

#### ON EXACTLY K-DEFICIENT-PERFECT NUMBERS

### FengJuan Chen<sup>1</sup>

School of Mathematical Sciences, Soochow University, Suzhou, P. R. China cfjsz@126.com

Received: 7/4/18, Accepted: 5/31/19, Published: 7/31/19

#### Abstract

For a positive integer n, let  $\sigma(n)$  denote the sum of all positive divisors of n. A positive integer n is called an exactly k-deficient-perfect number if  $\sigma(n) = 2n - d_1 - d_2 - \cdots - d_k$ , where  $d_i$   $(1 \le i \le k)$  are distinct proper divisors of n. In this paper, we determine all odd exactly 2-deficient-perfect numbers n with two distinct prime divisors.

#### 1. Introduction

For a positive integer n, let  $\sigma(n)$  denote the sum of all positive divisors of n. We call n perfect if  $\sigma(n) = 2n$ . It is well known that an even integer n is perfect if and only if  $n = 2^{p-1}(2^p - 1)$ , where p and  $2^p - 1$  are both primes. It is not known whether there exists an odd perfect number. Numerous authors have defined a number of closely related concepts. For example, n is called deficient if  $\sigma(n) < 2n$ , and n is called abundant if  $\sigma(n) > 2n$ , etc.

In 2012, Pollack and Shevelev [2] introduced the concept of k-near-perfect numbers. For  $k \geq 1$ , n is called k-near-perfect if n is the sum of all of its proper divisors with at most k exceptions (called redundant divisors). A 1-near-perfect number with exactly 1 redundant divisor is called near-perfect. Pollack and Shevelev [2] presented an upper bound on the count of near-perfect numbers and proved that there are infinitely many k-near-perfect numbers n with exactly k redundant divisors for all large k. Recently, Li and Liao [1] gave two equivalent conditions of all even near-perfect numbers of the forms  $2^{\alpha}p_1p_2$  and  $2^{\alpha}p_1^2p_2$ . For more results on near-perfect numbers, see [3, 4, 6]

A positive integer n is called an exactly k-deficient-perfect number if  $\sigma(n) = 2n - d_1 - d_2 - \cdots - d_k$ , where  $d_i$   $(1 \le i \le k)$  are distinct proper divisors of n (called deficient divisors). In particular, a positive integer n is deficient-perfect with deficient divisor d if  $\sigma(n) = 2n - d$ , where d is a proper divisor of n. Tang, Ren

 $<sup>^1\</sup>mathrm{This}$  work was supported by the National Natural Science Foundation of China (Grant No. 11771211)

INTEGERS: 19 (2019)

2

and Feng [4] determined all deficient-perfect numbers with at most two distinct prime factors. In [5], Tang and Feng proved that there are no odd deficient-perfect numbers with three distinct prime factors.

Suppose that  $n=q^{\alpha}$  is an exactly 2-deficient-perfect number with two deficient divisors  $d_1=q^{\beta_1}, d_2=q^{\beta_2}$ , where q is a prime and  $\alpha, \beta_1, \beta_2$  are integers with  $0 \leq \beta_1 < \beta_2 < \alpha$ . Then

$$\sigma(q^{\alpha}) = 2q^{\alpha} - q^{\beta_1} - q^{\beta_2}.$$

That is,

$$(q-2)q^{\alpha} = (q-1)(q^{\beta_1} + q^{\beta_2}) - 1. \tag{1}$$

If q=2, then we have $(q-1)(q^{\beta_1}+q^{\beta_2})=1$ , which is impossible. Hence q>2. From (1), we have

$$q^{\alpha} \le (q-2)q^{\alpha} = (q-1)(q^{\beta_1} + q^{\beta_2}) - 1 \le (q-1)(q^{\alpha-2} + q^{\alpha-1}) - 1.$$

Namely,  $q^{\alpha} \leq q^{\alpha} - q^{\alpha-2} - 1$ , a contradiction. Now, we have proved the following proposition.

**Proposition 1.** If n is an exactly 2-deficient-perfect number, then n has at least two distinct prime divisors.

In this paper, the following result is proved.

**Theorem 1.** An odd integer n is an exactly 2-deficient-perfect number with two distinct prime factors if and only if one of the following holds.

