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Abstract
The unit group structure of Zm is well-known in number theory, largely due to
the significance of primitive roots modulo m whenever they exist. We investigate
the analogous problem for a quadratic number ring O, determining the unit group
structure of O/a for some fixed nonzero ideal a in O along with a set of generators.

1. Introduction

It is often useful to represent a finite abelian group as a direct product of cyclic
groups. With this description, it is easy to deduce many important properties of the
group, such as its order, subgroup lattice, and rank. In this paper, we investigate
the structure of the group of units in any quotient ring of a quadratic number field.

As a motivating example, we start with Zm, the ring of integers modulo m. This
is a finite commutative ring whose units (elements having multiplicative inverses)
form a multiplicative group which is denoted by (Zm)⇤. It is a standard fact that a
nonzero element x 2 Zm is a unit if and only if gcd(x,m) = 1. Moreover, the order
of (Zm)⇤ is given by the classic Euler phi function �(m).

In order to find the group structure of (Zm)⇤, recall that if m = pn1
1 pn2

2 . . . pnk
k

is a prime factorization for m, then the Chinese Remainder Theorem induces the
isomorphism

(Zm)⇤ ⇠= (Zp
n1
1

)⇤ ⇥ (Zp
n2
2

)⇤ ⇥ · · ·⇥ (Zp
nk
k

)⇤.

Thus, it su�ces to understand (Zpn)⇤ for any prime p. Its structure is given as
follows [8]:

(Zpn)⇤ = hgi ⇠= Zpn�pn�1 for some g 2 Zpn if p is an odd prime,

(Z2n)⇤ =

8
><

>:

{1} if n = 1,
h�1i ⇠= Z2 if n = 2,
h�1i ⇥ h5i ⇠= Z2 ⇥ Z2n�2 if n � 3.



INTEGERS: 19 (2019) 2

If (Zm)⇤ is cyclic, then any of its generators is called a primitive root modulo m.
For example, when p is odd, g is a primitive root modulo pn for any n 2 N. We can
say more; by using this fact in conjunction with the Chinese Remainder Theorem,
it is straightforward to deduce that a primitive root modulo m exists if and only if
m = 2, 4, pn, 2pn for any odd prime p and positive integer n.

We consider the more general problem of finding the unit group structure and
a set of generators for a quotient ring of any quadratic number field over Q. The
inspiration for this problem came from Cross, who investigated this problem in
the ring of Gaussian integers [3]. Subsequently, Buçaj investigated this problem in
the ring of Eisenstein integers [2]. The results on the unit group structure for a
quotient ring of any quadratic number field exist in the literature; in [5], Kohler
recently compiled them together (so he could use these results to explicitly compute
characters on these groups), proving these results via intricate counting arguments
without giving the generators. We follow Cross’ approach to find the generators in
any such quotient ring. After reviewing the pertinent facts about quadratic number
fields, we spend the remainder of this paper deriving the unit group structure for
a quotient ring of any quadratic number field. From here, we answer the corre-
sponding question concerning the existence of primitive roots in a quotient ring of
a quadratic number field.

2. Background and Terminology

2.1. Quadratic Number Rings

In this section, we recall some basic concepts from algebraic number theory, as
found in [6] and [8]. Let K denote an algebraic field over Q (that is, [K : Q] < 1)
with O being its corresponding ring of integers. In this paper, we are primarily
interested in the quadratic number field Q(

p
d) for any square-free integer d. Its

ring of integers O, called a quadratic number ring, is the set {a + b! : a, b 2 Z},
where

! =

(p
d if d 6⌘ 1 mod 4,

1+
p

d
2 if d ⌘ 1 mod 4.

Besides having the structure of a ring, Q(
p

d) also has the operation of conjuga-
tion:

a + b
p

d = a� b
p

d for any a, b 2 Q.

With this operation, we define the norm of ↵ 2 Q(
p

d) by N(↵) = ↵↵. In particular,
when ↵ 2 O, then N(↵) is an integer.

Although we do not necessarily have unique factorization into irreducible ele-
ments in O, we do have unique factorization into prime ideals in O. We now give a
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description of the prime ideals in a quadratic number ring and how they arise from
rational primes (primes in Z).

Definition 1. Let p be a rational prime and O be a quadratic number ring.

(a) We say that p splits in O if hpi = pp for distinct prime ideals p, p in O.

(b) We say that p is inert in O if hpi is a prime ideal in O.

(c) We say that p ramifies in O if hpi = p2 for some prime ideal p in O.

The resulting prime ideals are said to lie above p.

In the definition above, p is the ideal whose elements are conjugates to those in p.
Next, we characterize the prime ideals in a quadratic number ring more precisely.
A proof of this can be found in [6].

Theorem 1. Let O be a quadratic number ring.
For an odd rational prime p:

(a) p is inert in O if (d
p ) = �1,

(b) p splits in O if (d
p ) = 1,

(c) p ramifies in O if p | d.

For the rational prime 2:

(a) 2 is inert in O if d ⌘ 5 mod 8,

(b) 2 splits in O if d ⌘ 1 mod 8,

(c) 2 ramifies in O if d is even or d ⌘ 3 mod 4.

It proves especially convenient to describe the generators of a prime ideal that
lies above a rational prime p.

Lemma 1. Suppose that p lies above a ramifying prime p in a quadratic number
ring O.

If p is odd, then p = hp,
p

di.

If p = 2, then p =

(
h2,
p

di if d ⌘ 2 mod 4,
h2,
p

d� 1i if d ⌘ 3 mod 4.

Proof. First, suppose that p is odd. Note that

p2 = hp,
p

di2 = hp2, p
p

d, di.
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Since p | d but p2 - d, we know that d = kp for some integer k not divisible by p.
Thus gcd(k, p) = 1, and there exist integers x and y such that kx + py = 1. Then,
since p2, d 2 p2, we have dx + p2y = p(kx + py) = p 2 p2. Therefore, we conclude
that hp,

p
di2 = hpi.

Next, assume that p = 2. If d ⌘ 2 mod 4, then p = h2,
p

di by using the same
arguments as we did when p was odd. If d ⌘ 3 mod 4, then

p2 = h2,
p

d� 1i2 = h4, 2(
p

d� 1), d + 1� 2
p

di.

Then, 2(
p

d� 1) + (d + 1� 2
p

d) = d� 1 2 p2. Finally, since d� 1 ⌘ 2 mod 4, we
conclude that 2 2 p2, and the claim now immediately follows.

In an e↵ort to generalize the properties of Z to ideals in O, we have a notion of
divides in the context of ideals (which reduces to the usual definition of divisibility
of an element in the case that all ideals are principal).

Definition 2. Given ideals a, b in O, we say that a divides b, written a | b, if b = ca
for some ideal c in O.

In particular, any prime ideal in O divides the rational prime above which it lies.
Moreover, it follows immediately from this definition that a | b if and only if a ◆ b.

2.2. Quotient Rings of a Quadratic Number Field

Fix a nonzero ideal a in a number ring O, and consider the quotient ring O/a. We
first state a version of the Chinese Remainder Theorem for O (as any two distinct
prime ideals are comaximal in O; see [4] for a proof).

