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Abstract
For a positive integer n, let �(n) denote the sum of all positive divisors of n. A
positive integer n is called an exactly k-deficient-perfect number if �(n) = 2n�d1�
d2 � · · ·� dk, where di (1  i  k) are distinct proper divisors of n. In this paper,
we determine all odd exactly 2-deficient-perfect numbers n with two distinct prime
divisors.

1. Introduction

For a positive integer n, let �(n) denote the sum of all positive divisors of n. We call
n perfect if �(n) = 2n. It is well known that an even integer n is perfect if and only
if n = 2p�1(2p � 1), where p and 2p � 1 are both primes. It is not known whether
there exists an odd perfect number. Numerous authors have defined a number of
closely related concepts. For example, n is called deficient if �(n) < 2n, and n is
called abundant if �(n) > 2n, etc.

In 2012, Pollack and Shevelev [2] introduced the concept of k-near-perfect num-
bers. For k � 1, n is called k-near-perfect if n is the sum of all of its proper divisors
with at most k exceptions (called redundant divisors). A 1-near-perfect number
with exactly 1 redundant divisor is called near-perfect. Pollack and Shevelev [2]
presented an upper bound on the count of near-perfect numbers and proved that
there are infinitely many k-near-perfect numbers n with exactly k redundant divi-
sors for all large k. Recently, Li and Liao [1] gave two equivalent conditions of all
even near-perfect numbers of the forms 2↵p1p2 and 2↵p2

1p2. For more results on
near-perfect numbers, see [3, 4, 6]

A positive integer n is called an exactly k-deficient-perfect number if �(n) =
2n � d1 � d2 � · · · � dk, where di (1  i  k) are distinct proper divisors of n
(called deficient divisors). In particular, a positive integer n is deficient-perfect with
deficient divisor d if �(n) = 2n � d, where d is a proper divisor of n. Tang, Ren
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and Feng [4] determined all deficient-perfect numbers with at most two distinct
prime factors. In [5], Tang and Feng proved that there are no odd deficient-perfect
numbers with three distinct prime factors.

Suppose that n = q↵ is an exactly 2-deficient-perfect number with two deficient
divisors d1 = q�1 , d2 = q�2 , where q is a prime and ↵,�1,�2 are integers with
0  �1 < �2 < ↵. Then

�(q↵) = 2q↵ � q�1 � q�2 .

That is,
(q � 2)q↵ = (q � 1)(q�1 + q�2)� 1. (1)

If q = 2, then we have(q � 1)(q�1 + q�2) = 1, which is impossible. Hence q > 2.
From (1), we have

q↵  (q � 2)q↵ = (q � 1)(q�1 + q�2)� 1  (q � 1)(q↵�2 + q↵�1)� 1.

Namely, q↵  q↵ � q↵�2 � 1, a contradiction. Now, we have proved the following
proposition.

Proposition 1. If n is an exactly 2-deficient-perfect number, then n has at least
two distinct prime divisors.

In this paper, the following result is proved.

Theorem 1. An odd integer n is an exactly 2-deficient-perfect number with two
distinct prime factors if and only if one of the following holds.

(i) n = 117 with two deficient divisors d1 = 39 and d2 = 13;
(ii) n = 99 with two deficient divisors d1 = 33 and d2 = 9;
(iii) n = 891 with two deficient divisors d1 = 297 and d2 = 33;
(iv) n = 63 with two deficient divisors d1 = 21 and d2 = 1;
(v) n = 21 with two deficient divisors d1 = 7 and d2 = 3;
(vi) n = 3⇥ 5� with two deficient divisors d1 = 5� and d2 = 1;
(vii) n = 3↵ ⇥ 5 with two deficient divisors d1 = 3↵ and d2 = 3, where ↵ � 2;
(viii) n = 3375 with two deficient divisors d1 = 375 and d2 = 135.