- (i) n = 117 with two deficient divisors  $d_1 = 39$  and  $d_2 = 13$ ;
- (ii) n = 99 with two deficient divisors  $d_1 = 33$  and  $d_2 = 9$ ;
- (iii) n = 891 with two deficient divisors  $d_1 = 297$  and  $d_2 = 33$ ;
- (iv) n = 63 with two deficient divisors  $d_1 = 21$  and  $d_2 = 1$ ;
- (v) n = 21 with two deficient divisors  $d_1 = 7$  and  $d_2 = 3$ ;
- (vi)  $n = 3 \times 5^{\beta}$  with two deficient divisors  $d_1 = 5^{\beta}$  and  $d_2 = 1$ ;
- (vii)  $n = 3^{\alpha} \times 5$  with two deficient divisors  $d_1 = 3^{\alpha}$  and  $d_2 = 3$ , where  $\alpha \geq 2$ ;
- (viii) n = 3375 with two deficient divisors  $d_1 = 375$  and  $d_2 = 135$ .

# 2. Proof of Theorem 1

Proof of Theorem 1. Suppose that  $n = p_1^{\alpha} p_2^{\beta}$  is an exactly 2-deficient-perfect number with exactly two distinct deficient divisors  $d_1$  and  $d_2$ , where  $p_1$  and  $p_2$  are two primes with  $2 < p_1 < p_2$ . Then

$$\sigma(p_1^{\alpha} p_2^{\beta}) = 2p_1^{\alpha} p_2^{\beta} - d_1 - d_2. \tag{2}$$

If  $p_1 > 3$ , then

$$2 = \frac{\sigma(p_1^{\alpha} p_2^{\beta})}{p_1^{\alpha} p_2^{\beta}} + \frac{d_1}{p_1^{\alpha} p_2^{\beta}} + \frac{d_2}{p_1^{\alpha} p_2^{\beta}} < \frac{5}{4} \cdot \frac{7}{6} + \frac{1}{5} + \frac{1}{7} = 1.8011 \dots,$$

a contradiction. Hence  $p_1 = 3$ . Now (2) becomes

$$\sigma(3^{\alpha} \cdot p_2^{\beta}) = 2 \cdot 3^{\alpha} \cdot p_2^{\beta} - d_1 - d_2,$$

where  $d_1=3^{s_1}\cdot p_2^{t_1}$  and  $d_2=3^{s_2}\cdot p_2^{t_2}$  are two distinct proper divisors of n. Write  $D_1=3^{\alpha-s_1}\cdot p_2^{\beta-t_1},\ D_2=3^{\alpha-s_2}\cdot p_2^{\beta-t_2}$ , and assume  $D_1< D_2$ . Then we have

$$2 = \frac{\sigma(3^{\alpha} \cdot p_2^{\beta})}{3^{\alpha} \cdot p_2^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2}.$$
 (3)

If  $p_2 > 23$ , then

$$2 = \frac{\sigma(3^{\alpha}p_2^{\beta})}{3^{\alpha}p_2^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{29}{28} + \frac{1}{3} + \frac{1}{9} = 1.9980...,$$

a contradiction. Therefore,  $p_2 \in \{5, 7, 11, 13, 17, 19, 23\}$ . We consider five cases.

Case 1.  $p_2 \in \{17, 19, 23\}$ . Then  $\{D_1, D_2\} \subset \{3, 9, p_2, 27, 3p_2, \cdots\}$ . If  $D_2 \geq p_2$ , then, by (3), we have

$$2 = \frac{\sigma(3^{\alpha} \cdot p_2^{\beta})}{3^{\alpha} \cdot p_2^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{p_2}{p_2 - 1} + \frac{1}{3} + \frac{1}{p_2} \le \frac{3}{2} \cdot \frac{17}{16} + \frac{1}{3} + \frac{1}{17} = 1.9857\dots,$$

a contradiction. So  $D_1 = 3$  and  $D_2 = 9$ . Thus

$$\sigma(3^{\alpha} \cdot p_2^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{p_2^{\beta+1} - 1}{p_2 - 1} = 2 \cdot 3^{\alpha} \cdot p_2^{\beta} - 3^{\alpha-1} \cdot p_2^{\beta} - 3^{\alpha-2} \cdot p_2^{\beta}.$$

It follows that

$$3^{\alpha-2} = \frac{p_2^{\beta+1} - 1}{(28 - p_2)p_2^{\beta} - 27}.$$

Consequently, for  $p_2 = 17, 19, 23$ , we have

$$3^{\alpha-2} = 1 + \frac{6 \cdot 17^{\beta} + 26}{11 \cdot 17^{\beta} - 27} \in (1, 2),$$

$$3^{\alpha-2} = 2 + \frac{19^{\beta} + 53}{9 \cdot 19^{\beta} - 27} \in (2,3),$$

$$3^{\alpha-2} = 4 + \frac{3 \cdot 23^{\beta} + 107}{5 \cdot 23^{\beta} - 27} \in (4, 5) \cup \{6\},\$$

which are impossible.