Theorem 2. Let a = pn1
1 pn2

2 . . . pnk
k be a prime factorization for the nonzero ideal

a in O where p1, p2, . . . , pk are distinct prime ideals in O. Then,

O/a ⇠= O/pn1
1 ⇥O/pn2

2 ⇥ · · ·⇥O/pnk
k .

As we will be interested in the unit group (O/a)⇤, the Chinese Remainder The-
orem induces the isomorphism

(O/a)⇤ ⇠= (O/pn1
1 )⇤ ⇥ (O/pn2

2 )⇤ ⇥ · · ·⇥ (O/pnk
k )⇤.

Hence, it su�ces to study (O/pn)⇤ for some fixed prime ideal p in O and n 2 N.
As a first step in this endeavor, we first find a complete set of equivalence classes

for O/pn. To assist us with this, we introduce the norm of an ideal.

Definition 3. The norm of a nonzero ideal a in a number ring O is defined as
N(a) = |O/a|.
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Note that the norm of an ideal is always finite and is related to the norm of an
element ↵ 2 O by N(h↵i) = N(↵). It can be shown that the norm of ideals is
multiplicative: if a, b are nonzero ideals in O, then N(ab) = N(a)N(b). Moreover,
since a prime ideal p is always maximal in O, we know that O/p is a field. When
O is a quadratic number ring, this implies that if p is a prime ideal lying above the
rational prime p, then N(p) = p2 if p is inert, and N(p) = p otherwise.

Theorem 3. A complete set of congruence classes to a quadratic number ring O
modulo a power of a prime ideal p are given as follows:

(a) If p lies above a split prime p, then O/pn = {0, 1, . . . , pn � 1}.

(b) If p is inert, then O/pn = {a + b! : a, b = 0, 1, . . . , pn � 1}.

(c) If p lies above a ramifying prime p, then for any m 2 N:

O/p2m = {a + b! : a, b = 0, 1, . . . , pm � 1}, and

O/p2m+1 = {a + b! : a = 0, 1, . . . , pm+1 � 1, and b = 0, 1, . . . , pm � 1}.

Proof. By the remarks preceding this theorem, along with N(pn) = N(p)n, we have
the correct number of congruence classes for O/pn. Hence, it su�ces to establish
that the given congruence classes of O/pn are distinct.

(a) Suppose that p lies above a splitting rational prime p. If a = b in O/pn with
a, b 2 {0, 1, . . . , pn � 1}, then pn | ha� bi. By conjugation, this yields pn | ha� bi.
Since gcd(p, p) = h1i, this implies that pnpn = hpni | ha� bi, which is equivalent to
pn | (a� b). Since a, b 2 {0, 1, . . . , pn � 1}, we conclude that a = b.

(b) Next, suppose that p is inert so that p = hpi. If a + b! = c + d! in O/pn for
some a, b, c, d 2 {0, 1, . . . , pn� 1}, then (a� c)+ (b�d)! = 0 in O/pn. This implies
that pn|(a� c) and pn|(b� d). Since a, b, c, d are between 0 and pn� 1 inclusive, we
conclude that a = c and b = d.

(c) Finally, suppose that p lies above a ramifying prime p. If n = 2m, then the
distinctness of the given congruence classes is proved as in the inert case. Now,
suppose n = 2m+1 and a+ b! = c + d! in O/pn, where a, c 2 {0, 1, . . . , pm+1� 1}
and b, d 2 {0, 1, . . . , pm � 1}. Since pn = hpmip, it follows that pm | (b � d) and
thus b = d. Therefore, pn = hpmip | ha� ci, or equivalently a� c = pm · k for some
integer k, since the only rational elements in O are integers. Then, p | hki. Taking
norms, we find that p | k2 and thus p | k. Hence, pm+1 | (a � c), and we conclude
that a = c.

As in Z, the following notational shorthand will prove useful.

Definition 4. Fix a nonzero ideal a in O. For any ↵,� 2 O, we say that ↵ is
congruent to � modulo a, written ↵ ⌘ � mod a, if (↵� �) 2 a.
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From this definition, we see that ↵ ⌘ � mod a if and only if ↵ and � belong to the
same coset in O/a. It is straightforward to check that the fundamental properties
of congruences over Z carry over to those in O unchanged.

Now we turn our attention to analyzing (O/a)⇤. We first consider a generalization
of Euler’s phi function for number rings.

Definition 5. Let a be a nonzero ideal of O. Define the phi function as �(a) =
|(O/a)⇤|.

Its basic properties are reminiscent of its classical counterpart (see [1]), and we
now quote its most essential facts for our purposes. First of all, if a, b are relatively
prime ideals in O, then �(ab) = �(a)�(b). Moreover, when p is a prime ideal in O
and n 2 N, we have

�(pn) = N(p)n �N(p)n�1.

Although it is not crucial to the work that follows, we next give a complete set of
congruence classes for (O/pn)⇤ by suitably restricting the congruence classes from
Theorem 3.

Theorem 4. Let O be a quadratic number ring.

(a) Suppose that p lies above a split prime p. Then, a 2 (O/pn)⇤ if and only if
p - a.

(b) Suppose that p is inert. Then, a + b! 2 (O/pn)⇤ if and only if p - a or p - b.

(c) Suppose that p lies above a ramifying prime p.

(i) If either p is odd and d ⌘ 3 mod 4, or p = 2 and d ⌘ 2 mod 4, then
a + b! 2 (O/pn)⇤ if and only if p - a.

(ii) If p is odd and d ⌘ 1 mod 4, then a + b! 2 (O/pn)⇤ if and only if
p - (2a + b).

(iii) If p = 2 and d ⌘ 3 mod 4, then a+b! 2 (O/pn)⇤ if and only if 2 - (a+b).

Proof. Since O has unique factorization into prime ideals, a 2 O/pn is a unit if and
only if p - hai. With this observation, we now prove this theorem via contraposition.

(a) Suppose that p splits. By Theorem 3, any a 2 O/pn can be rewritten as an
equivalence class from {0, 1, . . . , pn�1}. Then, a 2 O/pn is a not a unit if and only
if both p | hai and p | hai. Since gcd(p, p) = h1i, and hpi = pp, this implies that
hpi | hai and thus p | a.

(b) Now, suppose that p is inert. Then, p = hpi, and a + b! 2 O/pn is not a unit
if and only if hpi | ha + b!i. Hence, p | (a + b!), and this is true if and only if both
p | a and p | b.
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(c) Finally, suppose that p ramifies. Note that a + b! 2 O/pn is not a unit if and
only if ↵ | (a + b!) for some ↵ 2 p. We have three cases to consider.

First, suppose that p is odd and d ⌘ 3 mod 4, or p = 2 and d ⌘ 2 mod 4. Then,
taking norms and noting that p | N(↵), we obtain p | (a2� db2). Finally, since p | d
due to p ramifying, we conclude that p | a.

Next, suppose that p is odd and d ⌘ 1 mod 4 (as a reminder, this means that
! = 1+

p
d

2 ). Since p = hp,
p

di, we have that ↵ = p(x + y!) +
p

d(z + t!) for
some integers t, x, y, z. Without loss of generality, we may assume that p - (2z + t);
otherwise we can also write

p
d(z + t!) as a multiple of p. Since ↵ | (a + b!), this

implies that N(↵) | (a + b!)↵. Then, because p | N(↵) and p | d, it follows upon
expanding (a+b!)↵ in terms of

p
d that p | (�4az�2at�2bz�bt) = �(2z+t)(2a+b).

