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Abstract
For a positive integer n, let o(n) denote the sum of all positive divisors of n. A
positive integer n is called an exactly k-deficient-perfect number if o(n) = 2n—d; —
dy — -+ — dg, where d; (1 <i < k) are distinct proper divisors of n. In this paper,
we determine all odd exactly 2-deficient-perfect numbers n with two distinct prime
divisors.

1. Introduction

For a positive integer n, let o(n) denote the sum of all positive divisors of n. We call
n perfect if o(n) = 2n. It is well known that an even integer n is perfect if and only
if n = 2P~1(2P — 1), where p and 27 — 1 are both primes. It is not known whether
there exists an odd perfect number. Numerous authors have defined a number of
closely related concepts. For example, n is called deficient if o(n) < 2n, and n is
called abundant if o(n) > 2n, etc.

In 2012, Pollack and Shevelev [2] introduced the concept of k-near-perfect num-
bers. For k > 1, n is called k-near-perfect if n is the sum of all of its proper divisors
with at most k exceptions (called redundant divisors). A 1-near-perfect number
with exactly 1 redundant divisor is called near-perfect. Pollack and Shevelev [2]
presented an upper bound on the count of near-perfect numbers and proved that
there are infinitely many k-near-perfect numbers n with exactly k£ redundant divi-
sors for all large k. Recently, Li and Liao [1] gave two equivalent conditions of all
even near-perfect numbers of the forms 2%p;py and 2%p?py. For more results on
near-perfect numbers, see [3, 4, 6]

A positive integer n is called an ezactly k-deficient-perfect number if o(n) =
2n —dy — dy — -+ — dg, where d; (1 < i < k) are distinct proper divisors of n
(called deficient divisors). In particular, a positive integer n is deficient-perfect with
deficient divisor d if o(n) = 2n — d, where d is a proper divisor of n. Tang, Ren
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and Feng [4] determined all deficient-perfect numbers with at most two distinct
prime factors. In [5], Tang and Feng proved that there are no odd deficient-perfect
numbers with three distinct prime factors.

Suppose that n = ¢“ is an exactly 2-deficient-perfect number with two deficient
divisors d; = ¢%,dy = ¢%, where ¢ is a prime and «, 31,32 are integers with

0 < f, < B2 < a. Then

B1 B2

o(q®) =2¢" — ¢ —q
That is,

(¢—2)¢" = (¢—1)(¢™ +¢™) - 1. (1)

If ¢ = 2, then we have(q — 1)(¢™ + ¢”?) = 1, which is impossible. Hence ¢ > 2.
From (1), we have

*<(a-2)"=(@-1)(" +¢”)-1<(qg—D(¢* > +¢* ") -1

Namely, ¢® < ¢® — ¢® 2 — 1, a contradiction. Now, we have proved the following
proposition.

Proposition 1. If n is an exactly 2-deficient-perfect number, then n has at least
two distinct prime divisors.

In this paper, the following result is proved.

Theorem 1. An odd integer n is an exactly 2-deficient-perfect number with two
distinct prime factors if and only if one of the following holds.

(i) n = 117 with two deficient divisors dx = 39 and dy = 13;

(i) n = 99 with two deficient divisors dy = 33 and dy = 9;

(#3) n = 891 with two deficient divisors di = 297 and dg = 33;

(iv) n = 63 with two deficient divisors di = 21 and dy = 1;

(v) n =21 with two deficient divisors dy =7 and dy = 3;

(vi) n =3 x 5% with two deficient divisors dy = 5° and dy = 1;

(vit) n = 3% x b with two deficient divisors diy = 3% and dg = 3, where oo > 2;

(viii) n = 3375 with two deficient divisors dy = 375 and dy = 135.