Case 2.  $p_2 = 13$ . Then  $\{D_1, D_2\} \subset \{3, 9, 13, 27, 39, \dots\}$ . If  $D_1 \geq 9$ , then

$$2 = \frac{\sigma(3^{\alpha} \cdot 13^{\beta})}{3^{\alpha} \cdot 13^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{13}{12} + \frac{1}{9} + \frac{1}{13} = 1.8130...,$$

a contradiction. If  $D_2 \geq 27$ , then

$$2 = \frac{\sigma(3^{\alpha} \cdot 13^{\beta})}{3^{\alpha} \cdot 13^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{13}{12} + \frac{1}{3} + \frac{1}{27} = 1.9953...,$$

a contradiction. Hence  $D_1=3$  and  $D_2\in\{9,13\}$ . We divide into the following two subcases.

Subcase 2.1.  $D_1 = 3, D_2 = 9$ . Then

$$\sigma(3^{\alpha} \cdot 13^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{13^{\beta+1} - 1}{12} = 2 \cdot 3^{\alpha} \cdot 13^{\beta} - 3^{\alpha-1} \cdot 13^{\beta} - 3^{\alpha-2} \cdot 13^{\beta}.$$

That is,

$$\frac{9 \cdot 3^{\alpha - 1} - 1}{5 \cdot 3^{\alpha - 1} - 13} = 13^{\beta} \ge 13.$$

It follows that  $\alpha - 1 \le 1$ . Consequently, we obtain the unique solution  $\alpha = 2, \beta = 1$ . Namely, n = 117 is an exactly 2-deficient-perfect number with two deficient divisors  $d_1 = 39$  and  $d_2 = 13$ .

Subcase 2.2.  $D_1 = 3, D_2 = 13$ . Then

$$\sigma(3^{\alpha} \cdot 13^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{13^{\beta+1} - 1}{12} = 2 \cdot 3^{\alpha} \cdot 13^{\beta} - 3^{\alpha-1} \cdot 13^{\beta} - 3^{\alpha} \cdot 13^{\beta-1}.$$

It follows that

$$13^{\beta-1} = \frac{3 \cdot 3^{\alpha} - 1}{11 \cdot 3^{\alpha} - 169}.$$

If  $\alpha \leq 2$ , then

$$\frac{3 \cdot 3^{\alpha} - 1}{11 \cdot 3^{\alpha} - 169} < 0,$$

a contradiction.

If  $\alpha \geq 3$ , then

$$0 < \frac{3 \cdot 3^{\alpha} - 1}{11 \cdot 3^{\alpha} - 169} < 1,$$

a contradiction.

Case 3.  $p_2 = 11$ . Then  $\{D_1, D_2\} \subset \{3, 9, 11, 27, 33, 81, 99, \cdots\}$ . If  $D_1 \ge 9$ , then

$$2 = \frac{\sigma(3^{\alpha} \cdot 11^{\beta})}{3^{\alpha} \cdot 11^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{11}{10} + \frac{1}{9} + \frac{1}{11} = 1.8520...,$$

a contradiction. If  $D_2 \geq 81$ , then

$$2 = \frac{\sigma(3^{\alpha} \cdot 11^{\beta})}{3^{\alpha} \cdot 11^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{11}{10} + \frac{1}{3} + \frac{1}{81} = 1.9956...,$$

a contradiction. Hence  $D_1 = 3$  and  $D_2 \in \{9, 11, 27, 33\}$ . We consider four subcases.