Thus, p | (2a + b) as required.

Finally, suppose that p = 2 and d ⌘ 3 mod 4. Since p = h2,
p

d � 1i, we have
that ↵ = p(x + y

p
d) + (

p
d � 1)(z + w

p
d) for some integers w, x, y, z. Without

loss of generality, we may assume that 2 - (z � w); otherwise we can also write
(
p

d � 1)(z + w
p

d) as a multiple of 2. Since ↵ | (a + b
p

d), this implies that
N(↵) | (a+b

p
d)↵. Then, because 2 | N(↵) and d is odd, it follows upon expanding

(a + b!)↵ that 2 | (az + aw + bz + bw) = (w + z)(a + b). Thus 2 | (a + b) as
required.

As a consequence of Theorems 3 and 4, it immediately follows for a quadratic
number ring O that (O/pn)⇤ has p2n � p2n�2 elements when p lies above an inert
prime, and pn � pn�1 elements when p lies above a split or ramified prime, in
accordance with the generalized phi function.

The following proposition is a variant of Hensel’s lifting lemma in Z that will
prove useful in the work that follows. This allows us to lift a solution to a polynomial
congruence from one power of a prime ideal to the next power.

Proposition 1. Suppose that f(x) 2 O[x] and p is a prime ideal in a number
ring O. If x = ↵ 2 O is a solution to f(x) ⌘ 0 mod pn�1 for some n � 2 and
f(↵) 2 gcd(hf 0(↵)i, pn), then f(x) ⌘ 0 mod pn has a solution in O.

Proof. We first establish the following claim: If ↵,� 2 O, then

f(↵+ �) = f(↵) + �f 0(↵) + �2� for some � 2 O.

To show this, note that for any k 2 Z�0, the binomial theorem yields

(↵+ �)k = ↵k + k↵k�1� + �2�k for some �k 2 O.
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Writing f(x) =
nX

k=0

⇢kxk for some ⇢k 2 O and n 2 N, we have

f(↵+ �) =
nX

k=0

⇢k(↵+ �)k

=
h nX

k=2

⇢k(↵k + k↵k�1� + �2�k)
i

+ ⇢1(↵+ �) + ⇢0

=
nX

k=0

⇢k↵
k + � ·

nX

k=1

k⇢k↵
k�1 + �2 ·

nX

k=0

⇢k�k

= f(↵) + �f 0(↵) + �2�, where � =
nX

k=0

⇢k�k.

Now, we are ready to prove this proposition. Suppose that f(↵) ⌘ 0 mod pn�1.
We want to solve f(x) ⌘ 0 mod pn by using ↵. To do this, we write x = ↵+ � for
some � 2 pn�1. Substituting this into f(↵) ⌘ 0 mod pn and using the claim yields

f(↵+ �) = f(↵) + �f 0(↵) + �2� ⌘ 0 mod pn for some � 2 O.

Since �2 2 p2n�2 and n � 2, the previous relation reduces to

f(↵) + �f 0(↵) ⌘ 0 mod pn.

This is solvable for � if and only if f(↵) 2 gcd(hf 0(↵)i, pn).

In the next two sections, we explicitly give the unit group structure of any quo-
tient ring O/pn, where p is a prime ideal of a quadratic number ring O.

3. Unit Group Structure for an Unramified Prime

3.1. Split Case

Theorem 5. Suppose that p lies above a split rational prime p. Then,

(O/pn)⇤ ⇠= (Zpn)⇤.

Proof. By Theorem 4, the set of congruence classes comprising (O/pn)⇤ is formally
the same as (Zpn)⇤. This leads us to consider  : (O/pn)⇤ ! (Zpn)⇤ defined by
 (a) = a. Note that  is well-defined, because p | hpi). Moreover since  is a
bijection by construction, we deduce that  is an isomorphism. In other words,
(O/pn)⇤ ⇠= (Zpn)⇤ as required.
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3.2. Inert Case

In this section, we assume that p is inert in O. Before stating the group structure
theorem, we give a couple lemmas to expedite the proofs of the group structure
theorems (Theorems 6 and 7) that follow.

Lemma 2. Let p be a rational prime and k 2 N.
(a) If p is odd, then (1 + p!)pk

= 1 + pk+1! + pk+2� for some � 2 O.
(b) (1 + 2!)2

k
= 1 + 2k+1 + 2k+2� for some � 2 O.

Proof. Let � 2 O and r be a rational prime. Then by using a straightforward proof
by induction on k in conjunction with the binomial theorem, we find that

(1 + �r)rk

= 1 + �rk+1 +
1
2
�2(rk � 1)rk+2 + �rk+2 for some � 2 O.

With this identity, we can readily prove the lemma. Part (a) of the lemma
follows directly from this claim by letting r = p where p is an odd prime, � = !,
and collecting like terms.

For part (b), observe that 2 is inert precisely when d ⌘ 5 mod 8. Thus, ! = 1+
p

d
2 ,

and !2 + ! = d�1
4 ⌘ 1 mod 2. Hence, letting r = 2 and � = ! yields

(1 + 2!)2
k

= 1 + 2k+1(! + (2k � 1)!2) + 2k+2�

= 1 + 2k+1 + 2k+2� for some � 2 O.

Lemma 3. Suppose that p is inert in O. If n 2 N>1, then the order of 1 + p! in
(O/pn)⇤ equals pn�1.

Proof. First, consider the case when p is odd. Letting k = n� 1 in Lemma 2 yields

(1 + p!)pn�1
= 1 + pn! + pn+1� for some � 2 O.

Therefore, (1 + p!)pn�1 ⌘ 1 mod pn, and thus the order of 1 + p! divides pn�1.
Next, letting k = n� 2 in Lemma 2 yields (1+ p!)pn�1 6⌘ 1 mod pn. Therefore, the
order of 1 + p! in (O/pn)⇤ equals pn�1.

Now, consider the case p = 2. Letting k = n� 1 in Lemma 2 yields

(1 + 2!)2
n�1

= 1 + 2n + 2n+1� for some � 2 O.

Hence, (1+2!)2
n�1 ⌘ 1 mod 2n, and the order of 1+2! divides 2n�1. Next, letting

k = n � 2 in Lemma 2 and reducing modulo 2n yields (1 + 2!)2
n�1 6⌘ 1 mod 2n.

Therefore, the order of 1 + 2! in (O/h2ni)⇤ equals 2n�1.

Now, we are able to give the group structure theorems for (O/pn)⇤ in the case
that p is inert. We start with the case when p is odd.



INTEGERS: 19 (2019) 10

Theorem 6. Let p be an inert odd prime and g be a primitive root modulo pn.
Then, there exists � 2 O such that

(O/pn)⇤ = h1 + p!i ⇥ hgp�1i ⇥ h�pn�1
i ⇠= Zpn�1 ⇥ Zpn�1 ⇥ Zp2�1.

