
#A33 INTEGERS 19 (2019)

PRIMES p ⌘ 1 mod d AND a(p�1)/d ⌘ 1 mod p

Peng Gao
School of Mathematics and Systems Science, Beihang University, Beijing, China

penggao@buaa.edu.cn

Liangyi Zhao
School of Mathematics and Statistics, University of New South Wales, Sydney,

Australia
l.zhao@unsw.edu.au

Received: 7/24/18, Revised: 12/28/18, Accepted: 5/23/19, Published: 6/3/19

Abstract
Suppose that d 2 {2, 3, 4, 6} and a 2 Z with a 6= �1 and a is not square. Let
P(a,d) be the number of primes p not exceeding x such that p ⌘ 1 (mod d) and
a(p�1)/d ⌘ 1 (mod p). In this paper, we study the mean value of P(a,d).

1. Introduction

Let P denote the set of prime numbers and d > 0 be a squarefree integer. Moreover,
suppose that a 2 Z with a 6= �1 and a is not a square. Set

P(a,d) = {p 2 P : p ⌘ 1 (mod d) and a(p�1)/d ⌘ 1 (mod p)}

and
Pa,d(x) = #{p 2 P(a,d) : p  x}.

It has long been known and studied [9, 5] that the estimation of P(a,d) is connected
with Artin’s conjecture on primitive roots. This conjecture asserts that the number
of primes not exceeding x, and for which a is a primitive root, is asymptotically
c⇡(x) where c is some explicitly defined constant whose expression involves a.

Assuming that truth of the Riemann hypothesis for the Dedekind zeta function
for the number field Q[ d

p
a, d
p

1], C. Hooley [5] proved that

P(a,d)(x) =
"(d)

d'(d)
li(x) + O

�p
x log(dx)

�
, (1)

where "(d) is defined in the following way. Writing a = lm2 with l square free,
"(d) = 2 if l ⌘ 1 (mod 4) and 2l|d and "(d) = 1 otherwise. Using (1), Hooley was
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able to prove Artin’s conjecture conditionally. For a survey of this conjecture, we
refer the reader to [9].

S. Li [8] studied P(a,d)(x) on average and proved that

1
y

X

2ay

P(a,d)(x) =
⇡(x; 1, d)

d
+ O

✓
xE(x, y)
'(d) log x

◆
, (2)

where

E(x, y) = y�1/21 if y  x2/3 and E(x, y) = x�1/6 log x if y > x2/3.

In this paper, we improve the bound (2) for d = 2, 3, 4 and 6.
In the case d = 2, we prove the following result.

Theorem 1. We have

1
y

X

2ay

P(a,2)(x)� ⇡(x)
2
⌧

8
>><

>>:

x
q

log x
y , if x

log x � y,

p
x log x, if x

log x < y.

Additionally, for d = 3. 4 and 6, we have the following.

Theorem 2. Let " > 0 be given. If d 2 {3, 4, 6}, then

1
y

X

2ay

P(a,d)(x)� ⇡(x; 1, d)
d

⌧ (xy)"E(x, y),

where E(x, y) is defined piece-wise in the following way:

E(x, y) =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

x1/2, if x  y3/5,

x4/3y�1/2, if y3/5 < x  y6/7,

x3/4, if y6/7 < x  y6/5,

x7/6y�1/2, if y6/5 < x  y3/2,

x5/6, if y3/2 < x  y9/5,

x10/9y�1/2, if y9/5 < x  y108/55,

x1/2y7/10, if y108/55 < x  y11/5,

x2/3y1/3, if y11/5 < x  y5/2,

xy�1/2, if y5/2 < x.

Note that the O-terms in Theorems 1 and 2 are smaller than that in (2) in all
xy-ranges. Finally, we shall prove the following smoothed version of Theorem 1,
assuming the truth of the generalized Riemann hypothesis.
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Theorem 3. Suppose that x, Y > 1, U = x1/8Y 1/4 and set

D(Y ) = {d : Y  d  2Y, d odd and square-free}.

Let �Y (t) be a non-negative smooth function supported on the interval (1, 2) satis-
fying the condition �Y (t) = 1 for t 2 (1 + 1/U, 2� 1/U) and

�(j)
Y (t)⌧j U j (3)

for all integers j � 0. Assuming the truth of the generalized Riemann hypothesis
for the Dirichlet L-functions, we have

1
#D(Y )

X

(a,2)=1

µ2(a)P(8a,2)(x)�Y

⇣ a

Y

⌘

=
⇡(x)

2
+ O

✓
log log x +

✓
x7/8

Y 1/4
+

x

Y 1/2

◆
log(xY )

◆
.