2. Proof of Theorem 1

Proof of Theorem 1. Suppose that n = p↵
1 p�

2 is an exactly 2-deficient-perfect num-
ber with exactly two distinct deficient divisors d1 and d2, where p1 and p2 are two
primes with 2 < p1 < p2. Then

�(p↵
1 p�

2 ) = 2p↵
1 p�

2 � d1 � d2. (2)
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If p1 > 3, then

2 =
�(p↵

1 p�
2 )

p↵
1 p�

2

+
d1

p↵
1 p�

2

+
d2

p↵
1 p�

2

<
5
4

· 7
6

+
1
5

+
1
7

= 1.8011 . . . ,

a contradiction. Hence p1 = 3. Now (2) becomes

�(3↵ · p�
2 ) = 2 · 3↵ · p�

2 � d1 � d2,

where d1 = 3s1 · pt1
2 and d2 = 3s2 · pt2

2 are two distinct proper divisors of n. Write
D1 = 3↵�s1 · p��t1

2 , D2 = 3↵�s2 · p��t2
2 , and assume D1 < D2. Then we have

2 =
�(3↵ · p�

2 )
3↵ · p�

2

+
1

D1
+

1
D2

. (3)

If p2 > 23, then

2 =
�(3↵p�

2 )
3↵p�

2

+
1

D1
+

1
D2

<
3
2

· 29
28

+
1
3

+
1
9

= 1.9980 . . . ,

a contradiction. Therefore, p2 2 {5, 7, 11, 13, 17, 19, 23}. We consider five cases.

Case 1. p2 2 {17, 19, 23}. Then {D1,D2} ⇢ {3, 9, p2, 27, 3p2, · · · }. If D2 � p2,
then, by (3), we have

2 =
�(3↵ · p�

2 )
3↵ · p�

2

+
1

D1
+

1
D2

<
3
2

· p2

p2 � 1
+

1
3

+
1
p2
 3

2
· 17
16

+
1
3

+
1
17

= 1.9857 . . . ,

a contradiction. So D1 = 3 and D2 = 9. Thus

�(3↵ · p�
2 ) =

3↵+1 � 1
2

· p�+1
2 � 1
p2 � 1

= 2 · 3↵ · p�
2 � 3↵�1 · p�

2 � 3↵�2 · p�
2 .

It follows that

3↵�2 =
p�+1
2 � 1

(28� p2)p�
2 � 27

.

Consequently, for p2 = 17, 19, 23, we have

3↵�2 = 1 +
6 · 17� + 26
11 · 17� � 27

2 (1, 2),

3↵�2 = 2 +
19� + 53

9 · 19� � 27
2 (2, 3),

3↵�2 = 4 +
3 · 23� + 107
5 · 23� � 27

2 (4, 5) [ {6},
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which are impossible.

Case 2. p2 = 13. Then {D1,D2} ⇢ {3, 9, 13, 27, 39, · · · }. If D1 � 9, then

2 =
�(3↵ · 13�)

3↵ · 13�
+

1
D1

+
1

D2
<

3
2

· 13
12

+
1
9

+
1
13

= 1.8130 . . . ,

a contradiction. If D2 � 27, then

2 =
�(3↵ · 13�)

3↵ · 13�
+

1
D1

+
1

D2
<

3
2

· 13
12

+
1
3

+
1
27

= 1.9953 . . . ,

a contradiction. Hence D1 = 3 and D2 2 {9, 13}. We divide into the following two
subcases.

Subcase 2.1. D1 = 3,D2 = 9. Then

�(3↵ · 13�) =
3↵+1 � 1

2
· 13�+1 � 1

12
= 2 · 3↵ · 13� � 3↵�1 · 13� � 3↵�2 · 13� .

That is,
9 · 3↵�1 � 1
5 · 3↵�1 � 13

= 13� � 13.

It follows that ↵�1  1. Consequently, we obtain the unique solution ↵ = 2,� = 1.
Namely, n = 117 is an exactly 2-deficient-perfect number with two deficient divisors
d1 = 39 and d2 = 13.

Subcase 2.2. D1 = 3,D2 = 13. Then

�(3↵ · 13�) =
3↵+1 � 1

2
· 13�+1 � 1

12
= 2 · 3↵ · 13� � 3↵�1 · 13� � 3↵ · 13��1.