Proof. We have already examined h1 + p!i in Lemma 3.
To construct g, the injective homomorphism  : (Zpn)⇤ ! (O/pn)⇤ defined by

 (b) = b shows that we can view (Zpn)⇤ as a subgroup of (O/pn)⇤. Since p is odd,
(Zpn)⇤ is cyclic of order �(pn) = pn�1(p�1) with generator g. Consequently, hgp�1i
is isomorphic to a cyclic group of order pn�1.

Finally, we construct �. Since p is prime in O, and prime ideals in O are maximal,
O/p is a field with N(p) = p2 elements. Thus, (O/p)⇤ is a cyclic group of order
p2�1; let � be a generator. Since �p2�1 ⌘ 1 mod p, we have �p2�1 = 1+�p for some
� 2 O. Using the techniques of Lemma 2, (�p2�1)pn�1 = (1 + �p)pn�1

= 1 + �pn

for some � 2 O. Therefore, (�p2�1)pn�1 ⌘ (�pn�1
)p2�1 ⌘ 1 mod pn. Letting t

be the order of �pn�1
, we have t | (p2 � 1). Then, �tpn�1 ⌘ 1 mod p implies that

(p2 � 1) | tpn�1, and thus (p2 � 1) | t. Therefore, t = p2 � 1 and h�pn�1i ⇠= Zp2�1.
Next, we show that these cyclic groups have pairwise trivial intersections. Since

all elements of h1 + p!i and hgp�1i have orders that are powers of p, and h�pn�1i
has order p2� 1, which is relatively prime to p, we can conclude that both h1 + p!i
and hgp�1i have trivial intersections with h�pn�1i.

It remains to show that h1+ p!i and hgp�1i have trivial intersection. Since both
groups are cyclic with orders that are powers of the same prime p, h1+p!i\hgp�1i is
also cyclic of order pk for some k 2 {0, 1, . . . , n�1}. If k � 1, then h1+p!i\hgp�1i
contains a cyclic subgroup of order p. Since 1 + p! has order pn�1 in (O/pn)⇤

by Lemma 2, it follows that (1 + p!)pn�2
= 1 + pn�1! is an element in h1 + p!i

that has order p. Hence, all other elements of order p in h1 + p!i have the form
(1 + pn�1!)k = 1 + pn�1k!, where k 2 {1, 2, . . . , p� 1}. Since none of these are in
hgp�1i, we conclude that k = 0 and thus h1 + p!i \ hgp�1i = {1}.

Hence, we can construct the direct product h1 + p!i ⇥ hgp�1i ⇥ h�pn�1i, which
is a subgroup of (O/pn)⇤ having order p2n�2(p2 � 1). However, since the order of
(O/pn)⇤ is �(pn) = p2n�2(p2 � 1), the two groups are equal.

To complete our discussion of the inert prime case, we now address the case when
p = 2.

Theorem 7. Suppose that 2 is an inert prime in a quadratic number ring O.

(a) (O/h2i)⇤ = h!i ⇠= Z3.

(b) (O/h22i)⇤ = h1 + 2!i ⇥ h�1i ⇥ h↵i ⇠= Z2 ⇥ Z2 ⇥ Z3 for some ↵ 2 O.

(c) For each n � 3, there exists ↵ 2 O such that

(O/h2ni)⇤ = h1 + 2!i ⇥ h1 + 4!i ⇥ h�1i ⇥ h↵i ⇠= Z2n�1 ⇥ Z2n�2 ⇥ Z2 ⇥ Z3.
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Proof. (a) Since O/h2i is a field with 22 elements, (O/h2i)⇤ is a cyclic group of order
22 � 1 = 3. Since ! 6= 1 in O/h2i, we conclude that ! is a generator for (O/h2i)⇤.

(b) Clearly �1 is an element of order 2 in (O/h22i)⇤. Moreover since d ⌘ 5 mod 8,
we have (1 + 2!)2 = 1 + 4! + 4!2 ⌘ 1 mod 4, as !2 + ! + 1�d

4 = 0. Thus, 1 + 2!
has order 2 in (O/h22i)⇤.

Next, we construct an element ↵ having order 3 in (O/h22i)⇤. To this end, recall
that !3 ⌘ 1 mod 2. By Proposition 1, we can use this to find a solution ↵ 2 O to
x3 ⌘ 1 mod 4 (by taking f(x) = x3 � 1 and noting that f 0(!) = 3!2 62 p).

Plainly, these three subgroups have pairwise trivial intersections, and the product
of their orders equals �(h22i) = 24 � 22 = 12 as required.

(c) Since 1 + 2! has order 2n�1 from Lemma 2, we have h1 + 2!i ⇠= Z2n�1 . Since
�1 has order 2, we take h�1i ⇠= Z2. By Proposition 1, we can inductively find an
element ↵ 2 O such that ↵3 ⌘ 1 mod 2n. Hence, h↵i ⇠= Z3.

For the fourth cyclic subgroup, we claim that h1 + 4!i ⇠= Z2n�2 . This follows
from the fact that (1 + 4!)2

n�3 ⌘ 1 + 2n�1! mod 2n, which is easy to prove by
induction in the style of the proof of Lemma 2.

We next observe that the four cyclic subgroups have pairwise trivial intersections.
The only tricky case is showing that h1 + 4!i \ h1 + 2!i = {1}. To this end, note
that since h1 + 4!i is cyclic of order 2n�2 and h1 + 2!i is cyclic of order 2n�1; if
their intersection has a nontrivial element, then they both would share an element
of order 2. This is impossible, since the elements of order 2 from the two cyclic
subgroups are distinct, being 1 + 2n�1! and 1 + 2n�1, respectively.

Finally, the product of the orders of the cyclic subgroups equals �(h2ni) = 22n�
22n�2 = 22n�2 · 3 as required.

4. Unit Group Structure for a Ramified Prime

Now, suppose that p ramifies in O. We first give a result that is repeatedly used in
subsequent subsections.

Lemma 4. Suppose that p is a ramifying rational prime so that hpi = p2 for some
prime ideal p in O. Then for any fixed m 2 N and r 2 {0, 1}, there exists a subgroup
of (O/p2m+r)⇤ isomorphic to (Zpm+r)⇤.

Proof. Fix m 2 N and r 2 {0, 1}, and consider the map

 : (Zpm+r)⇤ ! (O/p2m+r)⇤ defined by  (a) = a.

Since p2m+r | hpim+r, it follows that  is a well-defined injective group homomor-
phism. Thus, (Zpm+r)⇤ is isomorphic to a subgroup of (O/p2m+r)⇤.
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4.1. Ramified Primes p � 5

As the cases for p = 2 and p = 3 ramifying are fairly involved, we first assume that
p � 5 is a rational prime that ramifies in O.

Theorem 8. Suppose that p lies above a ramifying prime p � 5.

(a) (O/p)⇤ = hgi ⇠= Zp�1, where g is a primitive root modulo p.

For any integer m � 1,

(b) (O/p2m)⇤ = hgi ⇥ h1 +
p

di ⇠= (Zp�1 ⇥ Zpm�1)⇥ Zpm ,
where g is a primitive root modulo pm.

(c) (O/p2m+1)⇤ = hgi ⇥ h1 +
p

di ⇠= (Zp�1 ⇥ Zpm)⇥ Zpm ,
where g is a primitive root modulo pm+1.