(4)

Note that the strength of Theorem 3 is most prominent when Y is large compared
to x.

2. Preliminaries

We shall need the following lemma due to Pólya and Vinogradov.

Lemma 1. Let �(n) be a non-principal character modulo q and M 2 Z and N 2 N.
Then we have ������

X

M<nM+N

�(n)

������
 6
p

q log q.

Proof. This is a standard result and a proof can be found in [6, Theorem 12.5].

The following mean-value theorem for quadratic character sums will be useful
for us as well.

Lemma 2. Let � run over all real non-principal characters �(n) =
�

D
n

�
with |D| 

X. We have
X

�

������

X

nY

�(n)

������

2

⌧ XY log2 X.

Proof. We refer the reader to [7, Lemma 5] for a proof of this lemma.
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Lemma 3. Assume the truth of the generalized Riemann hypothesis for the Dirichlet
L-functions. Then for any non-principal Dirichlet character � (mod q), we have

X

pX

�(p)⌧ X1/2 log(qX).

Proof. This follows readily from [6, Proposition 5.25].

Lemma 4 (Large sieve inequality for certain fixed order characters). Let
(am)m2N be an arbitrary sequence of complex number and k 2 {3, 4, 6}. Then, for
any " > 0,

X

Q<q2Q

X?

� mod q
�k=�0,�6=�0

������

X⇤

M<m2M

am�(m)

������

2

⌧ (QM)"�
X

M<m2M

|am|2, (5)

where

� = min
n
Q5/3 + M,Q4/3 + Q1/2M,Q11/9 + Q2/3M,Q + Q1/3M5/3 + M12/5

o
.

The implied constant in (5) depends on ", the star on the sum over � restricts the
sum to primitive characters and the asterisks attached to the sum over m indicates
that m ranges over square-free integers.

Proof. For k = 4 and k = 6, the outer sums on the left-hand side of (5) include
quadratic characters. We use [4, Theorem 1] to bound the contribution of those
characters. For the other characters, we use the results in [3, 1]. For k = 4, this
lemma is an improvement of [3, Theorem 1.2] and the proof goes along the same
line as Section 6 of [3]. The only di↵erence is, instead of using [3, Theorem 1.1],
one uses [2, Theorem 1.3] at the appropriate places. For k = 3 and k = 6, this is
[1, Theorem 1.4] and [1, Theorem 1.5], respectively.

3. Proof of Theorem 1

By considering the group structure of (Z/pZ)⇤, we easily conclude that a(p�1)/2 ⌘ 1
(mod p) if and only if p - a and a is a square modulo p. So

P(a,2)(x) =
1
2

X

2<px

✓
�0(a) +

✓
a

p

◆◆
,

where �0 is the principal character modulo p. Therefore, we get

S :=
1
y

X

2ay

P(a,2)(x) =
1
2y

X

2<px

X

ay

�0(a) +
1
2y

X

2<px

X

ay

✓
a

p

◆
= S1 + S2, (6)



INTEGERS: 19 (2019) 5

say. We easily have

S1 =
1
2y

X

2<px

✓
[y]�


y

p

�◆
=

1
2y

X

2<px

✓
y � y

p
+ O(1)

◆

=
⇡(x)

2
+ O

✓
log log x +

⇡(x)
y

◆
,

(7)

where we have used the well-known bound
X

px

1
p
⌧ log log x. (8)

Now

S2 ⌧
1
2y

X

2<px

X

ay

✓
a

p

◆
⌧ 1

2y

X

2<px

������

X

ay

✓
a

p

◆������
.

Applying Lemma 1, we get that

S2 ⌧
1
2y

X

px

p
p log p⌧ x3/2

y
, (9)

by the prime number theorem. On the other hand, using Cauchy-Schwarz inequality,
we conclude that

X

px

������

X

ay

✓
a

p

◆������
 ⇡(x)1/2

0

B@
X

px

������

X

ay

✓
a

p

◆������

2
1

CA

1/2

⌧ xy1/2 log1/2 x,

where the last inequality comes from Lemma 2 and the prime number theorem.
Hence,

S2 ⌧
1
y
xy1/2 log1/2 x =

x log1/2 x

y1/2
. (10)

Finally, combining (6), (7), (9) and (10), we arrive at

S =
⇡(x)

2
+ O

 

log log x +
⇡(x)

y
+ min

 
x3/2

y
,
x log1/2 x

y1/2

!!

