ON A DIOPHANTINE EQUATION WITH THREE PRIME VARIABLES

Min Zhang
School of Applied Science, Beijing Information Science and Technology University, Beijing, P. R. China
min. zhang.math@gmail.com
Jinjiang Li ${ }^{1}$
Department of Mathematics, China University of Mining and Technology, Beijing, P. R. China
jinjiang.li.math@gmail.com

Received: 10/4/18, Accepted: 6/25/19, Published: 7/31/19

Abstract

Let $[x]$ denote the integral part of the real number x, and N be a sufficiently large integer. In this paper, it is proved that, for $1<c<\frac{3113}{2703}$, the Diophantine equation $N=\left[p_{1}^{c}\right]+\left[p_{2}^{c}\right]+\left[p_{3}^{c}\right]$ is solvable in prime variables p_{1}, p_{2}, p_{3}, which constitutes an improvement upon that of Cai.

1. Introduction and Main Result

Let $[x]$ be the integral part of the real number x. In 1933-1934, Segal [13, 14] first considered the Waring's problem with non-integer degrees, who showed that for any sufficiently large integer N and $c>1$ being not an integer, there exists a integer $k_{0}=k_{0}(c)>0$ such that the equation

$$
N=\left[x_{1}^{c}\right]+\left[x_{2}^{c}\right]+\cdots+\left[x_{k}^{c}\right]
$$

is solvable for $k \geqslant k_{0}(c)$. Later, Segal's bound for $k_{0}(c)$ was improved by Deshouillers [4] and by Arkhilov and Zhitkov [1], respectively. Let $G(c)$ be the least of the integers $k_{0}(c)$ such that every sufficiently large integer N can be written as a sum of not more than $k_{0}(c)$ numbers with the form $\left[n^{c}\right.$]. In particular, Deshouillers [5] and Gritsenko [8] considered the case $k=2$ and gave $G(c)=2$ for $1<c<4 / 3$ and $1<c<55 / 41$, respectively.

In 1937, Vinogradov [15] solved asymptotic form of the ternary Goldbach problem. He proved that, for sufficiently large integer N satisfying $N \equiv 1(\bmod 2)$,

[^0]the equation $N=p_{1}+p_{2}+p_{3}$ is solvable in primes p_{1}, p_{2}, p_{3}. As an analogue of the ternary Goldbach problem, in 1995, Laporta and Tolev [12] investigated the solvability of the equation $N=\left[p_{1}^{c}\right]+\left[p_{2}^{c}\right]+\left[p_{3}^{c}\right]$ in prime variables p_{1}, p_{2}, p_{3}. Define
$$
\mathcal{R}_{3}(N)=\sum_{N=\left[p_{1}^{c}\right]+\left[p_{2}^{c}\right]+\left[p_{3}^{c}\right]}\left(\log p_{1}\right)\left(\log p_{2}\right)\left(\log p_{3}\right) .
$$

Laporta and Tolev [12] showed that the sum $\mathcal{R}_{3}(N)$ has an asymptotic formula for $1<c<17 / 16$, and gave

$$
\mathcal{R}_{3}(N)=\frac{\Gamma^{3}(1+1 / c)}{\Gamma(3 / c)} N^{3 / c-1}+O\left(N^{3 / c-1} \exp \left(-(\log N)^{1 / 3-\delta}\right)\right)
$$

for any $0<\delta<1 / 3$. Later, Kumchev and Nedeva [11] improved the result of Laporta and Tolev [12], and enlarged the range of c to 12/11. Afterwards, Zhai and Cao [17] refined the result of Kumchev and Nedeva [11], who extended the range of c to 258/235. In 2018, Cai [3] enhanced the result of Zhai and Cao [17] and gave the upper bound of c as $137 / 119$.