Proof. (a) Note that O/p is a field with N(p) = p elements. Hence, (O/p)⇤ is a
cyclic group with p � 1 elements. Moreover, since (O/p)⇤ = {1, 2, . . . , p � 1}, we
can generate this group by using a primitive root g modulo p.

(b, c) By Lemma 4, there exists a subgroup of (O/p2m+r)⇤ that is an isomorphic
copy of (Zpm+r)⇤. Since p is odd, (Zpm+r)⇤ is cyclic of order pm+r�1(p � 1) with
generator g. (Note that hgi ⇠= Zpm+r�1(p�1)

⇠= Zp�1 ⇥ Zpm+r�1 .)
To show that 1 +

p
d has order pm in (O/p2m+r)⇤ for both r = 0 and 1, we note

that since
p

d 2 p, the binomial theorem yields

(1 +
p

d)pk

= 1 + pk
p

d + � for some � 2 p2k+2\p2k+3.

By letting k = m, we see that (1 +
p

d)pm ⌘ 1 mod p2m+1 (and thus mod p2m

as well), because p 2 p2 and
p

d 2 p. However, letting k = m � 1, we find that
(1 +

p
d)pm�1 ⌘ 1 + pm�1

p
d 6⌘ 1 mod p2m (and thus mod p2m+1 as well), because

pm�1
p

d 2 p2m�1\p2m. Therefore, 1 +
p

d has order pm in (O/p2m+r)⇤.
Next, we show that h1+

p
di and hgi have trivial intersection. Since both groups

are cyclic whose orders are powers of the same prime p, h1 +
p

di \ hgi is also cyclic
of order pk for some k 2 {0, 1, . . . ,m� 1}. We want to show that k = 0. If k � 1,
then h1+

p
di\hgi contains a cyclic subgroup of order p. Since 1+

p
d has order pm

in (O/p2m+r)⇤ for both r = 0 and 1, it follows that (1+p
p

d)pm�1
= 1+pm�1

p
d+�

where � 2 p2m\p2m+1. Hence, (1 + p
p

d)pm�1 2 h1 +
p

di that has order p, and
thus all other elements of order p in h1 +

p
di are powers of this element. Since

(1 + pm�1
p

d + �)k ⌘ 1 + kpm�1
p

d + k� mod p2m+1 for k = 1, 2, . . . , p� 1, none of
these elements are in hgi, and we conclude that h1 +

p
di \ hgi = {1}.

Finally for both r = 0 and 1, since hgi ⇥ h1 +
p

di is a subgroup of (O/p2m+r)⇤

that has the same order as (O/p2m+r)⇤, we are done.
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4.2. Ramified Prime 3

Now, suppose that 3 ramifies in O and p lies above 3. First, we address the lower
powers of p.

Theorem 9. Suppose that p lies above the ramifying prime 3.

(a) (O/p)⇤ = h�1i ⇠= Z2.

(b) (O/p2)⇤ = h�1i ⇥ h1 +
p

di ⇠= Z2 ⇥ Z3.

(c) (O/p3)⇤ = h2i ⇥ h1 +
p

di ⇠= (Z2 ⇥ Z3)⇥ Z3.

Proof. Since part (a) is trivial, we concentrate on the remaining parts.

(b) Clearly, �1 is an element of order 2. Next, we show that 1 +
p

d has order 3 in
(O/p2)⇤. To do this, observe that (1 +

p
d)k ⌘ 1 + k

p
d mod p2 by induction on k.

From this claim, it follows that (1 +
p

d)3 ⌘ 1 mod p2. However, since
p

d 6= 0 in
(O/p2)⇤, we conclude that the order of 1 +

p
d is equal to 3 in (O/p2)⇤.

Finally, the two cyclic groups from these generators have trivial intersection,
because their orders are relatively prime. Since the order of hgi ⇥ h1 +

p
di equals

�(p2) = 32 � 3 = 6, we are done.

(c) By Lemma 4, we can view (Z32)⇤ as a subgroup of (O/p3)⇤. Note (Z32)⇤ is cyclic
of order 3 · 2 = 6 with generator 2. As in part (b), we see that 1 +

p
d has order 3

in (O/p3)⇤. Finally, the cyclic subgroups have trivial intersection; otherwise, they
would share a cyclic subgroup of order 3. However, since (1+

p
d)k ⌘ 1+k

p
d mod

p2 for both k = 1, 2 have nonzero
p

d component modulo p2, the claim immediately
follows.

Since the order of hgi⇥ h1+
p

di equals �(p3) = 32(3� 1) = 18, we are done.

For higher powers of p, we must be more careful. First of all, note that since 3|d
but 32 - d, d

3 is an integer congruent to 1 or 2 mod 3. It turns out that the group
structure of (O/pn)⇤ depends on d in the aforementioned manner.

Theorem 10. Suppose that p lies above the ramifying prime 3. For any m � 2:

(a) If d
3 ⌘ 1 mod 3, then

(i) (O/p2m)⇤ = hgi ⇥ h1 +
p

di ⇠= (Z2 ⇥ Z3m�1)⇥ Z3m ,
where g is a primitive root modulo 3m.

(ii) (O/p2m+1)⇤ = hgi ⇥ h1 +
p

di ⇠= (Z2 ⇥ Z3m)⇥ Z3m ,
where g is a primitive root modulo 3m+1.

(b) If d
3 ⌘ 2 mod 3, then for some ↵ 2 O:
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(i) (O/p2m)⇤ = hgi ⇥ h1 + 3
p

di ⇥ h↵i ⇠= (Z2 ⇥ Z3m�1)⇥ Z3m�1 ⇥ Z3,
where g is a primitive root modulo 3m.

(ii) (O/p2m+1)⇤ = hgi ⇥ h1 + 3
p

di ⇥ h↵i ⇠= (Z2 ⇥ Z3m)⇥ Z3m�1 ⇥ Z3,
where g is a primitive root modulo 3m+1.

Proof. By Lemma 4, we can view (Z3m+r)⇤ as a subgroup of (O/p2m+r)⇤. Since 3
is odd, (Z3m+r)⇤ is cyclic of order 2 · 3m+r�1 with generator g. In particular, note
that hgi ⇠= Z2·3m+r�1 ⇠= Z2 ⇥ Z3m+r�1 .

Now, it remains to address the remaining cyclic subgroups.

(a) First of all, suppose that d
3 ⌘ 1 mod 3. We claim that 1 +

p
d has order 3m in

both (O/p2m)⇤ and (O/p2m+1)⇤.
For any positive integer k, the binomial theorem yields

(1 +
p

d)3
k

= 1 +
3kX

j=1

✓
3k

j

◆
(
p

d)j .

Letting k = m, we find that (1+
p

d)3
m ⌘ 1 mod p2m+1 since

p
d 2 p and 3m 2 p2m.

Since this implies that (1 +
p

d)3
m ⌘ 1 mod p2m, the order of 1 +

p
d divides 3m in

(O/p2m+r)⇤ for both r = 0 and 1.
Next, we let k = m� 1 and rearrange terms to find that

(1 +
p

d)3
m�1

=
⇣
1 +

✓
3m�1

2

◆
d
⌘

+
⇣
3m�1 +

✓
3m�1

3

◆
d
⌘p

d +
3m�1X

j=4

✓
3m�1

j

◆
(
p

d)j .