.

The two terms in the minimum above are equal when x/ log x = y. The theorem
follows by an easy analysis.

4. Proof of Theorem 2

For d = 3, 4 and 6, an argument similar to that in the previous section gives that
1
y

X

ay

P(a,d) =
1
dy

X

px
p⌘1 mod d

X

ay

�0(a)+
1
dy

X

px
p⌘1 mod d

X

ay

X

� mod p
�d=�0, �6=�0

�(a) =: S1 +S2,
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say. As before,

S1 =
⇡(x; 1, d)

d
+ O

✓
log log x +

⇡(x; 1, d)
y

◆
. (11)

To estimate S2, we note that for all a 2 N, a can be written uniquely as l2m with
l,m 2 N and m square-free. Hence, using Cauchy’s inequality,

S2
2 ⌧

⇡(x; 1, d)
y2

X

px
p⌘1 mod d

X

� mod p
�d=�0, �6=�0

�������

X⇤

my

0

B@
X

l
p

y/m

�(l2)

1

CA�(m)

�������

2

,

where the asterisks on the sum over m indicates that m runs over square-free in-
tegers. Now we will apply Lemma 5 to S2. Aided by table in [1, p. 897], we get
that

S2 ⌧ (xy)"
p

⇡(x; 1, d)⇥

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1 if x  y3/5

x5/6/y1/2 if y3/5 < x  y6/7

x1/4 if y6/7 < x  y6/5

x2/3/y1/2 if y6/5 < x  y3/2

x1/3 if y3/2 < x  y9/5

x11/18/y1/2 if y9/5 < x  y108/55

y7/10 if y108/55 < x < y11/5

x1/6y1/3 if y11/5 < x  y5/2

x1/2/y1/2 if y5/2 < x

. (12)

Now a quick analysis will give that the O-terms in (11) can be absorbed into the
bounds in (12) in all ranges. The result thus follows.

5. Proof of Theorem 3

Set
D(Y ) = {d : Y  d  2Y, d odd and square-free}.

It is easy to see that

#D(Y ) ⇠ 4Y
⇡2

. (13)

Now let �Y (t) be a non-negative smooth function supported on the interval (1, 2)
satisfying the conditions �Y (t) = 1 for t 2 (1 + 1/U, 2� 1/U) and such that

�(j)
Y (t)⌧j U j (14)
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for all integers j � 0. We need to find an asymptotic formula for

S =
1

#D(Y )

X

(a,2)=1

µ2(a)P(8a,2)(x)�Y

⇣ a

Y

⌘

=
1

2#D(Y )

X

2<px

X

(a,2)=1

µ2(a)�0(8a)�Y

⇣ a

Y

⌘

+
1

2#D(Y )

X

2<px

X

(a,2)=1

µ2(a)
✓

8a
p

◆
�Y

⇣ a

Y

⌘
.

(15)

Let S1 and S2, respectively, denote the two sums above. We shall study them
separately.

Recalling that the support of �Y lies inside the interval (1, 2) and the bound (3),
we have

S1 =
1

2#D(Y )

X

2<px

0

BB@
X

(a,2)=1
Ya2Y

µ2(a)�0(8a) + O

✓
Y

U

◆
1

CCA

=
1

2#D(Y )

X

2<px

X

(a,2p)=1
Ya2Y

µ2(a) + O

✓
⇡(x)
U

◆
.

(16)

Using Möbius inversion, we get
X

2<px

X

(a,2p)=1
Ya2Y

µ2(a) =
X

2<px

X

(a,2)=1
Ya2Y

µ2(a)
X

d|(a,p)

µ(d)

=
X

2<px

X

d|p

µ(d)
X

(a,2)=1, d|a
Ya2Y

µ2(a).
(17)

Now it is easy to see that the above can be recast as

X

2<px

X

Ya2Y
(a,2)=1

µ2(a) + O

0

BB@
X

px

X

Ya2Y
p|a

1

1

CCA = ⇡(x)#D(Y ) + O

0

@Y
X

px

1
p

1

A . (18)

