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Abstract
Let n � 3 be a square-free natural number. We explicitly describe the inverses of
the matrices

(2 sin(2⇡jk⇤/n))j,k and (2 cos(2⇡jk⇤/n))j,k,

where k⇤ denotes a multiplicative inverse of k mod n and j, k run through the set
{l; 1  l  n/2, (l, n) = 1}. These results are based on cyclotomy, in particular, on
the theory of Gauss sums.

1. Introduction and Results

In the paper [3] Lehmer states that there are only few classes of matrices for which
explicit formulas for the determinants, the eigenvalues and the inverses are known.
He gives a number of examples of this kind. Further examples can be found in
the papers [1], [4], [6] and [5]. All of these examples are based on number theory.
The closest analogue of the matrices considered here is contained in the article [5],
namely, the matrix

(sin(⇡jk/n))j,k,

where 1  j, k  n, (jk, n) = 1. The author of [5] determines the characteristic
polynomial of this matrix, the respective eigenvalues being divisors of n or equal to
0. But the multiplicities of these eigenvalues are quite involved. In the present paper
the eigenvalues of similar matrices S and C turn out to be Gauss sums belonging
to Dirichlet characters mod n. The main results, however, are explicit formulas for
the inverses S�1 and C�1 in the cases when these matrices are invertible. This is
in contrast to the papers we have quoted, since explicit formulas for inverses are
scarcely given there.

Let n � 3 be a natural number. Let R denote a system of representatives of the
group (Z/Zn)⇥/{±1}. Suppose that R is ordered in some way. Typically, R is the
set {k; 1  k  n/2, (k, n) = 1} with its natural order. For k 2 Z, (k, n) = 1, let k⇤
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denote a multiplicative inverse of k mod n (so kk⇤ ⌘ 1 mod n). We define

sk = 2 sin(2⇡k/n) and ck = 2 cos(2⇡k/n),

where k 2 Z, (k, n) = 1. We consider the matrices

S = (sjk⇤)j,k2R and C = (cjk⇤)j,k2R,

which we call the sine matrix and the cosine matrix, respectively.
We think that the matrices S and C deserve some interest not only because of

their simple structure but also by reason of their connection with cyclotomy, in
particular, with Gauss sums (see [7] for the history of this topic).

In order to be able to enunciate our main results, we define

�(k) = |{q; q � 3, q |n, k ⌘ 1 mod q}| (1)

for k 2 Z, (k, n) = 1. Furthermore, put

bsk =
1
n

X

l2R
(�(lk)� �(�lk))sl, (2)

for k 2 Z, (k, n) = 1. For the same numbers k put

bck =
1
n

X

l2R
(�(lk) + �(�lk) + ⇢n)cl, (3)

with

⇢n =

(
2, if n is odd;
4, if n is even.

(4)

Our main results are as follows.

Theorem 1. The sine matrix S is invertible if, and only if, n is square-free or
n = 4. In this case

S�1 = (bsjk⇤)j,k2R,

with bsjk⇤ defined by (2).

Theorem 2. The cosine matrix C is invertible if, and only if, n is square-free. In
this case

C�1 = (bcjk⇤)j,k2R

with bcjk⇤ defined by (3).

Remark. If the sine matrix S is invertible, then the numbers sl, l 2 R, are Q-linearly
independent. This can be seen by application of Galois automorphisms of the nth
cyclotomic field Q(⇣n) to a relation

P
l2R �lisl = 0 with �l 2 Q and isl = ⇣l

n� ⇣�l
n .
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Accordingly, the representation (2) of bsk as a rational linear combination of the
numbers sl, l 2 R, is unique in this case. The same holds in the case of the cosine
matrix and (3).

The entries of S have the form ±sl, l 2 R. This is due to the fact that

sjk⇤ = "sl

with " 2 {±1}, l 2 R, if jk⇤ ⌘ "l mod n. In the same way we have

bsjk⇤ = "bsl

if jk⇤ ⌘ "l mod n. This means that it su�ces to compute the numbers bsl only for
l 2 R in order to write down the matrix S�1. Indeed, this matrix arises from S if
we replace each entry "sl of S by the respective entry "bsl.

The same procedure works in the case of the cosine matrix, whose entries have
the form cl, l 2 R.

Examples. 1. Let n = 15 and R = {1, 2, 4, 7}. Then S can be written

S =

0

BB@

s1 �s7 s4 �s2

s2 s1 �s7 �s4

s4 s2 s1 s7

s7 �s4 �s2 s1

1

CCA . (5)

Theorem 1 yields bs1 = (3s1 � s2 + s7)/15, bs2 = (�s1 � s4 � 3s7)/15, bs4 = (�s2 +
3s4 + s7)/15, and bs7 = (s1 � 3s2 + s4)/15. We obtain S�1 if we put a circumflex
on each s occurring in (5).

