ON EXACTLY K-DEFICIENT-PERFECT NUMBERS

FengJuan Chen ${ }^{1}$
School of Mathematical Sciences, Soochow University, Suzhou, P. R. China
cfjsz@126.com

Received: 7/4/18, Accepted: 5/31/19, Published: 7/31/19

Abstract

For a positive integer n, let $\sigma(n)$ denote the sum of all positive divisors of n. A positive integer n is called an exactly k-deficient-perfect number if $\sigma(n)=2 n-d_{1}-$ $d_{2}-\cdots-d_{k}$, where $d_{i}(1 \leq i \leq k)$ are distinct proper divisors of n. In this paper, we determine all odd exactly 2 -deficient-perfect numbers n with two distinct prime divisors.

1. Introduction

For a positive integer n, let $\sigma(n)$ denote the sum of all positive divisors of n. We call n perfect if $\sigma(n)=2 n$. It is well known that an even integer n is perfect if and only if $n=2^{p-1}\left(2^{p}-1\right)$, where p and $2^{p}-1$ are both primes. It is not known whether there exists an odd perfect number. Numerous authors have defined a number of closely related concepts. For example, n is called deficient if $\sigma(n)<2 n$, and n is called abundant if $\sigma(n)>2 n$, etc.

In 2012, Pollack and Shevelev [2] introduced the concept of k-near-perfect numbers. For $k \geq 1, n$ is called k-near-perfect if n is the sum of all of its proper divisors with at most k exceptions (called redundant divisors). A 1-near-perfect number with exactly 1 redundant divisor is called near-perfect. Pollack and Shevelev [2] presented an upper bound on the count of near-perfect numbers and proved that there are infinitely many k-near-perfect numbers n with exactly k redundant divisors for all large k. Recently, Li and Liao [1] gave two equivalent conditions of all even near-perfect numbers of the forms $2^{\alpha} p_{1} p_{2}$ and $2^{\alpha} p_{1}^{2} p_{2}$. For more results on near-perfect numbers, see $[3,4,6]$

A positive integer n is called an exactly k-deficient-perfect number if $\sigma(n)=$ $2 n-d_{1}-d_{2}-\cdots-d_{k}$, where $d_{i}(1 \leq i \leq k)$ are distinct proper divisors of n (called deficient divisors). In particular, a positive integer n is deficient-perfect with deficient divisor d if $\sigma(n)=2 n-d$, where d is a proper divisor of n. Tang, Ren

[^0]and Feng [4] determined all deficient-perfect numbers with at most two distinct prime factors. In [5], Tang and Feng proved that there are no odd deficient-perfect numbers with three distinct prime factors.

Suppose that $n=q^{\alpha}$ is an exactly 2 -deficient-perfect number with two deficient divisors $d_{1}=q^{\beta_{1}}, d_{2}=q^{\beta_{2}}$, where q is a prime and $\alpha, \beta_{1}, \beta_{2}$ are integers with $0 \leq \beta_{1}<\beta_{2}<\alpha$. Then

$$
\sigma\left(q^{\alpha}\right)=2 q^{\alpha}-q^{\beta_{1}}-q^{\beta_{2}}
$$

That is,

$$
\begin{equation*}
(q-2) q^{\alpha}=(q-1)\left(q^{\beta_{1}}+q^{\beta_{2}}\right)-1 \tag{1}
\end{equation*}
$$

If $q=2$, then we have $(q-1)\left(q^{\beta_{1}}+q^{\beta_{2}}\right)=1$, which is impossible. Hence $q>2$. From (1), we have

$$
q^{\alpha} \leq(q-2) q^{\alpha}=(q-1)\left(q^{\beta_{1}}+q^{\beta_{2}}\right)-1 \leq(q-1)\left(q^{\alpha-2}+q^{\alpha-1}\right)-1
$$

Namely, $q^{\alpha} \leq q^{\alpha}-q^{\alpha-2}-1$, a contradiction. Now, we have proved the following proposition.

Proposition 1. If n is an exactly 2-deficient-perfect number, then n has at least two distinct prime divisors.