Now combining (16), (17), (18) and (8), we arrive at

S1 =
⇡(x)

2
+ O

✓
Y

#D(Y )
log log x +

⇡(x)
U

◆
. (19)

The treatment of S2 will be more complicated. Let z be a positive number to be
chosen later. We start with

µ2(a) = Mz(a) + Rz(a), where Mz(a) =
X

l2|a
lz

µ(l) and Rz(a) =
X

l2|a
l>z

µ(l).
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We split S2 as
S2 = S2,1 + S2,2 (20)

where
S2,1 =

1
2#D(Y )

X

2<px

X

(a,2)=1

Mz(a)
✓

8a
p

◆
�Y

⇣ a

Y

⌘

and
S2,2 =

1
2#D(Y )

X

2<px

X

(a,2)=1

Rz(a)
✓

8a
p

◆
�Y

⇣ a

Y

⌘
.

We first deal with S2,2. Interchanging summations gives us

S2,2 ⌧
1

#D(Y )

X

l>z

X

m�1
(m,2)=1

�Y

✓
l2m

Y

◆ ������

X

2<px

✓
8l2m

p

◆������
.

Using Lemma 3, we get that the above is

S2,2 ⌧
1

#D(Y )

X

l>z

X

m�1

�Y

✓
l2m

Y

◆
x1/2 log(l2mx)⌧ #D(Y )

Y

x1/2 log(xY z)
z

. (21)

We now evaluate the inner sum of S2,1 following a method of K. Soundararajan
in [10] by applying the Poisson summation formula to the sum over d. For all odd
integers k and all integers m, we introduce the Gauss-type sums

⌧m(k) :=
X

a (mod k)

⇣a

k

⌘
e
⇣am

k

⌘
=:
✓

1 + i

2
+
✓
�1
k

◆
1� i

2

◆
Gm(k).

We quote [10, Lemma 2.3] which determines Gm(k).

Lemma 5. If (k1, k2) = 1 then Gm(k1k2) = Gm(k1)Gm(k2). Suppose that pa is
the largest power of p dividing m (put a =1 if m = 0). Then for b � 1 we have

Gm(pb) =

8
>>>><

>>>>:

0 if b  a is odd,
'(pb) if b  a is even,
�pa if b = a + 1 is even,

(m/pa

p )papp if b = a + 1 is odd,
0 if b � a + 2.

For a Schwartz function F , let

F̃ (⇠) =
1 + i

2
F̂ (⇠) +

1� i

2
F̂ (�⇠) =

1Z

�1

(cos(2⇡⇠x) + sin(2⇡⇠x))F (x)dx. (22)

Moreover, we shall need Lemma 2.6 of [10], quoted below, which determines the
inner sum of S2,1.
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Lemma 6. Let � be a non-negative, smooth function supported in (1, 2). For any
odd integer k,
X

gcd(d,2)=1

Mz(d)
✓

d

k

◆
�
✓

d

X

◆
=

X

2k

✓
2
k

◆ X

↵z
(↵,2k)=1

µ(↵)
↵2

X

m

(�1)mGm(k)�̃
✓

mX

2↵2k

◆
,

where �̃ is as defined in (22).

Applying Lemmas 5 and 6, we transform S2,1 into

S2,1 =
Y

4#D(Y )

X

2<px

1
p

X

↵z
(↵,2p)=1

µ(↵)
↵2

X

m

(�1)mGm(p)�̃
✓

mY

2↵2p

◆

=
Y

4#D(Y )

X

2<px

1
p

p

X

↵z
(↵,2p)=1

µ(↵)
↵2

X

m6=0

(�1)m

✓
m

p

◆
�̃
✓

mY

2↵2p

◆

= Sm=2 + Sm6=2,

(23)

where Sm=2 is the part of S2,1 with m being a square and Sm6=2 the complementary
sum. We shall also use the notations m = 2 and m 6= 2 to mean, respectively, m
is a square and m is not a square.

Now

Sm=2 =
Y

2#D(Y )

X

2<px

1
p

p

X

↵z
(↵,2p)=1

µ(↵)
↵2

1X

m=1
(m,p)=1

(�1)m�̃
✓

m2Y

2↵2p

◆
. (24)

Note that trivially estimating the integral in (22) gives

�̃(⇠)⌧ 1,

and integration by parts yields

�̃(⇠) =
�1
2⇡⇠

0

B@

1+1/UZ

1

+
2Z

2�1/U

1

CA�0(x)
⇣
sin(2⇡⇠x)� cos(2⇡⇠x)

⌘
dx⌧ 1

|⇠| .