2. Let n = 35 and R = {1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17}. In the case of the
cosine matrix we have

bc1 =
1
35

(5c1 + 2c2 + 2c3 + 3c4 + 4c6 + 3c8 + 3c9 + 3c11 + 2c12 + 3c13 + 3c16 + 2c17).

The remaining elements bcl have the same coe�cients in a permuted order.

Remark. If n = p is a prime, Theorem 1 shows that S�1 is particularly simple,
namely, S�1 = 1

pSt (St is the transpose of S). There is no analogue for the cosine
matrix. For instance, if p = 7 and R = {1, 2, 3}, we have bc1 = (3c1 + 2c2 + 2c3)/7.
The prime number case of the sine matrix can also be settled by means of a simple
trigonometric argument. This, however, seems to be hardly possible if n consists of
at least two prime factors p > q � 3.

2. Proofs

First we prove Theorem 1, then we indicate the changes required by the proof of
Theorem 2. Let X denote the set of Dirichlet characters mod n, and X� and X+



INTEGERS: 19 (2019) 4

the subsets of odd and even characters, respectively. The matrix S is connected
with X�, whereas C is connected with X+. We note the orthogonality relation

X

�2X�
�(k) =

8
><

>:

0, if k 6⌘ ±1 mod n;
'(n)/2, if k ⌘ 1 mod n;
�'(n)/2, if k ⌘ �1 mod n,

(6)

see [2, p. 210]. Here (k, n) = 1 and ' denotes Euler’s function.
Suppose that the set X� is ordered in some way. Then we can define the matrix

X =
p

n/'(n)(�(k))k2R,�2X� .

Since |R| = |X�| = '(n)/2, X is a square matrix. We note the following lemma.

Lemma 1. The matrix X is unitary, i.e., X�1 = X
t (the transpose of the complex-

conjugate matrix).

Proof. This is an immediate consequence of the orthogonality relation (6) (observe
that �(k) = �(k⇤)).

Let ⇣n = e2⇡i/n be the standard primitive nth root of unity. For � 2 X� let

⌧(�) =
nX

k=1

�(k)⇣k
n (7)

be the corresponding Gauss sum, see [2, p. 445]. We consider the diagonal matrix

T = diag(⌧(�))�2X� .

Proposition 1. The sine matrix S is normal. Indeed,

X
t
SX = �iT.

Proof. We show XTX
t = iS. Obviously, the entry (XTX

t)j,k equals

2
'(n)

X

�2X�
�(j)⌧(�)�(k) =

2
'(n)

X

�2X�
�(jk⇤)

X

(l,n)=1

�(l⇤)⇣l
n,

where the index l satisfies 1  l  n, (l, n) = 1. This can be written

2
'(n)

X

(l,n)=1

⇣l
n

X

�2X�
�(jk⇤l⇤).

Now the orthogonality relation (6), together with ⇣l
n � ⇣�l

n = isl, shows that this is
just isjk⇤ .
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In order to study the vanishing of the eigenvalues of S, we use the reduction
formula

⌧(�) = µ

✓
n

f�

◆
�f

✓
n

f�

◆
⌧(�f ), (8)

see [2, p. 448]. Here µ means the Möbius function, f� the conductor of the character
�, �f the primitive character belonging to � (which is a Dirichlet character mod
f�) and ⌧(�f ) the Gauss sum

f�X

k=1

�f (k)⇣k
f�

.

Since
⌧(�f )⌧(�f ) = �f� (9)

(see [2, p. 269]), formula (8) shows when the eigenvalue �i⌧(�) vanishes. We obtain
the following result.

Proposition 2. The matrix S is invertible if, and only if, n is square-free or n = 4.

Proof. If n is square-free, then n/f� is square-free and (f�, n/f�) = 1. By (8) and
(9), all Gauss sums ⌧(�) are di↵erent from 0. If n = 4 and � 2 X�, then f� = 4
and n/f� = 1.

Conversely, suppose that n is not square-free and di↵erent from 4. Then one of
the following three cases occurs. There is a prime p � 3 such that p2 |n, or 4p |n,
or 8 |n. In the first and the second case there is a character � 2 X� with f� = p.
Accordingly, �f (n/f�) = 0 or µ(n/f�) = 0. In the third case there is a character
� 2 X� with f� = 4. Therefore, �f (n/f�) = 0.