In this paper, the following result is proved.
Theorem 1. An odd integer n is an exactly 2-deficient-perfect number with two distinct prime factors if and only if one of the following holds.
(i) $n=117$ with two deficient divisors $d_{1}=39$ and $d_{2}=13$;
(ii) $n=99$ with two deficient divisors $d_{1}=33$ and $d_{2}=9$;
(iii) $n=891$ with two deficient divisors $d_{1}=297$ and $d_{2}=33$;
(iv) $n=63$ with two deficient divisors $d_{1}=21$ and $d_{2}=1$;
(v) $n=21$ with two deficient divisors $d_{1}=7$ and $d_{2}=3$;
(vi) $n=3 \times 5^{\beta}$ with two deficient divisors $d_{1}=5^{\beta}$ and $d_{2}=1$;
(vii) $n=3^{\alpha} \times 5$ with two deficient divisors $d_{1}=3^{\alpha}$ and $d_{2}=3$, where $\alpha \geq 2$;
(viii) $n=3375$ with two deficient divisors $d_{1}=375$ and $d_{2}=135$.

2. Proof of Theorem 1

Proof of Theorem 1. Suppose that $n=p_{1}^{\alpha} p_{2}^{\beta}$ is an exactly 2-deficient-perfect number with exactly two distinct deficient divisors d_{1} and d_{2}, where p_{1} and p_{2} are two primes with $2<p_{1}<p_{2}$. Then

$$
\begin{equation*}
\sigma\left(p_{1}^{\alpha} p_{2}^{\beta}\right)=2 p_{1}^{\alpha} p_{2}^{\beta}-d_{1}-d_{2} \tag{2}
\end{equation*}
$$

If $p_{1}>3$, then

$$
2=\frac{\sigma\left(p_{1}^{\alpha} p_{2}^{\beta}\right)}{p_{1}^{\alpha} p_{2}^{\beta}}+\frac{d_{1}}{p_{1}^{\alpha} p_{2}^{\beta}}+\frac{d_{2}}{p_{1}^{\alpha} p_{2}^{\beta}}<\frac{5}{4} \cdot \frac{7}{6}+\frac{1}{5}+\frac{1}{7}=1.8011 \ldots,
$$

a contradiction. Hence $p_{1}=3$. Now (2) becomes

$$
\sigma\left(3^{\alpha} \cdot p_{2}^{\beta}\right)=2 \cdot 3^{\alpha} \cdot p_{2}^{\beta}-d_{1}-d_{2}
$$

where $d_{1}=3^{s_{1}} \cdot p_{2}^{t_{1}}$ and $d_{2}=3^{s_{2}} \cdot p_{2}^{t_{2}}$ are two distinct proper divisors of n. Write $D_{1}=3^{\alpha-s_{1}} \cdot p_{2}^{\beta-t_{1}}, D_{2}=3^{\alpha-s_{2}} \cdot p_{2}^{\beta-t_{2}}$, and assume $D_{1}<D_{2}$. Then we have

$$
\begin{equation*}
2=\frac{\sigma\left(3^{\alpha} \cdot p_{2}^{\beta}\right)}{3^{\alpha} \cdot p_{2}^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}} . \tag{3}
\end{equation*}
$$

If $p_{2}>23$, then

$$
2=\frac{\sigma\left(3^{\alpha} p_{2}^{\beta}\right)}{3^{\alpha} p_{2}^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{29}{28}+\frac{1}{3}+\frac{1}{9}=1.9980 \ldots,
$$

a contradiction. Therefore, $p_{2} \in\{5,7,11,13,17,19,23\}$. We consider five cases.
Case 1. $p_{2} \in\{17,19,23\}$. Then $\left\{D_{1}, D_{2}\right\} \subset\left\{3,9, p_{2}, 27,3 p_{2}, \cdots\right\}$. If $D_{2} \geq p_{2}$, then, by (3), we have
$2=\frac{\sigma\left(3^{\alpha} \cdot p_{2}^{\beta}\right)}{3^{\alpha} \cdot p_{2}^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{p_{2}}{p_{2}-1}+\frac{1}{3}+\frac{1}{p_{2}} \leq \frac{3}{2} \cdot \frac{17}{16}+\frac{1}{3}+\frac{1}{17}=1.9857 \ldots$,
a contradiction. So $D_{1}=3$ and $D_{2}=9$. Thus

$$
\sigma\left(3^{\alpha} \cdot p_{2}^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{p_{2}^{\beta+1}-1}{p_{2}-1}=2 \cdot 3^{\alpha} \cdot p_{2}^{\beta}-3^{\alpha-1} \cdot p_{2}^{\beta}-3^{\alpha-2} \cdot p_{2}^{\beta}
$$