Subcase 3.1.  $D_1 = 3, D_2 = 9$ . Then

$$\sigma(3^{\alpha} \cdot 11^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{11^{\beta+1} - 1}{10} = 2 \cdot 3^{\alpha} \cdot 11^{\beta} - 3^{\alpha-1} \cdot 11^{\beta} - 3^{\alpha-2} \cdot 11^{\beta}.$$

It follows that

$$3^{\alpha-2} = \frac{11^{\beta+1} - 1}{17 \cdot 11^{\beta} - 27}.$$

But

$$\frac{1}{3} < \frac{11^{\beta+1} - 1}{17 \cdot 11^{\beta} - 27} < 1,$$

a contradiction.

Subcase 3.2.  $D_1 = 3, D_2 = 11$ . Then

$$\sigma(3^{\alpha} \cdot 11^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{11^{\beta+1} - 1}{10} = 2 \cdot 3^{\alpha} \cdot 11^{\beta} - 3^{\alpha-1} \cdot 11^{\beta} - 3^{\alpha} \cdot 11^{\beta-1}.$$

It follows that

$$11^{\beta-1} = \frac{3^{\alpha+1} - 1}{49 \cdot 3^{\alpha-1} - 121}.$$

If  $\alpha - 1 \ge 2$ , then

$$0 < \frac{3^{\alpha+1} - 1}{49 \cdot 3^{\alpha-1} - 121} < 1,$$

a contradiction. So  $\alpha-1\leq 1$ . Consequently, we obtain the unique solution  $\alpha=2,\beta=1$ . Namely, n=99 is an exactly 2-deficient-perfect number with two deficient divisors  $d_1=33$  and  $d_2=9$ .

Subcase 3.3.  $D_1 = 3, D_2 = 27$ . Then

$$\sigma(3^{\alpha} \cdot 11^{\beta}) = \frac{3^{\alpha+1}-1}{2} \cdot \frac{11^{\beta+1}-1}{10} = 2 \cdot 3^{\alpha} \cdot 11^{\beta} - 3^{\alpha-1} \cdot 11^{\beta} - 3^{\alpha-3} \cdot 11^{\beta}.$$

It follows that  $(11^{\beta+1}-81)(3^{\alpha-3}-1)=80$ . If  $\beta \geq 2$ , then  $11^{\beta+1}-81>80$ , a contradiction. So  $\beta=1$ . Consequently, we obtain the unique solution  $\alpha=4,\beta=1$ . Namely, n=891 is an exactly 2-deficient-perfect number with two deficient divisors  $d_1=297$  and  $d_2=33$ .

Subcase 3.4.  $D_1 = 3, D_2 = 33$ . Then

$$\sigma(3^{\alpha} \cdot 11^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{11^{\beta+1} - 1}{10} = 2 \cdot 3^{\alpha} \cdot 11^{\beta} - 3^{\alpha-1} \cdot 11^{\beta} - 3^{\alpha-1} \cdot 11^{\beta-1}.$$

It follows that  $(3^{\alpha+1}-121)(11^{\beta-1}-1)=120$ . If  $\beta\geq 4$ , then  $11^{\beta-1}-1>120$ , a contradiction. So  $\beta\leq 3$ . If  $\beta=3$ , then  $11^{\beta-1}-1=120$ . Thus  $3^{\alpha+1}-121=1$ , i.e.,  $3^{\alpha+1}=122$ , which is impossible. If  $\beta=2$ , then  $11^{\beta-1}-1=10$ . Thus  $3^{\alpha+1}-121=12$ , i.e.,  $3^{\alpha+1}=133$ , which is impossible. If  $\beta=1$ , then  $(3^{\alpha+1}-121)(11^{\beta-1}-1)=0$ , a contradiction.

Case 4.  $p_2 = 7$ . Then  $\{D_1, D_2\} \subset \{3, 7, 9, 21, 27, 49, \cdots\}$ . If  $D_1 \geq 7$  and  $D_2 \geq 21$ , then we have

$$2 = \frac{\sigma(3^{\alpha} \cdot 7^{\beta})}{3^{\alpha} \cdot 7^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{7}{6} + \frac{1}{7} + \frac{1}{21} = 1.9404...,$$

a contradiction. Hence either  $D_1 = 3$ , or  $D_1 = 7$  and  $D_2 = 9$ . There are the following two subcases.