These bounds for �̃ give
1X

m=1

�����̃
✓

m2Y

2↵p

◆����⌧
X

m(2↵2p/Y )1/2

1 +
X

m>(2↵2p/Y )1/2

2↵2p

m2Y
⌧ ↵

r
p

Y
.

So inserting the above estimate into (24), we get

Sm=2 ⌧
Y 1/2x

#D(Y )
log z. (25)
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The estimation of Sm6=2 is more complicated. Re-arranging the orders of summation
and using

⇣
4↵2

p

⌘
to detect the condition (2↵, p) = 1, we get

Sm6=2 =
Y

4#D(Y )

X

↵z
(↵,2)=1

µ(↵)
↵2

X

m6=0,2

(�1)m
X

px

✓
4↵2m

p

◆
1
p

p
�̃
✓

mY

2↵2p

◆
.

Using integration by parts and Lemma 3, we get that the inner-most sum in the
above displayed equation is

⌧ log(↵(|m| + 2)x)
�����̃
✓

mY

2↵2x

◆����+
xZ

1

log(↵(|m| + 2)V )
V

�����̃
✓

mY

2↵2V

◆����dV

+
xZ

1

Y

↵2

log(↵(|m| + 2)V )
V 2

����m�̃0
✓

mY

2↵2V

◆����dV.

Thus
Sm6=2 ⌧ R1 + R2 + R3, (26)

where
R1 =

Y

#D(Y )

X

↵z

1
↵2

X

m

log(↵(|m| + 2)X)
�����̃
✓

mY

2↵2x

◆���� ,

R2 =
Y

#D(Y )

X

↵z

1
↵2

xZ

1

X

m

log(↵(|m| + 2)V )
V

�����̃
✓

mY

2↵2V

◆����dV

and

R3 =
Y

#D(Y )

X

↵z

Y

↵4

xZ

1

X

m

log(↵(|m| + 2)V )
V 2

����m�̃0
✓

mY

2↵2V

◆����dV.

Now observe that
X

m

log (↵(|m| + 2)x)
�����̃
✓

mY

2↵2x

◆����

⌧
X

m2↵2x/Y

log (↵(|m| + 2)x) +
X

m>2↵2x/Y

log(↵(|m| + 2)x)
↵4x2U

m2Y 2

⌧ ↵2x

Y
log(↵x) +

log(↵x)↵2x

Y
U ⌧ log(↵x)↵2x

Y
U

(27)

and similarly, using (14),

X

m

log(↵(|m| + 2)V )
����m�̃0

✓
mY

2↵2V

◆����⌧ log(↵V )
↵4V 2U2

Y 2
. (28)
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From (27), it follows that

R1 ⌧
xU

#D(Y )

X

↵z

log(↵x)⌧ xU

#D(Y )
z log(zx) (29)

and

R2 ⌧
U

#D(Y )

X

↵z

xZ

1

log(↵V )dV ⌧ U

#D(Y )
xz log(zx). (30)

Using (28)

R3 ⌧
U2

#D(Y )

X

↵z

xZ

1

log(↵V )dV ⌧ U2

#D(Y )
xz log(zx). (31)

Combining (26), (29), (30) and (31), we arrive at

Sm6=2 ⌧
xz

#D(Y )
U2 log(zx).

From this, together with (25) and (23), it follows that

S2,1 ⌧
Y 1/2x

#D(Y )
log z +

xz

#D(Y )
U2 log(zx).

So from the above, together with (21), (20), (19), (15) and (13), we get

S =
⇡(x)

2
+ O

✓
log log x +

⇡(x)
U

+
x log z

Y 1/2
+

xz

Y
U2 log(zx) +

x1/2 log(xY z)
z

◆
.

(32)
Now it still remains to optimize z. To this end, we set

z =
Y 1/2

Ux1/4.

So (32) becomes

S =
⇡(x)

2
+ O

✓
log log x +

⇡(x)
U

+
x log Y

Y 1/2
+

Ux3/4

Y 1/2
log(xY )

◆
.

Now recall U = x1/8Y 1/4 and ⇡(x) ⇠ x/ log x. The proof of Theorem 3 is complete.
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