It follows that

$$
3^{\alpha-2}=\frac{p_{2}^{\beta+1}-1}{\left(28-p_{2}\right) p_{2}^{\beta}-27}
$$

Consequently, for $p_{2}=17,19,23$, we have

$$
\begin{gathered}
3^{\alpha-2}=1+\frac{6 \cdot 17^{\beta}+26}{11 \cdot 17^{\beta}-27} \in(1,2), \\
3^{\alpha-2}=2+\frac{19^{\beta}+53}{9 \cdot 19^{\beta}-27} \in(2,3), \\
3^{\alpha-2}=4+\frac{3 \cdot 23^{\beta}+107}{5 \cdot 23^{\beta}-27} \in(4,5) \cup\{6\},
\end{gathered}
$$

which are impossible.
Case 2. $p_{2}=13$. Then $\left\{D_{1}, D_{2}\right\} \subset\{3,9,13,27,39, \cdots\}$. If $D_{1} \geq 9$, then

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 13^{\beta}\right)}{3^{\alpha} \cdot 13^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{13}{12}+\frac{1}{9}+\frac{1}{13}=1.8130 \ldots
$$

a contradiction. If $D_{2} \geq 27$, then

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 13^{\beta}\right)}{3^{\alpha} \cdot 13^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{13}{12}+\frac{1}{3}+\frac{1}{27}=1.9953 \ldots
$$

a contradiction. Hence $D_{1}=3$ and $D_{2} \in\{9,13\}$. We divide into the following two subcases.

Subcase 2.1. $D_{1}=3, D_{2}=9$. Then

$$
\sigma\left(3^{\alpha} \cdot 13^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{13^{\beta+1}-1}{12}=2 \cdot 3^{\alpha} \cdot 13^{\beta}-3^{\alpha-1} \cdot 13^{\beta}-3^{\alpha-2} \cdot 13^{\beta}
$$

That is,

$$
\frac{9 \cdot 3^{\alpha-1}-1}{5 \cdot 3^{\alpha-1}-13}=13^{\beta} \geq 13
$$

It follows that $\alpha-1 \leq 1$. Consequently, we obtain the unique solution $\alpha=2, \beta=1$. Namely, $n=117$ is an exactly 2-deficient-perfect number with two deficient divisors $d_{1}=39$ and $d_{2}=13$.
Subcase 2.2. $D_{1}=3, D_{2}=13$. Then

$$
\sigma\left(3^{\alpha} \cdot 13^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{13^{\beta+1}-1}{12}=2 \cdot 3^{\alpha} \cdot 13^{\beta}-3^{\alpha-1} \cdot 13^{\beta}-3^{\alpha} \cdot 13^{\beta-1}
$$

It follows that

$$
13^{\beta-1}=\frac{3 \cdot 3^{\alpha}-1}{11 \cdot 3^{\alpha}-169}
$$

If $\alpha \leq 2$, then

$$
\frac{3 \cdot 3^{\alpha}-1}{11 \cdot 3^{\alpha}-169}<0
$$

a contradiction.
If $\alpha \geq 3$, then

$$
0<\frac{3 \cdot 3^{\alpha}-1}{11 \cdot 3^{\alpha}-169}<1
$$

a contradiction.
Case 3. $p_{2}=11$. Then $\left\{D_{1}, D_{2}\right\} \subset\{3,9,11,27,33,81,99, \cdots\}$. If $D_{1} \geq 9$, then

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 11^{\beta}\right)}{3^{\alpha} \cdot 11^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{11}{10}+\frac{1}{9}+\frac{1}{11}=1.8520 \ldots
$$

a contradiction. If $D_{2} \geq 81$, then

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 11^{\beta}\right)}{3^{\alpha} \cdot 11^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{11}{10}+\frac{1}{3}+\frac{1}{81}=1.9956 \ldots
$$

a contradiction. Hence $D_{1}=3$ and $D_{2} \in\{9,11,27,33\}$. We consider four subcases.
Subcase 3.1. $D_{1}=3, D_{2}=9$. Then

$$
\sigma\left(3^{\alpha} \cdot 11^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{11^{\beta+1}-1}{10}=2 \cdot 3^{\alpha} \cdot 11^{\beta}-3^{\alpha-1} \cdot 11^{\beta}-3^{\alpha-2} \cdot 11^{\beta}
$$