2. Proof of Theorem 1

Proof of Theorem 1. Suppose that n = p?pg is an exactly 2-deficient-perfect num-

ber with exactly two distinct deficient divisors dy and ds, where p; and py are two
primes with 2 < p; < p2. Then

a(pips) = 2p3ps — di — da. (2)
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If p1 > 3, then

apb d d 5 7 1 1
2:0(p12;2)+ <o s+ =18011..,
pips  pips  pips 4 605 7

a contradiction. Hence p; = 3. Now (2) becomes

0(30"]95) :2~3°"p§—d1 — do,
where d; = 3% ~pt21 and dy = 3%2 ~pt22 are two distinct proper divisors of n. Write
Dy =32 -pg_tl, Dy = 32752 -pg_b, and assume Dy < Dy. Then we have

0(30‘-p§) 1 1
2= 20 — 4 —. 3
3a.p§ D1 DQ ()

If po > 23, then

2_0(3%)5) 1 1 32 1
- 3

+—+=< +
30cp§ Dl D2 2 28

1
- =1.9980...
9 )

a contradiction. Therefore, po € {5,7,11,13,17,19,23}. We consider five cases.
Case 1. po € {17,19,23}. Then {D;1, D>} C {3,9,p2,27,3p2,---}. If Dy > po,
then, by (3), we have

c(3*-pd) 1 1 3 o 1 1 317 1 1
9— I S <S4 =1.9857...
Sa,pg +D1+D2 2 p2—1+3+p272 16+3+17 ’

a contradiction. So D1 = 3 and Dy = 9. Thus

3a+1 —1 p§+1 -1

o(3% - ph) = =2.3%.p8 —3071.pf 30720

2 . P2 — 1
It follows that

+1
30(72 . pg -1

- (28 —Pz)Pg - 27
Consequently, for p, = 17,19, 23, we have

o2 6-17° +26

_q oA,
11177 o7 < (b2

197 + 53

a—2

g4 2 TS g

3 + 9195 —o7 € (23

3-23% 4107

3P =dr
METP T

€ (4,5) U {6},
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which are impossible.

Case 2. py = 13. Then {D;y, D5} C {3,9,13,27,39,---}. If Dy > 9, then

o(3*-13%) 1 1 3 13 1 1
o=\ "7 - 4 22D —18130...
32135 D, D, "2 12t9" 13 8130,

a contradiction. If Dy > 27, then

o(3*-13%) 1 1 3 13 1 1
_ < s = =1.9953. ..
3213 "D, D, “212t3T a7 ’

a contradiction. Hence Dy = 3 and D5 € {9,13}. We divide into the following two
subcases.

Subcase 2.1. Dy =3,D5 =9. Then

gatl _ 1 136+l _1

o(3%-13°%) = o =2.3%.13% —3271.13% — 3272130,
That is,
9.3%71 1
=13 >13.
5-30-1 13 =

It follows that « —1 < 1. Consequently, we obtain the unique solution o = 2, 5 = 1.
Namely, n = 117 is an exactly 2-deficient-perfect number with two deficient divisors
d1 =39 and d2 =13.

Subcase 2.2. Dy =3,Ds = 13. Then

a+171 1,8+171
3 13 =2.3%.130 —3271.13% —3>.1360-1,

o(3*-13°) =

12
It follows that N
136-1 — M
113> — 169
If a <2, then
3:3*—-1 <0
11 -3« —169 ’
a contradiction.
If o > 3, then
3-3*—-1
0-< — <1
< 11 -3« —169 <5b

a contradiction.

Case 3. po = 11. Then {D;, Do} C {3,9,11,27,33,81,99,--- }. If D; > 9, then

o(3*-117) 1 1 3 11 1 1
o= - ) 4 C 4 —18520...
35117 "D, 'D, “2 1091 ’
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a contradiction. If Dy > 81, then

_a(3a-115)+ 1,1 31 1.1 o
T 3x.118 Dy Dy 2 10 3 8

a contradiction. Hence D; = 3 and D» € {9, 11,27,33}. We consider four subcases.
Subcase 3.1. Dy =3,D5 =9. Then

gatl _ 1 118+l _1

o(3%-11°) = m =2.3%.11% —3271.11°8 — 3272 118,
It follows that .
o 118+ — 1
17-118 — 27
But
1 _ 115+ —1 -
3 17-118-27 ~ 7

a contradiction.
Subcase 3.2. Dy =3,Dy =11. Then
3ot 1 118+ 1

o(3%-11°%) = m =2.3%.11% — 3271118 —32. 1171,
It follows that
3a+1 -1
1= = -
49 -32-1 - 121
If « —1 > 2, then
3o+l g

0 1

)

<——F/—— <
49 - 3o—1 — 121
a contradiction. So o — 1 < 1. Consequently, we obtain the unique solution o =

2,0 = 1. Namely, n = 99 is an exactly 2-deficient-perfect number with two deficient
divisors d; = 33 and dy = 9.