In this paper, we shall continue to improve the result of Cai [3] and establish the following result.
Theorem 1. Let $1<c<\frac{3113}{2703}$, and N be a sufficiently large integer. Then we have

$$
\mathcal{R}_{3}(N)=\frac{\Gamma^{3}(1+1 / c)}{\Gamma(3 / c)} N^{3 / c-1}+O\left(N^{3 / c-1} \exp \left(-(\log N)^{1 / 3-\delta}\right)\right)
$$

for any $0<\delta<1 / 3$, where the implied constant in the O-term depends only on c.
Notation. Throughout this paper, we suppose that $1<c<\frac{3113}{2703}$. Let p, with or without subscripts, always denote a prime number; and let ε always denote arbitrary small positive constant, which may not be the same at different occurrences. As usual, we use $[x],\{x\}$ and $\|x\|$ to denote the integral part of x, the fractional part of x and the distance from x to the nearest integer, respectively. Also, we write $e(x)=e^{2 \pi i x} ; f(x) \ll g(x)$ means that $f(x)=O(g(x))$; and $f(x) \asymp g(x)$ means that $f(x) \ll g(x) \ll f(x)$.

We also define

$$
\begin{array}{ll}
P=N^{1 / c}, & \tau=P^{1-c-\varepsilon},
\end{array} S(\alpha)=\sum_{p \leqslant P}(\log p) e\left(\left[p^{c}\right] \alpha\right), ~\left\{\sum_{X<p \leqslant 2 X}(\log p) e\left(\left[p^{c}\right] \alpha\right), \quad \mathcal{T}(\alpha, X)=\sum_{X<n \leqslant 2 X} e\left(\left[n^{c}\right] \alpha\right) . ~ \$\right.
$$

2. Preliminary Lemmas

In this section, we shall state some preliminary lemmas, which are required in the proof of Theorem 1.

Lemma 1. Let $L, Q \geqslant 1$ and z_{ℓ} be complex numbers. Then we have

$$
\left|\sum_{L<\ell \leqslant 2 L} z_{\ell}\right|^{2} \leqslant\left(2+\frac{L}{Q}\right) \sum_{|q|<Q}\left(1-\frac{|q|}{Q}\right) \sum_{L<\ell+q, \ell-q \leqslant 2 L} z_{\ell+q} \overline{z_{\ell-q}} .
$$

Proof. See Lemma 2 of Fouvry and Iwaniec [6].
Lemma 2. Suppose that $f(x):[a, b] \rightarrow \mathbb{R}$ has continuous derivatives of arbitrary order on $[a, b]$, where $1 \leqslant a<b \leqslant 2 a$. Suppose further that

$$
\left|f^{(j)}(x)\right| \asymp \lambda_{1} a^{1-j}, \quad j \geqslant 1, \quad x \in[a, b]
$$

Then for any exponential pair (κ, λ), we have

$$
\sum_{a<n \leqslant b} e(f(n)) \ll \lambda_{1}^{\kappa} a^{\lambda}+\lambda_{1}^{-1}
$$

Proof. See (3.3.4) of Graham and Kolesnik [7].
Lemma 3. Let x be a non-integer, $\alpha \in(0,1)$, and $H \geqslant 3$. Then we have

$$
e(-\alpha\{x\})=\sum_{|h| \leqslant H} c_{h}(\alpha) e(h x)+O\left(\min \left(1, \frac{1}{H\|x\|}\right)\right),
$$

where

$$
c_{h}(\alpha)=\frac{1-e(-\alpha)}{2 \pi i(h+\alpha)}
$$

Proof. See Lemma 12 of Buriev [2] or Lemma 3 of Kumchev and Nedeva [11].
Lemma 4. Let $3<U<V<Z<X$ and suppose that $Z-\frac{1}{2} \in \mathbb{N}, X \geqslant 64 Z^{2} U, Z \geqslant$ $4 U^{2}, V^{3} \geqslant 32 X$. Assume further that $F(n)$ is a complex-valued function such that $|F(n)| \leqslant 1$. Then the sum

$$
\sum_{X<n \leqslant 2 X} \Lambda(n) F(n)
$$

may be decomposed into $O\left(\log ^{10} X\right)$ sums, each of which either of Type I:

$$
\sum_{M<m \leqslant 2 M} a(m) \sum_{K<k \leqslant 2 K} F(m k)
$$

with $K \gg Z$, where $a(m) \ll m^{\varepsilon}, M K \asymp X$, or of Type II:

$$
\sum_{M<m \leqslant 2 M} a(m) \sum_{K<k \leqslant 2 K} b(k) F(m k)
$$

with $U \ll M \ll V$, where $a(m) \ll m^{\varepsilon}, b(k) \ll k^{\varepsilon}, M K \asymp X$.