It follows that

$$
3^{\alpha-2}=\frac{11^{\beta+1}-1}{17 \cdot 11^{\beta}-27}
$$

But

$$
\frac{1}{3}<\frac{11^{\beta+1}-1}{17 \cdot 11^{\beta}-27}<1
$$

a contradiction.
Subcase 3.2. $D_{1}=3, D_{2}=11$. Then

$$
\sigma\left(3^{\alpha} \cdot 11^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{11^{\beta+1}-1}{10}=2 \cdot 3^{\alpha} \cdot 11^{\beta}-3^{\alpha-1} \cdot 11^{\beta}-3^{\alpha} \cdot 11^{\beta-1}
$$

It follows that

$$
11^{\beta-1}=\frac{3^{\alpha+1}-1}{49 \cdot 3^{\alpha-1}-121}
$$

If $\alpha-1 \geq 2$, then

$$
0<\frac{3^{\alpha+1}-1}{49 \cdot 3^{\alpha-1}-121}<1
$$

a contradiction. So $\alpha-1 \leq 1$. Consequently, we obtain the unique solution $\alpha=$ $2, \beta=1$. Namely, $n=99$ is an exactly 2 -deficient-perfect number with two deficient divisors $d_{1}=33$ and $d_{2}=9$.

Subcase 3.3. $D_{1}=3, D_{2}=27$. Then

$$
\sigma\left(3^{\alpha} \cdot 11^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{11^{\beta+1}-1}{10}=2 \cdot 3^{\alpha} \cdot 11^{\beta}-3^{\alpha-1} \cdot 11^{\beta}-3^{\alpha-3} \cdot 11^{\beta}
$$

It follows that $\left(11^{\beta+1}-81\right)\left(3^{\alpha-3}-1\right)=80$. If $\beta \geq 2$, then $11^{\beta+1}-81>80$, a contradiction. So $\beta=1$. Consequently, we obtain the unique solution $\alpha=4, \beta=1$. Namely, $n=891$ is an exactly 2-deficient-perfect number with two deficient divisors $d_{1}=297$ and $d_{2}=33$.
Subcase 3.4. $D_{1}=3, D_{2}=33$. Then

$$
\sigma\left(3^{\alpha} \cdot 11^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{11^{\beta+1}-1}{10}=2 \cdot 3^{\alpha} \cdot 11^{\beta}-3^{\alpha-1} \cdot 11^{\beta}-3^{\alpha-1} \cdot 11^{\beta-1}
$$

It follows that $\left(3^{\alpha+1}-121\right)\left(11^{\beta-1}-1\right)=120$. If $\beta \geq 4$, then $11^{\beta-1}-1>120$, a contradiction. So $\beta \leq 3$. If $\beta=3$, then $11^{\beta-1}-1=120$. Thus $3^{\alpha+1}-121=1$, i.e., $3^{\alpha+1}=122$, which is impossible. If $\beta=2$, then $11^{\beta-1}-1=10$. Thus $3^{\alpha+1}-121=$ 12 , i.e., $3^{\alpha+1}=133$, which is impossible. If $\beta=1$, then $\left(3^{\alpha+1}-121\right)\left(11^{\beta-1}-1\right)=0$, a contradiction.

Case 4. $p_{2}=7$. Then $\left\{D_{1}, D_{2}\right\} \subset\{3,7,9,21,27,49, \cdots\}$. If $D_{1} \geq 7$ and $D_{2} \geq 21$, then we have

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 7^{\beta}\right)}{3^{\alpha} \cdot 7^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{7}{6}+\frac{1}{7}+\frac{1}{21}=1.9404 \ldots
$$

a contradiction. Hence either $D_{1}=3$, or $D_{1}=7$ and $D_{2}=9$. There are the following two subcases.