Subcase 3.3. Dy =3,Dy, = 27. Then
3etl—1 110t -1
10

It follows that (119! —81)(3%=3 — 1) = 80. If B > 2, then 11°*! — 81 > 80, a
contradiction. So 8 = 1. Consequently, we obtain the unique solution a = 4,3 = 1.
Namely, n = 891 is an exactly 2-deficient-perfect number with two deficient divisors
d1 = 297 and dg = 33.

Subcase 3.4. Dy =3,Ds = 33. Then

o(3%-11°) = =2.3%.11% —3271. 117 — 3273 . 118,

gatl _ 1 118+l 1

=2.3%.118 —32-1. 118 —3>-1. 1181,
10

o(3%-11°) =
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It follows that (3+! —121)(11°~! — 1) = 120. If 8 > 4, then 11771 — 1 > 120, a
contradiction. So 3 < 3. If 3 = 3, then 119~ —1 = 120. Thus 3*t! —121 = 1, i.e.,
32+1 = 122, which is impossible. If 3 = 2, then 11°~1 —1 = 10. Thus 3+ — 121 =
12,i.e., 3% = 133, which is impossible. If 3 = 1, then (32! —121)(11°~1—1) = 0,
a contradiction.
Case 4. py =7. Then {Dq, Do} C {3,7,9,21,27,49,---}. If D; > 7 and Dy > 21,
then we have

o(3-7%) 1 1 37 1 1
9 — L < T4 =1.9404...

5o D, T, “2 ety ar T

a contradiction. Hence either Dy = 3, or Dy = 7 and Dy = 9. There are the
following two subcases.

Subcase 4.1. D; = 3. Recall that Dy = 352 . 78~ we have

gatl _ 1 76+l _q
2 6

o(3%-7°) = =2.30.78 _ 321,78 _gs2. 7tz
It follows that
(3% —7)- (77 —3)=20—12-3°2 . 7’2, (4)

If s9 =ty =0, then (3% —7) - (77 —3) =20 - 12=8. If 3 =1, then 7% — 3 = 4.
Thus 3% — 7 = 2 and then a = 2. We obtain a solution, that is, n = 63 is an exactly
2-deficient-perfect number with two deficient divisors d; = 21 and d; = 1.

If 59> 0 or ty > 0, then 20 — 12-3°2 - 7*2 < 0. Since 7% — 3 > 0, it follows from
(4) that 3% — 7 < 0. Thus o = 1. By (4), we have

—4(7P —3)=20-12-3°% .7,

That is,
7P —3 =54 32Fl. 7t
So
7P = —2 4 gs2fl gtz
Hence t2 = 0, otherwise 7 | —2, a contradiction. Now we have 78 = —2 4 352t

Noting that 0 < so < a =1, and t3 = 0, we have so = 1, otherwise so = t5 =0, a
contradiction with sy > 0 or t5 > 0. Thus § = 1. Now we obtain another solution,
namely, n = 21 is an exactly 2-deficient-perfect number with two deficient divisors
d1:7andd2:3.

Subcase 4.2. Dy =7,D5 =9. Then

o+l _ 1 76+l _q

=2.3%.70 _ 3. 7f"1 _ga=2 70
2 6

o(3*-7%) =
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It follows that (397! — 49)(7°~1 —9) = 440. If 3 — 1 > 4, then 77! — 9 >
440, a contradiction. So 0 < # —1 < 3. By direct calculation, we know that
(391 —49) (75~ — 9) = 440 has no solution for 0 < g —1 < 3.

Case 5. py =5. Then {D;y, D5} C {3,5,9,15,25,27,45,75,81,---}. If D; > 9 and
D2 > 75, then

o(3*-5%) 1 1 35 1 1
p JE L/ e L
3050 "Dy Dy 2 4 9t
a contradiction. Similarly, if Dy > 15, then
o(3%-5%) 1 35 1 1
9 S 2 4~ 10816
3059 D, Dy 2 4715 s ’

a contradiction. Hence, D1 = 3 or D1 =5 or D1 =9, Dy € {15,25,27,45}. Now,
we consider the following six subcases.