Proof. See Lemma 3 of Heath-Brown [9].
Lemma 5. For any $\varepsilon>0$, the pair $\left(\frac{32}{205}+\varepsilon, \frac{269}{410}+\varepsilon\right)$ is an exponential pair.
Proof. See the Corollary of Theorem 1 of Huxley [10].
Lemma 6. Let $\alpha, \beta \in \mathbb{R}$ with $\alpha \beta(\alpha-1)(\beta-1) \neq 0$. Define the bilinear sums of Type I as follows

$$
S_{I}(M, K):=\sum_{M<m \leqslant 2 M} \sum_{k \in \mathcal{I}(m)} a(m) e\left(F \frac{m^{\alpha} k^{\beta}}{M^{\alpha} K^{\beta}}\right)
$$

where $F>0, M \geqslant 1, K \geqslant 1,|a(m)| \ll 1$, and $\mathcal{I}(m)$ is a subinterval of $(K, 2 K]$. Then for any exponential pair (κ, λ), we have
$S_{I}(M, K) \ll\left(\left(F^{1+2 \kappa} M^{4+4 \kappa} K^{3+2 \lambda}\right)^{\frac{1}{6+4 \kappa}}+M^{\frac{1}{2}} K+M K^{\frac{1}{2}}+F^{-1} M K\right) \log (2+F M K)$.
Proof. See Theorem 2 of Wu [16].
Lemma 7. For any real number θ, there holds

$$
\min \left(1, \frac{1}{H\|\theta\|}\right)=\sum_{h=-\infty}^{+\infty} a_{h} e(h \theta)
$$

where

$$
a_{h} \ll \min \left(\frac{\log 2 H}{H}, \frac{1}{|h|}, \frac{H}{h^{2}}\right) .
$$

Proof. See p. 245 of Heath-Brown [9].
Lemma 8. Let $1<c<\frac{3113}{2703}, P^{\frac{5}{6}} \ll X \ll P, H=X^{\frac{2047}{27030}}$ and $c_{h}(\alpha)$ denote complex numbers such that $\left|c_{h}(\alpha)\right| \ll(1+|h|)^{-1}$. Then, for any $\alpha \in(\tau, 1-\tau)$, if $M \ll X^{\frac{7781}{13515}}$, we have

$$
\mathcal{S}_{I}(\alpha):=\sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{M<m \leqslant 2 M} a(m) \sum_{K<k \leqslant 2 K} e\left((h+\alpha)(m k)^{c}\right) \ll X^{\frac{24983}{27930}+\varepsilon},
$$

where $a(m) \ll m^{\varepsilon}$ and $M K \asymp X$.
Proof. Obviously, we have

$$
\begin{equation*}
\left|\mathcal{S}_{I}(\alpha)\right| \ll X^{\varepsilon} \max _{|\xi| \in(\tau, H+1)} \sum_{M<m \leqslant 2 M}\left|\sum_{K<k \leqslant 2 K} e\left(\xi(m k)^{c}\right)\right| . \tag{1}
\end{equation*}
$$

If $M \ll X^{\frac{3959}{9010}}$, then we use Lemma 2 to estimate the inner sum over k in (1) with the exponential pair $(\kappa, \lambda)=A B(0,1)=\left(\frac{1}{6}, \frac{2}{3}\right)$ and derive that

$$
\begin{aligned}
\mathcal{S}_{I}(\alpha) & \ll X^{\varepsilon} \max _{|\xi| \in(\tau, H+1)} \sum_{M<m \leqslant 2 M}\left(\left(|\xi| X^{c} K^{-1}\right)^{\frac{1}{6}} K^{\frac{2}{3}}+\frac{K}{|\xi| X^{c}}\right) \\
& \ll X^{\varepsilon} \max _{|\xi| \in(\tau, H+1)}\left(|\xi|^{\frac{1}{6}} X^{\frac{c}{6}} K^{\frac{1}{2}} M+\frac{M K}{|\xi| X^{c}}\right) \\
& \ll X^{\varepsilon}\left(H^{\frac{1}{6}} X^{\frac{c}{6}+\frac{1}{2}} M^{\frac{1}{2}}+X^{1-c} \tau^{-1}\right) \ll X^{\frac{24983}{27030}+\varepsilon}
\end{aligned}
$$