Now, we carefully analyze each term. First of all, since d
3 ⌘ 1 mod 3, we have

d = 3(1+3j) for some j 2 N. In particular, d 2 p2\p3. Moreover, since
p

d 2 p and
3 2 p2, we have the following consequences: (i) 1 +

�3m�1

2

�
d 2 p2m\p2m+1; (ii) since

1 + 1
2 (3m�1 � 1)(3k�1 � 2)(1 + 3j) ⌘ 2 mod 3,

⇣
3m�1 +

�3m�1

3

�
d
⌘p

d 2 p2m�1\p2m;

and (iii)
P3m�1

j=4

�3m�1

j

�
(
p

d)j 2 p2m+2. Hence,

(1 +
p

d)3
m�1

⌘ 1 + ↵+ � mod p2m+2

for some nonzero ↵ 2 p2m�1\p2m and � 2 p2m\p2m+1.
Thus, (1 +

p
d)3

m�1 6⌘ 1 mod p2m and therefore (1 +
p

d)3
m�1 6⌘ 1 mod p2m+1

as well. Hence, we can conclude that the order of 1 +
p

d in both (O/p2m)⇤ and
(O/p2m+1)⇤ equals 3m.

(b) Now, suppose that d
3 ⌘ 2 mod 3.

First, we show that the order of 1+3
p

d equals 3m�1. By the binomial theorem,
(1 + 3

p
d)3

m�1 ⌘ 1 + 3m
p

d mod p2m+1. Moreover, since
p

d 2 p and 3 2 p2, it



INTEGERS: 19 (2019) 15

follows that (1+3
p

d)3
m�1 ⌘ 1 mod p2m+1, and the order of 1+3

p
d in (O/p2m+1)⇤

(and thus in (O/p2m)⇤) divides 3m�1 as well.
A similar calculation shows (1 + 3

p
d)3

m�2 ⌘ 1 + 3m�1
p

d mod p2m. However,
3m
p

d 2 p2m�1. Therefore, (1+3
p

d)3
m�2 6⌘ 1 mod p2m (and also mod p2m+1). So,

the order of 1 + 3
p

d in both (O/p2m)⇤ and (O/p2m+1)⇤ equals 3m�1.
Note that h1 + 3

p
di \ hgi = {1}, since any positive power of 1 + 3

p
d less than

3m�1 has a nonzero
p

d coe�cient.
For the other generator, given any integer k � 4, we need to find ↵ 2 O\{1}

such that ↵3 ⌘ 1 mod pk. By direct calculation, we can take ↵ = 1 +
p

d for
k = 4. For k > 4, we inductively invoke Proposition 1. Suppose we have found
↵ 2 O\{1} such that ↵3 ⌘ 1 mod pk. Letting f(x) = x3� 1, note that f 0(x) = 3x2.
Although f 0(↵) 2 p, we have f(↵) 2 pk and f 0(↵) 2 p2\p3 (since ↵ is a unit in
O/pk). Thus, indeed f(↵) 2 gcd(f 0(↵), pk) = pk�2, and we can lift ↵ to a solution
to the congruence x3 ⌘ 1 mod pk+1.

It remains to show h↵i⇥(h1+3
p

di\hgi) = {1}. Again, we prove this inductively
on k � 4. This is true for k = 4, since 1 +

p
d and (1 +

p
d)2 ⌘ 1 + 2

p
d mod p4

are not in h1 + 3
p

di ⇥ hgi (as their coe�cients of
p

d are not divisible by 3). Next,
assume that there exist x, y 2 Z such that (x+y

p
d)3 ⌘ 1 mod pk with 3 - y. Then,

x + y
p

d lifts to a solution modulo pk+1 of the form (x + y
p

d) + (r + s
p

d) where
(r + s

p
d) 2 pk. Then 3 | s and thus 3 - (y + s), establishing the inductive step.

4.3. Ramified Prime 2

Finally, we address the case where p lies above the ramifying prime 2. Not so
surprisingly, this is the most involved case. Recall that h2i ramifies if and only if
d ⌘ 2, 3 mod 4. This gives some indication how the group structure of (O/pn)⇤

behaves. We first address the group structure of (O/pn)⇤ for small powers of p.

Theorem 11. Suppose that p lies above the ramifying prime 2.

(a) (O/p)⇤ = {1}.

(b) (O/p2)⇤ = h1 +
p

di ⇠= Z2.

(c) (O/p3)⇤ =

(
h1 +

p
di ⇠= Z4 if d ⌘ 2 mod 4,

h
p

di ⇠= Z4 if d ⌘ 3 mod 4.

(d) (O/p4)⇤ =

(
h1 + 2

p
di ⇥ h1 +

p
di ⇠= Z2 ⇥ Z4 if d ⌘ 2 mod 4,

h1 + 2
p

di ⇥ h
p

di ⇠= Z2 ⇥ Z4 if d ⌘ 3 mod 4.

(e) (O/p5)⇤ =

(
h�1i ⇥ h1 + 2

p
di ⇥ h1 +

p
di ⇠= Z2 ⇥ Z2 ⇥ Z4 if d ⌘ 2 mod 4,

h�1i ⇥ h1 + 2
p

di ⇥ h
p

di ⇠= Z2 ⇥ Z2 ⇥ Z4 if d ⌘ 3 mod 4.
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Proof. (a) This follows from O/p being a field of order 2.

(b) By Theorem 4, (O/p2)⇤ is a cyclic group with 2 elements. One such generator
is 1 +

p
d, because 1 +

p
d 6= 1 and (1 +

p
d)2 ⌘ 1 + 2

p
d + d2 ⌘ 1 mod p2. The last

congruence follows from 2 | d and p2 = h2i.

(c) By Theorem 4, we know that (O/p2)⇤ has order 4. In fact, it is cyclic.
If d ⌘ 3 mod 4, observe that (

p
d)4 ⌘ 1 mod 4 and thus (

p
d)4 ⌘ 1 mod p3,

because p3 | h4i. Since (
p

d)2 = d 6⌘ 1 mod p3, we conclude that
p

d is a generator.
If d ⌘ 2 mod 4, then although (1 +

p
d)2 = (1 + d) + 2

p
d 6⌘ 1 mod p3, we have

(1 +
p

d)4 = 1 + 4
p

d + 6d + 4d
p

d + d2 ⌘ 1 mod 4. Thus (1 +
p

d)4 ⌘ 1 mod p3,
and we conclude that 1 +

p
d is a generator.

(d) Since p4 = h4i, it follows that (1 + 2
p

d)2 ⌘ 1 mod p4. Thus, 1 + 2
p

d has order
2 in (O/p4)⇤. Next if d ⌘ 2 mod 4, then (1 +

p
d)2 = (1 + d) + 2

p
d 6⌘ 1 mod p4,

but (1 +
p

d)4 ⌘ 1 mod p4; thus 1 +
p

d has order 4 in (O/p4)⇤. If d ⌘ 3 mod 4,
we have (

p
d)2 = d 6⌘ 1 mod p4, but (

p
d)4 ⌘ 1 mod p4; thus

p
d has order 4 in

(O/p4)⇤. For both cases of d, both (
p

d)2 and (1 +
p

d)2 are not equal to 1 + 2
p

d
in (O/p4)⇤. This, combined with �(p4) = 8, gives the desired group structure for
(O/p4)⇤.