Subcase 4.1. $D_{1}=3$. Recall that $D_{2}=3^{\alpha-s_{2}} \cdot 7^{\beta-t_{2}}$, we have

$$
\sigma\left(3^{\alpha} \cdot 7^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{7^{\beta+1}-1}{6}=2 \cdot 3^{\alpha} \cdot 7^{\beta}-3^{\alpha-1} \cdot 7^{\beta}-3^{s_{2}} \cdot 7^{t_{2}}
$$

It follows that

$$
\begin{equation*}
\left(3^{\alpha}-7\right) \cdot\left(7^{\beta}-3\right)=20-12 \cdot 3^{s_{2}} \cdot 7^{t_{2}} \tag{4}
\end{equation*}
$$

If $s_{2}=t_{2}=0$, then $\left(3^{\alpha}-7\right) \cdot\left(7^{\beta}-3\right)=20-12=8$. If $\beta=1$, then $7^{\beta}-3=4$. Thus $3^{\alpha}-7=2$ and then $\alpha=2$. We obtain a solution, that is, $n=63$ is an exactly 2-deficient-perfect number with two deficient divisors $d_{1}=21$ and $d_{2}=1$.

If $s_{2}>0$ or $t_{2}>0$, then $20-12 \cdot 3^{s_{2}} \cdot 7^{t_{2}}<0$. Since $7^{\beta}-3>0$, it follows from (4) that $3^{\alpha}-7<0$. Thus $\alpha=1$. By (4), we have

$$
-4\left(7^{\beta}-3\right)=20-12 \cdot 3^{s_{2}} \cdot 7^{t_{2}}
$$

That is,

$$
7^{\beta}-3=-5+3^{s_{2}+1} \cdot 7^{t_{2}}
$$

So

$$
7^{\beta}=-2+3^{s_{2}+1} \cdot 7^{t_{2}}
$$

Hence $t_{2}=0$, otherwise $7 \mid-2$, a contradiction. Now we have $7^{\beta}=-2+3^{s_{2}+1}$. Noting that $0 \leq s_{2} \leq \alpha=1$, and $t_{2}=0$, we have $s_{2}=1$, otherwise $s_{2}=t_{2}=0$, a contradiction with $s_{2}>0$ or $t_{2}>0$. Thus $\beta=1$. Now we obtain another solution, namely, $n=21$ is an exactly 2 -deficient-perfect number with two deficient divisors $d_{1}=7$ and $d_{2}=3$.

Subcase 4.2. $D_{1}=7, D_{2}=9$. Then

$$
\sigma\left(3^{\alpha} \cdot 7^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{7^{\beta+1}-1}{6}=2 \cdot 3^{\alpha} \cdot 7^{\beta}-3^{\alpha} \cdot 7^{\beta-1}-3^{\alpha-2} \cdot 7^{\beta}
$$

It follows that $\left(3^{\alpha-1}-49\right)\left(7^{\beta-1}-9\right)=440$. If $\beta-1 \geq 4$, then $7^{\beta-1}-9>$ 440 , a contradiction. So $0 \leq \beta-1 \leq 3$. By direct calculation, we know that $\left(3^{\alpha-1}-49\right)\left(7^{\beta-1}-9\right)=440$ has no solution for $0 \leq \beta-1 \leq 3$.
Case 5. $p_{2}=5$. Then $\left\{D_{1}, D_{2}\right\} \subset\{3,5,9,15,25,27,45,75,81, \cdots\}$. If $D_{1} \geq 9$ and $D_{2} \geq 75$, then

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)}{3^{\alpha} \cdot 5^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{5}{4}+\frac{1}{9}+\frac{1}{75}=1.9441 \ldots
$$

a contradiction. Similarly, if $D_{1} \geq 15$, then

$$
2=\frac{\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)}{3^{\alpha} \cdot 5^{\beta}}+\frac{1}{D_{1}}+\frac{1}{D_{2}}<\frac{3}{2} \cdot \frac{5}{4}+\frac{1}{15}+\frac{1}{25}=1.9816 \ldots,
$$

a contradiction. Hence, $D_{1}=3$ or $D_{1}=5$ or $D_{1}=9, D_{2} \in\{15,25,27,45\}$. Now, we consider the following six subcases.