If $X^{\frac{3959}{9010}} \ll M \ll X^{\frac{7781}{13515}}$, we use Lemma 6 to estimate the inner sum over k in (1) with the exponential pair $A B(0,1)=\left(\frac{1}{6}, \frac{2}{3}\right)$ and obtain that

$$
\begin{aligned}
\mathcal{S}_{I}(\alpha) & \ll X^{\varepsilon} \max _{|\xi| \in(\tau, H+1)}\left(\left(|\xi| X^{c}\right)^{\frac{1}{5}} M^{\frac{7}{10}} K^{\frac{13}{20}}+M^{\frac{1}{2}} K+M K^{\frac{1}{2}}+|\xi|^{-1} X^{-c} M K\right) \\
& \ll X^{\varepsilon}\left(H^{\frac{1}{5}} M^{\frac{1}{20}} X^{\frac{c}{5}+\frac{13}{20}}+X M^{-\frac{1}{2}}+X^{\frac{1}{2}} M^{\frac{1}{2}}+X^{1-c} \tau^{-1}\right) \ll X^{\frac{24983}{27030}+\varepsilon}
\end{aligned}
$$

which completes the proof of Lemma 8.
Lemma 9. Let $1<c<\frac{3113}{2703}, P^{\frac{5}{6}} \ll X \ll P, H=X^{\frac{2047}{27030}}$ and $c_{h}(\alpha)$ denote complex numbers such that $\left|c_{h}(\alpha)\right| \ll(1+|h|)^{-1}$. Then, for any $\alpha \in(\tau, 1-\tau)$, if there holds $X^{\frac{2047}{13515}} \ll M \ll X^{\frac{355}{901}}$, then we have

$$
\mathcal{S}_{I I}(\alpha):=\sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{M<m \leqslant 2 M} a(m) \sum_{K<k \leqslant 2 K} b(k) e\left((h+\alpha)(m k)^{c}\right) \ll X^{\frac{24983}{27030}+\varepsilon}
$$

where $a(m) \ll m^{\varepsilon}, b(k) \ll k^{\varepsilon}$ and $M K \asymp X$.
Proof. Let $Q=X^{\frac{2047}{13515}}(\log X)^{-1}$. From Lemma 1 and Cauchy's inequality, we
derive that

$$
\begin{align*}
& \left|\mathcal{S}_{I I}(\alpha)\right| \ll \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right| \sum_{K<k \leqslant 2 K} b(k) \sum_{M<m \leqslant 2 M} a(m) e\left((h+\alpha)(m k)^{c}\right) \mid \\
& \ll \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right|\left(\sum_{K<k \leqslant 2 K}|b(k)|^{2}\right)^{\frac{1}{2}}\left(\sum_{K<k \leqslant 2 K}\left|\sum_{M<m \leqslant 2 M} a(m) e\left((h+\alpha)(m k)^{c}\right)\right|^{2}\right)^{\frac{1}{2}} \\
& \ll K^{\frac{1}{2}+\varepsilon} \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right|\left(\sum_{K<k \leqslant 2 K} \frac{M}{Q} \sum_{0 \leqslant q<Q}\left(1-\frac{q}{Q}\right)\right. \\
& \left.\times \sum_{M+q<m \leqslant 2 M-q} a(m+q) \overline{a(m-q)} e\left((h+\alpha) k^{c} \Delta_{c}(m, q)\right)\right)^{\frac{1}{2}} \\
& \ll K^{\frac{1}{2}+\varepsilon} \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right|\left(\frac { M } { Q } \sum _ { K < k \leqslant 2 K } \left(M^{1+\varepsilon}+\sum_{1 \leqslant q<Q}\left(1-\frac{q}{Q}\right)\right.\right. \\
& \left.\left.\times \sum_{M+q<m \leqslant 2 M-q} a(m+q) \overline{a(m-q)} e\left((h+\alpha) k^{c} \Delta_{c}(m, q)\right)\right)\right)^{\frac{1}{2}} \\
& \ll X^{\varepsilon} \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right|\left(\frac{X^{2}}{Q}+\frac{X}{Q} \sum_{1 \leqslant q<Q} \sum_{M<m \leqslant 2 M}\left|\sum_{K<k \leqslant 2 K} e\left((h+\alpha) k^{c} \Delta_{c}(m, q)\right)\right|\right)^{\frac{1}{2}}, \tag{2}
\end{align*}
$$

