log(aV)dV < v zzlog(zx) (30)
P #DY) ) #D(Y) '
Using (28)
U2
Rs <« / (aV)dV < xzlog(zx). 31
Combining (26), (29), (30) and (31), we arrive at
Smzo K U2 log(zx
From this, together with (25) and (23), it follows that
Y1/2g
So1 K ———=logz+ U?log(zx
< gDy 8 oy U osen)
So from the above, together with (21), (20), (19), (15) and (13), we get
_ m(x) m(x) xlogz  xz x'/?log(xY 2)
S = T +0 (loglogx—i— T + y1/2 + 7U log(zx) + f .
(32)
Now it still remains to optimize z. To this end, we set
Y1/2
T Uzl/4

So (32) becomes

m(x m(x zlogy  Uz3/*
S:(T)+O<loglogx+ é)—k Vi + Vi log(zY) ).

Now recall U = x'/8Y/* and n(x) ~ 2/ log x. The proof of Theorem 3 is complete.
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