It follows that
13��1 =

3 · 3↵ � 1
11 · 3↵ � 169

.

If ↵  2, then
3 · 3↵ � 1

11 · 3↵ � 169
< 0,

a contradiction.
If ↵ � 3, then

0 <
3 · 3↵ � 1

11 · 3↵ � 169
< 1,

a contradiction.

Case 3. p2 = 11. Then {D1,D2} ⇢ {3, 9, 11, 27, 33, 81, 99, · · · }. If D1 � 9, then

2 =
�(3↵ · 11�)

3↵ · 11�
+

1
D1

+
1

D2
<

3
2

· 11
10

+
1
9

+
1
11

= 1.8520 . . . ,
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a contradiction. If D2 � 81, then

2 =
�(3↵ · 11�)

3↵ · 11�
+

1
D1

+
1

D2
<

3
2

· 11
10

+
1
3

+
1
81

= 1.9956 . . . ,

a contradiction. Hence D1 = 3 and D2 2 {9, 11, 27, 33}. We consider four subcases.

Subcase 3.1. D1 = 3,D2 = 9. Then

�(3↵ · 11�) =
3↵+1 � 1

2
· 11�+1 � 1

10
= 2 · 3↵ · 11� � 3↵�1 · 11� � 3↵�2 · 11� .

It follows that

3↵�2 =
11�+1 � 1

17 · 11� � 27
.

But
1
3

<
11�+1 � 1

17 · 11� � 27
< 1,

a contradiction.

Subcase 3.2. D1 = 3,D2 = 11. Then

�(3↵ · 11�) =
3↵+1 � 1

2
· 11�+1 � 1

10
= 2 · 3↵ · 11� � 3↵�1 · 11� � 3↵ · 11��1.

It follows that
11��1 =

3↵+1 � 1
49 · 3↵�1 � 121

.

If ↵� 1 � 2, then

0 <
3↵+1 � 1

49 · 3↵�1 � 121
< 1,

a contradiction. So ↵ � 1  1. Consequently, we obtain the unique solution ↵ =
2,� = 1. Namely, n = 99 is an exactly 2-deficient-perfect number with two deficient
divisors d1 = 33 and d2 = 9.

Subcase 3.3. D1 = 3,D2 = 27. Then

�(3↵ · 11�) =
3↵+1 � 1

2
· 11�+1 � 1

10
= 2 · 3↵ · 11� � 3↵�1 · 11� � 3↵�3 · 11� .

It follows that (11�+1 � 81)(3↵�3 � 1) = 80. If � � 2, then 11�+1 � 81 > 80, a
contradiction. So � = 1. Consequently, we obtain the unique solution ↵ = 4,� = 1.
Namely, n = 891 is an exactly 2-deficient-perfect number with two deficient divisors
d1 = 297 and d2 = 33.

Subcase 3.4. D1 = 3,D2 = 33. Then

�(3↵ · 11�) =
3↵+1 � 1

2
· 11�+1 � 1

10
= 2 · 3↵ · 11� � 3↵�1 · 11� � 3↵�1 · 11��1.
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It follows that (3↵+1 � 121)(11��1 � 1) = 120. If � � 4, then 11��1 � 1 > 120, a
contradiction. So �  3. If � = 3, then 11��1� 1 = 120. Thus 3↵+1� 121 = 1, i.e.,
3↵+1 = 122, which is impossible. If � = 2, then 11��1�1 = 10. Thus 3↵+1�121 =
12, i.e., 3↵+1 = 133, which is impossible. If � = 1, then (3↵+1�121)(11��1�1) = 0,
a contradiction.

Case 4. p2 = 7. Then {D1,D2} ⇢ {3, 7, 9, 21, 27, 49, · · · }. If D1 � 7 and D2 � 21,
then we have

2 =
�(3↵ · 7�)

3↵ · 7�
+

1
D1

+
1

D2
<

3
2

· 7
6

+
1
7

+
1
21

= 1.9404 . . . ,

a contradiction. Hence either D1 = 3, or D1 = 7 and D2 = 9. There are the
following two subcases.