Subcase 5.1. $D_{1}=3$. Recall that $D_{2}=3^{\alpha-s_{2}} \cdot 5^{\beta-t_{2}}$, we have

$$
\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{5^{\beta+1}-1}{4}=2 \cdot 3^{\alpha} \cdot 5^{\beta}-3^{\alpha-1} \cdot 5^{\beta}-3^{s_{2}} \cdot 5^{t_{2}}
$$

It follows that

$$
\begin{equation*}
\left(3^{\alpha-1}-1\right) \cdot\left(5^{\beta+1}-9\right)=8\left(1-3^{s_{2}} \cdot 5^{t_{2}}\right) \tag{5}
\end{equation*}
$$

Since $3^{\alpha-1}-1 \geq 0$ and $5^{\beta+1}-9>0$, it follows that $1-3^{s_{2}} \cdot 5^{t_{2}} \geq 0$. Thus $s_{2}=t_{2}=0$. By (5), we have $\alpha=1$. Therefore, $n=3 \cdot 5^{\beta}(\beta \geq 1)$ are exactly 2-deficient-perfect numbers with two deficient divisors $d_{1}=5^{\beta}$ and $d_{2}=1$.

Subcase 5.2. $D_{1}=5$. Recall that $D_{2}=3^{\alpha-s_{2}} \cdot 5^{\beta-t_{2}}$, we have

$$
\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{5^{\beta+1}-1}{4}=2 \cdot 3^{\alpha} \cdot 5^{\beta}-3^{\alpha} \cdot 5^{\beta-1}-3^{s_{2}} \cdot 5^{t_{2}}
$$

It follows that

$$
\begin{equation*}
\left(3^{\alpha+1}-25\right) \cdot\left(5^{\beta-1}-1\right)=8\left(3-3^{s_{2}} \cdot 5^{t_{2}}\right) \tag{6}
\end{equation*}
$$

If $s_{2}=t_{2}=0$, then, by (6), we have

$$
\begin{equation*}
\left(3^{\alpha+1}-25\right) \cdot\left(5^{\beta-1}-1\right)=16 \tag{7}
\end{equation*}
$$

If $\beta-1 \geq 2$, then $5^{\beta-1}-1>16$, a contradiction. So $\beta-1=0,1$. It is easy to see that (7) has no solution for $\beta-1=0,1$.

If $s_{2}=1$ and $t_{2}=0$, then $8\left(3-3^{s_{2}} \cdot 5^{t_{2}}\right)=0$. By (6), we have $\beta-1=0$. Therefore, $n=3^{\alpha} \cdot 5(\alpha>1)$ are exactly 2-deficient-perfect numbers with two deficient divisors $d_{1}=3^{\alpha}$ and $d_{2}=3$ (here $\alpha=1$ is excluded, otherwise $d_{1}=d_{2}=3$).

If $s_{2} \geq 2$ or $t_{2} \geq 1$, then $8\left(3-3^{s_{2}} \cdot 5^{t_{2}}\right) \leq-16$. Since $5^{\beta-1}-1 \geq 0$, it follows from (6) that $3^{\alpha+1}-25<0$. Thus $\alpha=1$. So $s_{2} \leq 1$ and $t_{2} \geq 1$. Now (6) becomes

$$
(-16) \cdot\left(5^{\beta-1}-1\right)=8\left(3-3^{s_{2}} \cdot 5^{t_{2}}\right)
$$

That is,

$$
-2 \cdot 5^{\beta-1}=1-3^{s_{2}} \cdot 5^{t_{2}}
$$

Since $t_{2} \geq 1$, it follows that $\beta-1=0$. Otherwise, $5 \mid 1$, a contradiction. Thus $3^{s_{2}} \cdot 5^{t_{2}}=3$, a contradiction with $t_{2} \geq 1$.