Subcase 4.1.  $D_1 = 3$ . Recall that  $D_2 = 3^{\alpha - s_2} \cdot 7^{\beta - t_2}$ , we have

$$\sigma(3^{\alpha} \cdot 7^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{7^{\beta+1} - 1}{6} = 2 \cdot 3^{\alpha} \cdot 7^{\beta} - 3^{\alpha-1} \cdot 7^{\beta} - 3^{s_2} \cdot 7^{t_2}.$$

It follows that

$$(3^{\alpha} - 7) \cdot (7^{\beta} - 3) = 20 - 12 \cdot 3^{s_2} \cdot 7^{t_2}. \tag{4}$$

If  $s_2 = t_2 = 0$ , then  $(3^{\alpha} - 7) \cdot (7^{\beta} - 3) = 20 - 12 = 8$ . If  $\beta = 1$ , then  $7^{\beta} - 3 = 4$ . Thus  $3^{\alpha} - 7 = 2$  and then  $\alpha = 2$ . We obtain a solution, that is, n = 63 is an exactly 2-deficient-perfect number with two deficient divisors  $d_1 = 21$  and  $d_2 = 1$ .

If  $s_2 > 0$  or  $t_2 > 0$ , then  $20 - 12 \cdot 3^{s_2} \cdot 7^{t_2} < 0$ . Since  $7^{\beta} - 3 > 0$ , it follows from (4) that  $3^{\alpha} - 7 < 0$ . Thus  $\alpha = 1$ . By (4), we have

$$-4(7^{\beta} - 3) = 20 - 12 \cdot 3^{s_2} \cdot 7^{t_2}.$$

That is,

$$7^{\beta} - 3 = -5 + 3^{s_2 + 1} \cdot 7^{t_2}.$$

So

$$7^{\beta} = -2 + 3^{s_2+1} \cdot 7^{t_2}.$$

Hence  $t_2=0$ , otherwise  $7\mid -2$ , a contradiction. Now we have  $7^{\beta}=-2+3^{s_2+1}$ . Noting that  $0\leq s_2\leq \alpha=1$ , and  $t_2=0$ , we have  $s_2=1$ , otherwise  $s_2=t_2=0$ , a contradiction with  $s_2>0$  or  $t_2>0$ . Thus  $\beta=1$ . Now we obtain another solution, namely, n=21 is an exactly 2-deficient-perfect number with two deficient divisors  $d_1=7$  and  $d_2=3$ .

Subcase 4.2.  $D_1 = 7, D_2 = 9$ . Then

$$\sigma(3^{\alpha} \cdot 7^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{7^{\beta+1} - 1}{6} = 2 \cdot 3^{\alpha} \cdot 7^{\beta} - 3^{\alpha} \cdot 7^{\beta-1} - 3^{\alpha-2} \cdot 7^{\beta}.$$

It follows that  $(3^{\alpha-1} - 49)(7^{\beta-1} - 9) = 440$ . If  $\beta - 1 \ge 4$ , then  $7^{\beta-1} - 9 > 440$ , a contradiction. So  $0 \le \beta - 1 \le 3$ . By direct calculation, we know that  $(3^{\alpha-1} - 49)(7^{\beta-1} - 9) = 440$  has no solution for  $0 \le \beta - 1 \le 3$ .

Case 5.  $p_2 = 5$ . Then  $\{D_1, D_2\} \subset \{3, 5, 9, 15, 25, 27, 45, 75, 81, \cdots\}$ . If  $D_1 \ge 9$  and  $D_2 \ge 75$ , then

$$2 = \frac{\sigma(3^{\alpha} \cdot 5^{\beta})}{3^{\alpha} \cdot 5^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{5}{4} + \frac{1}{9} + \frac{1}{75} = 1.9441...,$$

a contradiction. Similarly, if  $D_1 \geq 15$ , then

$$2 = \frac{\sigma(3^{\alpha} \cdot 5^{\beta})}{3^{\alpha} \cdot 5^{\beta}} + \frac{1}{D_1} + \frac{1}{D_2} < \frac{3}{2} \cdot \frac{5}{4} + \frac{1}{15} + \frac{1}{25} = 1.9816\dots,$$

a contradiction. Hence,  $D_1 = 3$  or  $D_1 = 5$  or  $D_1 = 9$ ,  $D_2 \in \{15, 25, 27, 45\}$ . Now, we consider the following six subcases.