(e) Plainly �1 is an element of order 2 for both d ⌘ 2, 3 mod 4. Moreover, we claim
that 1 + 2

p
d has order 2. When d ⌘ 2 mod 4, (1 + 2

p
d)2 = 1 + 4

p
d + 4d ⌘ 1 mod

p5 (since
p

d 2 p and 2 2 p2), and when d ⌘ 3 mod 4, we note that 1�
p

d 2 p and
2 2 p2 to deduce that (1 + 2

p
d)2 = 1 + 4

p
d(1�

p
d) ⌘ 1 mod p5.

Next, we find a generator having order 4. When d ⌘ 2 mod 4, we claim that
1 +

p
d has order 4. To this end, (1 +

p
d)2 = (1 + d) + 2

p
d 6⌘ 1 mod p5, but since

8 | (6d+d2) (1+
p

d)4 ⌘ 1+(6d+d2)+4
p

d(1+d) ⌘ 1 mod p5. When d ⌘ 3 mod 4,
we use

p
d, because (

p
d)2 = d 6⌘ 1 mod p5, but (

p
d)4 ⌘ 1 mod p5. In both cases,

the cyclic subgroups generated by this element of order 4 have trivial intersections
with those generated by �1 and 1 + 2

p
d.

Finally, since the order of the direct product of these three cyclic groups equals
�(p5) = 16 for both cases of d, we have the desired group structure for (O/p5)⇤.

Now, we consider higher powers of p. However, when d ⌘ 3 mod 4, it turns out
that we have to investigate d ⌘ 3 and 7 mod 8 separately.

Theorem 12. Suppose that p lies above the ramifying prime 2, and let m � 3.

(a) If d ⌘ 2 mod 4, then

(O/p2m)⇤ = h�1i ⇥ h5i ⇥ h1 +
p

di ⇠= Z2 ⇥ Z2m�2 ⇥ Z2m ,

(O/p2m+1)⇤ = h�1i ⇥ h5i ⇥ h1 +
p

di ⇠= Z2 ⇥ Z2m�1 ⇥ Z2m .

(b) If d ⌘ 7 mod 8, then for some ↵ 2 O
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(O/p2m)⇤ = h↵i ⇥ h5i ⇥ h1 + 2
p

di ⇠= Z4 ⇥ Z2m�2 ⇥ Z2m�1 ,

(O/p2m+1)⇤ = h↵i ⇥ h5i ⇥ h1 + 2
p

di ⇠= Z4 ⇥ Z2m�1 ⇥ Z2m�1 .

(c) If d ⌘ 3 mod 8, then for some ↵ 2 O
(O/p2m)⇤ = h�1i ⇥ h1 + 2

p
di ⇥ h↵i ⇠= Z2 ⇥ Z2m�1 ⇥ Z2m�1 ,

(O/p2m+1)⇤ = h�1i ⇥ h1 + 2
p

di ⇥ h↵i ⇠= Z2 ⇥ Z2m�1 ⇥ Z2m .

Proof. (a) Suppose that d ⌘ 2 mod 4. By Lemma 4, we can view (Z2m+r)⇤ as a
subgroup of (O/p2m+r)⇤. Since (Z2m+r)⇤ = h�1i ⇥ h5i ⇠= Z2 ⇥ Z2m+r�2 , we have
our generators for Z2 ⇥ Z2m+r�2 .

It remains to find an element of order 2m for both (O/p2m)⇤ and (O/p2m+1)⇤.
We claim that one such element is 1 +

p
d. We prove this by induction on m � 3

by showing that

(i) (1 +
p

d)2
m

⌘ 1 mod p2m+1, and (ii) (1 +
p

d)2
m�1

⌘ 1 + � 6⌘ 1 mod p2m

for some � 2 p2m�1\p2m. Note these readily imply that (1 +
p

d)2
m ⌘ 1 mod p2m,

and (1 +
p

d)2
m�1 6⌘ 1 mod p2m+1 as well.

For m = 3, since
p

d 2 p and 2 2 p2,

(1 +
p

d)2
3
⌘ 1 + 8

p
d + 28(

p
d)2 + 56(

p
d)3 + 70(

p
d)4 + 0

⌘ 1 + 28(
p

d)2 + 70(
p

d)4

⌘ 1 + 7 · 2(
p

d)2(2 + 5d)

⌘ 1 + 7 · 23(
p

d)2(3 + 5k) since d = 2 + 4k for some integer k

⌘ 1 mod p7.

This establishes (i). For (ii), working modulo p6 yields

(1 +
p

d)2
2
⌘ 1 + 4

p
d + 6(

p
d)2 + 4(

p
d)3 + (

p
d)4

⌘ 1 + 4
p

d + 6(
p

d)2 + (
p

d)4

⌘ 1 + 4
p

d since d ⌘ 2 mod 4
6⌘ 1 mod p6.

Moreover, 4
p

d 2 p5\p6, thereby finishing the inductive step.
Now we assume the claim is true for m and show it is true for m+1. To show (i),

note that the inductive hypothesis yields (1 +
p

d)2
m

= 1 + ↵ for some ↵ 2 p2m+1.
Then, (1+

p
d)2

m+1
= (1+↵)2 = 1+2↵+↵2. Reducing modulo p2m+3 immediately

yields (1 +
p

d)2
m+1 ⌘ 1 mod p2m+3.

To establish (ii), by the inductive hypothesis, (1 +
p

d)2
m�1 ⌘ 1 + � mod p2m

for some � 2 p2m�1\p2m. So, we have (1 +
p

d)2
m�1

= 1 + � + � for some � 2 p2m.
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Then (1 +
p

d)2
m

= (1 + � + �)2 ⌘ 1 + 2� 6⌘ 1 mod p2m+2 as required, because
2� 2 p2m+1\p2m+2. This concludes the induction.

Since no nontrivial power of 1 +
p

d is an integer, h1 +
p

di \ (h�1i ⇥ h5i) = {1}.
Finally, since the order of h�1i ⇥ h5i ⇥ h1 +

p
di equals N(pn) when n � 6, we have

the desired unit group structure result.

(b) Now, suppose that d ⌘ 7 mod 8.
We know that 5 has order 2m�2, being one of the generators of (Z2m)⇤.
It remains to find an element of order 2m�1 in (O/p2m+r)⇤ for both r = 0, 1. We

claim that one such element is 1 + 2
p

d. We prove this by induction on m � 3 by
showing that

(i) (1 + 2
p

d)2
m�1

⌘ 1 mod p2m+1, and (ii) (1 +
p

d)2
m�2

⌘ 1 + � 6⌘ 1 mod p2m

for some � 2 p2m�1\p2m.
For m = 3, since (

p
d� 1) 2 p and 2 2 p2, we have

(1 +
p

d)2
3�1

⌘ 1 + 4(2
p

d) + 6(2
p

d)2 + 4(2
p

d)3 + (2
p

d)4

⌘ 1 + 16d + 8(
p

d� 1)
⌘ 1 mod p7.

This establishes (i). For (ii), working modulo p6 = h8i yields

(1 +
p

d)2
3�2

⌘ 1 + 2(2
p

d) + (2
p

d)2

⌘ 1 + 4
p

d(
p

d� 1)
6⌘ 1 mod p6.