Subcase 5.1. D; = 3. Recall that Dy = 352 . 50~*2 we have

3a+1 -1 55-"-1 -1

—9.3%.568 _ga-1 568 _ gs2 gtz
2 1 3%.5” -3 57 =325

o(3%-5°%) =

It follows that
(3271 —1) - (5P+L —9) = 8(1 — 3°2 . 5'2). (5)
Since 3*=1 —1 > 0 and 5°t! — 9 > 0, it follows that 1 — 3%2 - 52 > 0. Thus

sy =ty = 0. By (5), we have @ = 1. Therefore, n = 3-5°% (3 > 1) are exactly
2-deficient-perfect numbers with two deficient divisors d; = 5% and dy = 1.

Subcase 5.2. D; = 5. Recall that Dy = 3752 . 50~%2 we have

3o+l _ 1 5O+ _q

—92.3%. B _qa rB—1_ qs2 . tz.
5 1 345 345 3%2-5

o(3%-5°%) =

It follows that
(3a+1 . 25) . (5,671 _ 1) — 8(3 _ 3%2 ,5t2). (6)

If so =t = 0, then, by (6), we have
3%+t —25). (5°71 —1) = 16. (7)

If 3—1>2, then 55~ — 1 > 16, a contradiction. So 3 —1 =0, 1. It is easy to see
that (7) has no solution for 5 —1=0, 1.

If s5 = 1 and t5 = 0, then 8(3—3%2-5!2) = 0. By (6), we have —1 = 0. Therefore,
n = 3%-5 (o > 1) are exactly 2-deficient-perfect numbers with two deficient divisors
dy = 3% and dp = 3 (here a = 1 is excluded, otherwise d; = dp = 3).
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If s3> 2 or ty > 1, then 8(3 — 3%2 - 52) < —16. Since 5%~ — 1 > 0, it follows
from (6) that 3°T! — 25 < 0. Thus a = 1. So s2 <1 and t3 > 1. Now (6) becomes

(=16) - (5°71 —1) = 8(3 — 3°2 . 5'2),
That is,
—2.5071 =1 3% .52,

Since ty > 1, it follows that 8 — 1 = 0. Otherwise, 5 | 1, a contradiction. Thus
3%2 . 52 = 3, a contradiction with to > 1.

Subcase 5.3. Dy =9, Dy = 15. Then

3o+l _ 1 5A+l_ 1

0_(304.56): 5 1 :2.301.55_304—2.55_304—1.53—1.
It follows that
61 _ 27-3272 1
©19-39-2 - 25"
If « —2 <0, then
a—2
581 _ 27-3 —1 0,

T 19.302_25 °
a contradiction.
Ifa—2=1, then
o1 213771 5
19.32-2 _25 2’
a contradiction.
If a—2> 2, then ,
27-3%47% -1
1< 19 302 — 37 < 2,

a contradiction.
Subcase 5.4. Dy =9,D5 =25. Then o > 2, 3> 2 and

o+l _ 1 pf+1l _q

o(3%-5°%) = =2.3%.50 —3972.50 _32.5072
2 4
It follows that 5os
125-5°-2 1
a—2
3= 47 -56-2 27" (8)

Since

125.50-2 1

<09,

S5z oo7
it follows from (8) that « — 2 = 1. Again, by (8), we have § —2 =1. So @ = 3 and
B = 3. Namely, n = 3375 = 32 x 5% is an exactly 2-deficient-perfect number with
two deficient divisors d; = 375 and dy = 135.
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Subcase 5.5. Dy =9, Dy = 27. Then

gatl _ 1 pB+l_q
2 4

0.(3@.55): —9.30.508 _g3a=2 5B _ga=3 gf

It follows that
(5°+1 —81)(3*73 — 1) = 80. 9)

If 8 > 3, then 5°t1 — 81 > 80, a contradiction. It is easy to see that (9) cannot

hold for 8 =1, 2.

Subcase 5.6. Dy =9, Dy = 45. Then

ot —1 5t -1

=2.3%.5% _ 302,50 _g3a-2 50-1
2 4

o(3%.5°%) =
It follows that
(3%71 —25)(5°~1 — 9) = 224. (10)

If 3> 5, then 55~ — 9 > 224, a contradiction. It is easy to see that (10) cannot
hold for 1 < g < 4.

This completes the proof of Theorem 1. O
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