Subcase 4.1. D1 = 3. Recall that D2 = 3↵�s2 · 7��t2 , we have

�(3↵ · 7�) =
3↵+1 � 1

2
· 7�+1 � 1

6
= 2 · 3↵ · 7� � 3↵�1 · 7� � 3s2 · 7t2 .

It follows that
(3↵ � 7) · (7� � 3) = 20� 12 · 3s2 · 7t2 . (4)

If s2 = t2 = 0, then (3↵ � 7) · (7� � 3) = 20� 12 = 8. If � = 1, then 7� � 3 = 4.
Thus 3↵�7 = 2 and then ↵ = 2. We obtain a solution, that is, n = 63 is an exactly
2-deficient-perfect number with two deficient divisors d1 = 21 and d2 = 1.

If s2 > 0 or t2 > 0, then 20� 12 · 3s2 · 7t2 < 0. Since 7� � 3 > 0, it follows from
(4) that 3↵ � 7 < 0. Thus ↵ = 1. By (4), we have

�4(7� � 3) = 20� 12 · 3s2 · 7t2 .

That is,
7� � 3 = �5 + 3s2+1 · 7t2 .

So
7� = �2 + 3s2+1 · 7t2 .

Hence t2 = 0, otherwise 7 | �2, a contradiction. Now we have 7� = �2 + 3s2+1.
Noting that 0  s2  ↵ = 1, and t2 = 0, we have s2 = 1, otherwise s2 = t2 = 0, a
contradiction with s2 > 0 or t2 > 0. Thus � = 1. Now we obtain another solution,
namely, n = 21 is an exactly 2-deficient-perfect number with two deficient divisors
d1 = 7 and d2 = 3.

Subcase 4.2. D1 = 7,D2 = 9. Then

�(3↵ · 7�) =
3↵+1 � 1

2
· 7�+1 � 1

6
= 2 · 3↵ · 7� � 3↵ · 7��1 � 3↵�2 · 7� .
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It follows that (3↵�1 � 49)(7��1 � 9) = 440. If � � 1 � 4, then 7��1 � 9 >
440, a contradiction. So 0  � � 1  3. By direct calculation, we know that
(3↵�1 � 49)(7��1 � 9) = 440 has no solution for 0  � � 1  3.

Case 5. p2 = 5. Then {D1,D2} ⇢ {3, 5, 9, 15, 25, 27, 45, 75, 81, · · · }. If D1 � 9 and
D2 � 75, then

2 =
�(3↵ · 5�)

3↵ · 5�
+

1
D1

+
1

D2
<

3
2

· 5
4

+
1
9

+
1
75

= 1.9441 . . . ,

a contradiction. Similarly, if D1 � 15, then

2 =
�(3↵ · 5�)

3↵ · 5�
+

1
D1

+
1

D2
<

3
2

· 5
4

+
1
15

+
1
25

= 1.9816 . . . ,

a contradiction. Hence, D1 = 3 or D1 = 5 or D1 = 9, D2 2 {15, 25, 27, 45}. Now,
we consider the following six subcases.

Subcase 5.1. D1 = 3. Recall that D2 = 3↵�s2 · 5��t2 , we have

�(3↵ · 5�) =
3↵+1 � 1

2
· 5�+1 � 1

4
= 2 · 3↵ · 5� � 3↵�1 · 5� � 3s2 · 5t2 .

It follows that
(3↵�1 � 1) · (5�+1 � 9) = 8(1� 3s2 · 5t2). (5)

Since 3↵�1 � 1 � 0 and 5�+1 � 9 > 0, it follows that 1 � 3s2 · 5t2 � 0. Thus
s2 = t2 = 0. By (5), we have ↵ = 1. Therefore, n = 3 · 5� (� � 1) are exactly
2-deficient-perfect numbers with two deficient divisors d1 = 5� and d2 = 1.

Subcase 5.2. D1 = 5. Recall that D2 = 3↵�s2 · 5��t2 , we have

�(3↵ · 5�) =
3↵+1 � 1

2
· 5�+1 � 1

4
= 2 · 3↵ · 5� � 3↵ · 5��1 � 3s2 · 5t2 .