Lemma 2. Let n be square-free or equal to 4. For k 2 Z, (k, n) = 1, we have

X

�2X�

�(k)
f�

=
'(n)
2n

(�(k)� �(�k)),

the �’s being defined by (1).

Proof. Obviously,
X

�2X�

�(k)
f�

=
X

d |n

1
d

X

�2X�
f�=d

�(k).

Möbius inversion gives

X

�2X�
f�=d

�(k) =
X

q | d

µ

✓
d

q

◆ X

f� | q

�(k).
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Here we note that the characters � 2 X� with f� | q are in one-to-one correspon-
dence with the odd Dirichlet characters mod q. Indeed, if � 2 X�, one defines
the Dirichlet character �q mod q in the following way. If (j, q) = 1, there is an
integer l with (l, n) = 1 such that l ⌘ j mod q. Then �q(j) = �(l); see [2, p. 217].
Accordingly, X

f� | q

�(k) =
X

�q

�q(k).

From (6) we obtain

X

�q

�q(k) =

8
><

>:

0, if q  2 or q � 3 and k 6⌘ ±1 mod q;
'(q)/2, if q � 3 and k ⌘ 1 mod q;
�'(q)/2, if q � 3 and k ⌘ �1 mod q

(10)

(observe that there are no odd characters �q if q  2). Therefore, we have

X

�2X�
f�=d

�(k) =
X

q | d,q�3
k⌘±1 mod q

±µ

✓
d

q

◆
'(q)

2
,

where the ± sign in the summand corresponds to the respective sign in the sum-
mation index. If we write d = q · r, we have

X

�2X�

�(k)
f�

=
X

q |n,q�3
k⌘±1 mod q

±'(q)
2

X

r | n
q

µ(r)
qr

.

Since X

r | n
q

µ(r)
r

=
Y

p | n
q

✓
1� 1

p

◆
=

'(n/q)
n/q

we obtain X

�2X�

�(k)
f�

=
X

q |n,q�3
k⌘±1 mod q

±'(q)
2q

· '(n/q)
n/q

. (11)

However, n is square-free or equal to 4, and so '(q)'(n/q) = '(n). This implies
X

�2X�

�(k)
f�

=
'(n)
2n

(�(k)� �(�k)).

Proof of Theorem 1. By Proposition 1, S�1 = iXT�1X
t, which means that the

entry (S�1)j,k, j, k 2 R, of S�1 is given by

(S�1)j,k =
2i

'(n)

X

�2X�
�(j)⌧(�)�1�(k).
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From (8) and (9) we obtain

⌧(�)�1 =
µ(n/f�)�f (n/f�)⌧(�f )

�f�
= �⌧(�)

f�
.

Therefore,

(S�1)j,k =
�2i
'(n)

X

�2X�

�(jk⇤)
f�

⌧(�).

Now (7) yields

(S�1)j,k =
�2i
'(n)

X

(l,n)=1

⇣l
n

X

�2X�

�(ljk⇤)
f�

.

By Lemma 2,

(S�1)j,k =
�2i
'(n)

X

(l,n)=1

⇣l
n
'(n)
2n

(�(ljk⇤)� �(�ljk⇤)).

Altogether, we have

(S�1)j,k =
�i

n

X

(l,n)=1

⇣l
n(�(ljk⇤)� �(�ljk⇤)).

On observing that sl = �i(⇣l
n � ⇣�l

n ), we obtain Theorem 1.

The setting of the proof of Theorem 2 is slightly di↵erent. Indeed, the unitary
matrix X is defined by

X =
p

n/'(n)(�(k))k2R,�2X+ .

The cosine matrix C is normal, and X
t
CX = T , with T = diag(⌧(�))�2X+ . In

this case it is easy to see that T (and, hence, C) is invertible if, and only if, n is
square-free. Instead of (9) we have

⌧(�f )⌧(�f ) = f�.

The analogue of Lemma 2 reads

X

�2X+

�(k)
f�

=
'(n)
2n

(�(k) + �(�k) + ⇢n) (12)

with ⇢n as in (4). This is due to the fact that the counterpart of formula (10) takes
the form

X

�q

�q(k) =

8
><

>:

1, if q  2;
0, if q � 3 and k 6⌘ ±1 mod q;
'(q)/2, if q � 3 and k ⌘ ±1 mod q.
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Accordingly, formula (11) has the equivalent

X

�2X+

�(k)
f�

=
X

q |n,q�3
k⌘±1 mod q

'(q)
2q

· '(n/q)
n/q

+
X

d |n
2 - d

µ(d)
d

,

which gives (12). Up to these di↵erences, the proof follows the pattern of the proof
of Theorem 1.
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