Subcase 5.1.  $D_1 = 3$ . Recall that  $D_2 = 3^{\alpha - s_2} \cdot 5^{\beta - t_2}$ , we have

$$\sigma(3^{\alpha} \cdot 5^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{5^{\beta+1} - 1}{4} = 2 \cdot 3^{\alpha} \cdot 5^{\beta} - 3^{\alpha-1} \cdot 5^{\beta} - 3^{s_2} \cdot 5^{t_2}.$$

It follows that

$$(3^{\alpha-1} - 1) \cdot (5^{\beta+1} - 9) = 8(1 - 3^{s_2} \cdot 5^{t_2}). \tag{5}$$

Since  $3^{\alpha-1}-1 \geq 0$  and  $5^{\beta+1}-9 > 0$ , it follows that  $1-3^{s_2} \cdot 5^{t_2} \geq 0$ . Thus  $s_2=t_2=0$ . By (5), we have  $\alpha=1$ . Therefore,  $n=3\cdot 5^{\beta}$  ( $\beta\geq 1$ ) are exactly 2-deficient-perfect numbers with two deficient divisors  $d_1=5^{\beta}$  and  $d_2=1$ .

Subcase 5.2.  $D_1 = 5$ . Recall that  $D_2 = 3^{\alpha - s_2} \cdot 5^{\beta - t_2}$ , we have

$$\sigma(3^{\alpha} \cdot 5^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{5^{\beta+1} - 1}{4} = 2 \cdot 3^{\alpha} \cdot 5^{\beta} - 3^{\alpha} \cdot 5^{\beta-1} - 3^{s_2} \cdot 5^{t_2}.$$

It follows that

$$(3^{\alpha+1} - 25) \cdot (5^{\beta-1} - 1) = 8(3 - 3^{s_2} \cdot 5^{t_2}). \tag{6}$$

If  $s_2 = t_2 = 0$ , then, by (6), we have

$$(3^{\alpha+1} - 25) \cdot (5^{\beta-1} - 1) = 16. \tag{7}$$

If  $\beta - 1 \ge 2$ , then  $5^{\beta - 1} - 1 > 16$ , a contradiction. So  $\beta - 1 = 0, 1$ . It is easy to see that (7) has no solution for  $\beta - 1 = 0, 1$ .

If  $s_2 = 1$  and  $t_2 = 0$ , then  $8(3-3^{s_2} \cdot 5^{t_2}) = 0$ . By (6), we have  $\beta - 1 = 0$ . Therefore,  $n = 3^{\alpha} \cdot 5$  ( $\alpha > 1$ ) are exactly 2-deficient-perfect numbers with two deficient divisors  $d_1 = 3^{\alpha}$  and  $d_2 = 3$  (here  $\alpha = 1$  is excluded, otherwise  $d_1 = d_2 = 3$ ).

If  $s_2 \ge 2$  or  $t_2 \ge 1$ , then  $8(3 - 3^{s_2} \cdot 5^{t_2}) \le -16$ . Since  $5^{\beta-1} - 1 \ge 0$ , it follows from (6) that  $3^{\alpha+1} - 25 < 0$ . Thus  $\alpha = 1$ . So  $s_2 \le 1$  and  $t_2 \ge 1$ . Now (6) becomes

$$(-16) \cdot (5^{\beta - 1} - 1) = 8(3 - 3^{s_2} \cdot 5^{t_2}).$$

That is,

$$-2 \cdot 5^{\beta - 1} = 1 - 3^{s_2} \cdot 5^{t_2}.$$

Since  $t_2 \ge 1$ , it follows that  $\beta - 1 = 0$ . Otherwise,  $5 \mid 1$ , a contradiction. Thus  $3^{s_2} \cdot 5^{t_2} = 3$ , a contradiction with  $t_2 \ge 1$ .

Subcase 5.3.  $D_1 = 9, D_2 = 15$ . Then

$$\sigma(3^{\alpha} \cdot 5^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{5^{\beta+1} - 1}{4} = 2 \cdot 3^{\alpha} \cdot 5^{\beta} - 3^{\alpha-2} \cdot 5^{\beta} - 3^{\alpha-1} \cdot 5^{\beta-1}.$$

It follows that

$$5^{\beta-1} = \frac{27 \cdot 3^{\alpha-2} - 1}{19 \cdot 3^{\alpha-2} - 25}$$

If  $\alpha - 2 \leq 0$ , then

$$5^{\beta-1} = \frac{27 \cdot 3^{\alpha-2} - 1}{19 \cdot 3^{\alpha-2} - 25} < 0,$$

a contradiction.