Subcase 5.3. $D_{1}=9, D_{2}=15$. Then

$$
\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{5^{\beta+1}-1}{4}=2 \cdot 3^{\alpha} \cdot 5^{\beta}-3^{\alpha-2} \cdot 5^{\beta}-3^{\alpha-1} \cdot 5^{\beta-1}
$$

It follows that

$$
5^{\beta-1}=\frac{27 \cdot 3^{\alpha-2}-1}{19 \cdot 3^{\alpha-2}-25}
$$

If $\alpha-2 \leq 0$, then

$$
5^{\beta-1}=\frac{27 \cdot 3^{\alpha-2}-1}{19 \cdot 3^{\alpha-2}-25}<0
$$

a contradiction.
If $\alpha-2=1$, then

$$
5^{\beta-1}=\frac{27 \cdot 3^{\alpha-2}-1}{19 \cdot 3^{\alpha-2}-25}=\frac{5}{2}
$$

a contradiction.
If $\alpha-2 \geq 2$, then

$$
1<\frac{27 \cdot 3^{\alpha-2}-1}{19 \cdot 3^{\alpha-2}-25}<2
$$

a contradiction.
Subcase 5.4. $D_{1}=9, D_{2}=25$. Then $\alpha \geq 2, \beta \geq 2$ and

$$
\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{5^{\beta+1}-1}{4}=2 \cdot 3^{\alpha} \cdot 5^{\beta}-3^{\alpha-2} \cdot 5^{\beta}-3^{\alpha} \cdot 5^{\beta-2}
$$

It follows that

$$
\begin{equation*}
3^{\alpha-2}=\frac{125 \cdot 5^{\beta-2}-1}{47 \cdot 5^{\beta-2}-27} \tag{8}
\end{equation*}
$$

Since

$$
2<\frac{125 \cdot 5^{\beta-2}-1}{47 \cdot 5^{\beta-2}-27}<9
$$

it follows from (8) that $\alpha-2=1$. Again, by (8), we have $\beta-2=1$. So $\alpha=3$ and $\beta=3$. Namely, $n=3375=3^{3} \times 5^{3}$ is an exactly 2 -deficient-perfect number with two deficient divisors $d_{1}=375$ and $d_{2}=135$.

Subcase 5.5. $D_{1}=9, D_{2}=27$. Then

$$
\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{5^{\beta+1}-1}{4}=2 \cdot 3^{\alpha} \cdot 5^{\beta}-3^{\alpha-2} \cdot 5^{\beta}-3^{\alpha-3} \cdot 5^{\beta}
$$

It follows that

$$
\begin{equation*}
\left(5^{\beta+1}-81\right)\left(3^{\alpha-3}-1\right)=80 \tag{9}
\end{equation*}
$$

If $\beta \geq 3$, then $5^{\beta+1}-81>80$, a contradiction. It is easy to see that (9) cannot hold for $\beta=1,2$.

Subcase 5.6. $D_{1}=9, D_{2}=45$. Then

$$
\sigma\left(3^{\alpha} \cdot 5^{\beta}\right)=\frac{3^{\alpha+1}-1}{2} \cdot \frac{5^{\beta+1}-1}{4}=2 \cdot 3^{\alpha} \cdot 5^{\beta}-3^{\alpha-2} \cdot 5^{\beta}-3^{\alpha-2} \cdot 5^{\beta-1}
$$

It follows that

$$
\begin{equation*}
\left(3^{\alpha-1}-25\right)\left(5^{\beta-1}-9\right)=224 \tag{10}
\end{equation*}
$$

If $\beta \geq 5$, then $5^{\beta-1}-9>224$, a contradiction. It is easy to see that (10) cannot hold for $1 \leq \beta \leq 4$.

This completes the proof of Theorem 1.

Acknowledgments. I am grateful to Professor Yong-Gao Chen for his valuable suggestions. The author also thanks the editor and the referees for their careful reading of the paper.

References

[1] Y. B. Li and Q. Y. Liao, A class of new near-perfect numbers, J. Korean Math. Soc. 52 (2015), 751-763.
[2] P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.
[3] X. Z. Ren and Y. G. Chen, On near-perfect numbers with two distinct prime factors, Bull. Aust. Math. Soc. 88 (2013), 520-524.
[4] M. Tang, X. Z. Ren and M. Li, On near-perfect and deficient-perfect numbers, Colloq. Math. 133 (2013), 221-226.
[5] M. Tang and M. Feng, On deficient-perfect numbers, Bull. Aust. Math. Soc. 90 (2014), 186194.
[6] M. Tang, X. Y. Ma and M. Feng, On near-perfect numbers, Colloq. Math. 144 (2016), 157-188.

[^0]: ${ }^{1}$ This work was supported by the National Natural Science Foundation of China (Grant No. 11771211)