The last line follows from 4
p

d(
p

d � 1) 2 p5\p6, thereby finishing the inductive
step.

Now we assume the claim is true for m and show it is true for m + 1.
To show (i), by the inductive hypothesis, (1 + 2

p
d)2

m�1 ⌘ 1 mod p2m+1. Thus,
we can write (1 + 2

p
d)2

m�1
= 1 + ↵ for some ↵ 2 p2m+1. Then, (1 + 2

p
d)2

m
=

(1+↵)2 = 1+2↵+↵2. Reducing modulo p2m+3 yields (1+2
p

d)2
m ⌘ 1 mod p2m+3.

To establish (ii), we have (1+2
p

d)2
m�2 ⌘ 1+� mod p2m for some � 2 p2m�1\p2m

by the inductive hypothesis. Then, (1 + 2
p

d)2
m�1

= 1 + � + � for some � 2 p2m.
Therefore, (1+2

p
d)2

m
= (1+�+�)2 ⌘ 1+2� 6⌘ 1 mod p2m+2 as required, because

2� 2 p2m+1\p2m+2. This concludes the induction.
For the third generator, we find an element of order 4. To make sure the cyclic

subgroup generated by this element has trivial intersection with those generated by
5 and 1 + 2

p
d, we make sure that its square equals �1. Hence, it su�ces to solve

↵2 ⌘ �1 mod pk for k � 6. We begin with k = 4, because we can let ↵ =
p

d. For
k > 4, we inductively invoke Hensel lifting. Suppose we have found ↵ 2 O such
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that ↵2 ⌘ �1 mod pk. Letting f(x) = x2 � 1, then f(↵) 2 pk and f 0(↵) 2 p2\p3

(since ↵ is a unit in O/pk). Thus, indeed f(↵) 2 gcd(hf 0(↵)i, pk) = pk�2 and we
can lift ↵ to a solution to x2 ⌘ �1 mod pk+1.

Now, it is routine to show that the order of h↵i ⇥ h5i ⇥ h1 + 2
p

di equals �(pn)
for n � 6.

(c) Suppose that d ⌘ 3 mod 8.
Clearly, �1 has order 2 and it can be checked using the binomial theorem that

1 + 2
p

d has order 2m�1.
It remains to find a generator for Z2m�1 and Z2m , depending on m being even

or odd, respectively. Since �5 has order 2m�2 and 2m�1 (as m is even or odd)
respectively, we can construct a generator ↵ that satisfies ↵2 ⌘ �5 mod pn when
n � 6. (Note that this cyclic subgroup generated by ↵ necessarily has trivial
intersection with those generated by �1 and 1 + 2

p
d.)

Hence, it su�ces to solve ↵2 ⌘ �1 mod pk for k � 6. We begin with k = 6,
because letting ↵ = 4 +

p
d yields (4 +

p
d)2 = 16 + 8

p
d + d ⌘ �5 mod 8. For

k > 6, we inductively invoke Hensel lifting. Suppose we have found ↵ 2 O such that
↵2 ⌘ �5 mod pk. Letting f(x) = x2 � 1, we see that f(↵) 2 pk and f 0(↵) 2 p2\p3

(since ↵ is a unit in O/pk). Thus, f(↵) 2 gcd(hf 0(↵)i, pk) = pk�2 and we can lift ↵
to a solution to x2 ⌘ �5 mod pk+1.

As before, the order of h�1i ⇥ h1 + 2
p

di ⇥ h↵i equals �(pn) for any n � 6.

5. Primitive Roots in Quadratic Number Rings

As an application of our work, we give a quadratic number ring generalization of
primitive roots modulo m in this section.

Definition 6. Fix an algebraic number ring O and an ideal a in O. Then we say
that ↵ 2 O is a primitive root modulo a if and only if gcd(h↵i, a) = h1i and ↵ has
order �(a) in (O/a)⇤.

Plainly, a primitive root modulo a exists if and only if (O/a)⇤ is a cyclic group.
The following theorem catalogs when primitive roots exist.

Theorem 13. Suppose that O is a quadratic number ring.

(a) There exists a primitive root modulo pn for any prime ideal p lying above a
split odd rational prime with n 2 N, or lying above the split rational prime 2
with n 2 {1, 2}.

(b) There exists a primitive root modulo hpi for any inert rational prime p.
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(c) There exists a primitive root modulo pn for any prime ideal p lying above a
ramifying odd rational prime with n 2 {1, 2}, or lying above the ramifying
rational prime 2 with n 2 {1, 2, 3}.

(d) If 2 splits in O with p lying above 2, then there exists a primitive root modulo:

• phqi when q is an inert odd rational prime,

• pqn when q lies over a ramifying odd rational prime and n 2 {1, 2},
• pqn when q lies over a split odd rational prime and n 2 N.

(e) If 2 is inert, then there exists a primitive root modulo:

• h2ipn when p lies over a split odd rational prime p 6= 3 and n 2 N,

• h2ipn when p lies over a ramifying odd rational prime p 6= 3 and n 2
{1, 2}, and

• h6i when 3 is also inert.

(f) If 2 ramifies in O with p lying above 2, then there exists a primitive root
modulo:

• pqn when q lies over a split odd rational prime and n 2 N,

• phqi when q is an inert odd rational prime,

• pqn when q lies over a ramifying odd rational prime and n 2 {1, 2}.

Proof. The assertions (a)-(c) follow directly from our unit group structure theorems
from Sections 3 and 4, while the assertions (d)-(f) follow from these same theorems,
in conjunction with the fact that Zm⇥Zn is cyclic if and only if gcd(m,n) = 1.

We give two corollaries of this theorem. The first of these gives the existence
of primitive roots modulo an ideal in the Gaussian integers Z[i] (also given in [3]).
Note that since Z[i] is a PID, any such ideal has the form h�i for some � 2 Z[i].

Corollary 1. A primitive root in Z[i] modulo h�i exists if and only if

� = ⇡n, (1 + i)⇡n, q, (1 + i)q, or (1 + i)k,

where ⇡ is a factor of an rational prime p ⌘ 1 mod 4, q ⌘ 3 mod 4 is a rational
prime, n 2 N, and k 2 {1, 2}.

Proof. This follows immediately from the previous theorem, along with the charac-
terization of primes in Z[i]: A rational prime p is inert in Z[i] if p ⌘ 3 mod 4, split
in Z[i] if p ⌘ 1 mod 4, and ramifies if p = 2.
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The second corollary gives a companion result to the case of the Eisenstein in-
tegers Z[!]. Again since Z[!] is a PID, any such ideal has the form h�i for some
� 2 Z[!].

Corollary 2. A primitive root in Z[!] modulo h�i exists if and only if

� = ⇡n, 2⇡n, q, or (1� !)k,

where ⇡ is a factor of a rational prime p ⌘ 1 mod 3, q ⌘ 2 mod 3 is a rational
prime, n 2 N, and k 2 {1, 2}.

Proof. This follows immediately from the previous theorem, along with the charac-
terization of primes in Z[!]: a rational prime p is inert in Z[!] if p ⌘ 2 mod 3, split
in Z[!] if p ⌘ 1 mod 3, and ramifies if p = 3.
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