It follows that
(3↵+1 � 25) · (5��1 � 1) = 8(3� 3s2 · 5t2). (6)

If s2 = t2 = 0, then, by (6), we have

(3↵+1 � 25) · (5��1 � 1) = 16. (7)

If � � 1 � 2, then 5��1 � 1 > 16, a contradiction. So � � 1 = 0, 1. It is easy to see
that (7) has no solution for � � 1 = 0, 1.

If s2 = 1 and t2 = 0, then 8(3�3s2 ·5t2) = 0. By (6), we have ��1 = 0. Therefore,
n = 3↵ ·5 (↵ > 1) are exactly 2-deficient-perfect numbers with two deficient divisors
d1 = 3↵ and d2 = 3 (here ↵ = 1 is excluded, otherwise d1 = d2 = 3).
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If s2 � 2 or t2 � 1, then 8(3 � 3s2 · 5t2)  �16. Since 5��1 � 1 � 0, it follows
from (6) that 3↵+1 � 25 < 0. Thus ↵ = 1. So s2  1 and t2 � 1. Now (6) becomes

(�16) · (5��1 � 1) = 8(3� 3s2 · 5t2).

That is,
�2 · 5��1 = 1� 3s2 · 5t2 .

Since t2 � 1, it follows that � � 1 = 0. Otherwise, 5 | 1, a contradiction. Thus
3s2 · 5t2 = 3, a contradiction with t2 � 1.

Subcase 5.3. D1 = 9,D2 = 15. Then

�(3↵ · 5�) =
3↵+1 � 1

2
· 5�+1 � 1

4
= 2 · 3↵ · 5� � 3↵�2 · 5� � 3↵�1 · 5��1.

It follows that
5��1 =

27 · 3↵�2 � 1
19 · 3↵�2 � 25

.

If ↵� 2  0, then

5��1 =
27 · 3↵�2 � 1
19 · 3↵�2 � 25

< 0,

a contradiction.
If ↵� 2 = 1, then

5��1 =
27 · 3↵�2 � 1
19 · 3↵�2 � 25

=
5
2
,

a contradiction.
If ↵� 2 � 2, then

1 <
27 · 3↵�2 � 1
19 · 3↵�2 � 25

< 2,

a contradiction.

Subcase 5.4. D1 = 9,D2 = 25. Then ↵ � 2, � � 2 and

�(3↵ · 5�) =
3↵+1 � 1

2
· 5�+1 � 1

4
= 2 · 3↵ · 5� � 3↵�2 · 5� � 3↵ · 5��2.

It follows that

3↵�2 =
125 · 5��2 � 1
47 · 5��2 � 27

. (8)

Since

2 <
125 · 5��2 � 1
47 · 5��2 � 27

< 9,

it follows from (8) that ↵� 2 = 1. Again, by (8), we have � � 2 = 1. So ↵ = 3 and
� = 3. Namely, n = 3375 = 33 ⇥ 53 is an exactly 2-deficient-perfect number with
two deficient divisors d1 = 375 and d2 = 135.
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Subcase 5.5. D1 = 9,D2 = 27. Then

�(3↵ · 5�) =
3↵+1 � 1

2
· 5�+1 � 1

4
= 2 · 3↵ · 5� � 3↵�2 · 5� � 3↵�3 · 5� .

It follows that
(5�+1 � 81)(3↵�3 � 1) = 80. (9)

If � � 3, then 5�+1 � 81 > 80, a contradiction. It is easy to see that (9) cannot
hold for � = 1, 2.

Subcase 5.6. D1 = 9,D2 = 45. Then

�(3↵ · 5�) =
3↵+1 � 1

2
· 5�+1 � 1

4
= 2 · 3↵ · 5� � 3↵�2 · 5� � 3↵�2 · 5��1.

It follows that
(3↵�1 � 25)(5��1 � 9) = 224. (10)

If � � 5, then 5��1 � 9 > 224, a contradiction. It is easy to see that (10) cannot
hold for 1  �  4.

This completes the proof of Theorem 1.
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