If  $\alpha - 2 = 1$ , then

$$5^{\beta-1} = \frac{27 \cdot 3^{\alpha-2} - 1}{19 \cdot 3^{\alpha-2} - 25} = \frac{5}{2},$$

a contradiction.

If  $\alpha - 2 \ge 2$ , then

$$1 < \frac{27 \cdot 3^{\alpha - 2} - 1}{19 \cdot 3^{\alpha - 2} - 25} < 2,$$

a contradiction.

Subcase 5.4.  $D_1 = 9, D_2 = 25$ . Then  $\alpha \geq 2, \beta \geq 2$  and

$$\sigma(3^{\alpha} \cdot 5^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{5^{\beta+1} - 1}{4} = 2 \cdot 3^{\alpha} \cdot 5^{\beta} - 3^{\alpha-2} \cdot 5^{\beta} - 3^{\alpha} \cdot 5^{\beta-2}.$$

It follows that

$$3^{\alpha-2} = \frac{125 \cdot 5^{\beta-2} - 1}{47 \cdot 5^{\beta-2} - 27}.$$
 (8)

Since

$$2 < \frac{125 \cdot 5^{\beta - 2} - 1}{47 \cdot 5^{\beta - 2} - 27} < 9,$$

it follows from (8) that  $\alpha - 2 = 1$ . Again, by (8), we have  $\beta - 2 = 1$ . So  $\alpha = 3$  and  $\beta = 3$ . Namely,  $n = 3375 = 3^3 \times 5^3$  is an exactly 2-deficient-perfect number with two deficient divisors  $d_1 = 375$  and  $d_2 = 135$ .

Subcase 5.5.  $D_1 = 9, D_2 = 27$ . Then

$$\sigma(3^{\alpha} \cdot 5^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{5^{\beta+1} - 1}{4} = 2 \cdot 3^{\alpha} \cdot 5^{\beta} - 3^{\alpha-2} \cdot 5^{\beta} - 3^{\alpha-3} \cdot 5^{\beta}.$$

It follows that

$$(5^{\beta+1} - 81)(3^{\alpha-3} - 1) = 80. (9)$$

If  $\beta \geq 3$ , then  $5^{\beta+1} - 81 > 80$ , a contradiction. It is easy to see that (9) cannot hold for  $\beta = 1, 2$ .

Subcase 5.6.  $D_1 = 9, D_2 = 45$ . Then

$$\sigma(3^{\alpha} \cdot 5^{\beta}) = \frac{3^{\alpha+1} - 1}{2} \cdot \frac{5^{\beta+1} - 1}{4} = 2 \cdot 3^{\alpha} \cdot 5^{\beta} - 3^{\alpha-2} \cdot 5^{\beta} - 3^{\alpha-2} \cdot 5^{\beta-1}.$$

It follows that

$$(3^{\alpha-1} - 25)(5^{\beta-1} - 9) = 224. \tag{10}$$

If  $\beta \geq 5$ , then  $5^{\beta-1} - 9 > 224$ , a contradiction. It is easy to see that (10) cannot hold for  $1 \leq \beta \leq 4$ .

This completes the proof of Theorem 1.

**Acknowledgments.** I am grateful to Professor Yong-Gao Chen for his valuable suggestions. The author also thanks the editor and the referees for their careful reading of the paper.

## References

- Y. B. Li and Q. Y. Liao, A class of new near-perfect numbers, J. Korean Math. Soc. 52 (2015), 751-763.
- [2] P. Pollack and V. Shevelev, On perfect and near-perfect numbers, J. Number Theory 132 (2012), 3037-3046.
- [3] X. Z. Ren and Y. G. Chen, On near-perfect numbers with two distinct prime factors, Bull. Aust. Math. Soc. 88 (2013), 520-524.
- [4] M. Tang, X. Z. Ren and M. Li, On near-perfect and deficient-perfect numbers, Colloq. Math. 133 (2013), 221-226.
- [5] M. Tang and M. Feng, On deficient-perfect numbers, Bull. Aust. Math. Soc. 90 (2014), 186-104
- [6] M. Tang, X. Y. Ma and M. Feng, On near-perfect numbers, Collog. Math. 144 (2016), 157-188.