where $\Delta_{c}(m, q)=(m+q)^{c}-(m-q)^{c}$. Thus, it is sufficient to estimate the sum

$$
S_{0}:=\sum_{K<k \leqslant 2 K} e\left((h+\alpha) k^{c} \Delta_{c}(m, q)\right) .
$$

By Lemma 2 with the exponential pair $(\kappa, \lambda)=B A^{2} B(0,1)=\left(\frac{2}{7}, \frac{4}{7}\right)$, we have

$$
S_{0} \ll\left(|h+\alpha| X^{c-1} q\right)^{\frac{2}{7}} K^{\frac{4}{7}}+\frac{1}{|h+\alpha| X^{c-1} q}
$$

Putting the above estimate into (2), we obtain that

$$
\begin{aligned}
& \quad \mathcal{S}_{I I}(\alpha) \\
& \ll X^{\varepsilon} \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right|\left(\frac{X^{2}}{Q}+\frac{X}{Q} \sum_{1 \leqslant q<Q} \sum_{M<m \leqslant 2 M}\right. \\
& \left.\times\left(\left(|h+\alpha| X^{c-1} q\right)^{\frac{2}{7}} K^{\frac{4}{7}}+\frac{1}{|h+\alpha| X^{c-1} q}\right)\right)^{\frac{1}{2}} \\
& \ll X^{\varepsilon} \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right|\left(\frac{X^{2}}{Q}+\frac{X}{Q}\left(H^{\frac{2}{7}} X^{\frac{2}{7}(c-1)} M K^{\frac{4}{7}} Q^{\frac{9}{7}}+X^{1-c} M \tau^{-1} \log Q\right)\right)^{\frac{1}{2}} \\
& \ll X^{1+\varepsilon} Q^{-\frac{1}{2}} \sum_{|h| \leqslant H}\left|c_{h}(\alpha)\right| \ll X^{1+\varepsilon} Q^{-\frac{1}{2}} \sum_{|h| \leqslant H} \frac{1}{1+|h|} \ll X^{\frac{24983}{27030}+\varepsilon},
\end{aligned}
$$

which completes the proof of Lemma 9 .
Lemma 10. For $\alpha \in(\tau, 1-\tau)$, there holds

$$
S(\alpha) \ll P^{\frac{24983}{27030}+\varepsilon}
$$

Proof. First, we have

$$
S(\alpha)=\mathcal{U}(\alpha)+O\left(P^{1 / 2}\right)
$$

where

$$
\mathcal{U}(\alpha)=\sum_{n \leqslant P} \Lambda(n) e\left(\left[n^{c}\right] \alpha\right)
$$

By a splitting argument, it is sufficient to prove that, for $P^{5 / 6} \ll X \ll P$ and $\alpha \in(\tau, 1-\tau)$, there holds

$$
\mathcal{U}^{*}(\alpha):=\sum_{X<n \leqslant 2 X} \Lambda(n) e\left(\left[n^{c}\right] \alpha\right) \ll X^{\frac{24983}{27030}+\varepsilon} .
$$

By Lemma 3 with $H=X^{\frac{2047}{27030}}$, we have

$$
\begin{align*}
& \mathcal{U}^{*}(\alpha)=\sum_{X<n \leqslant 2 X} \Lambda(n) e\left(n^{c} \alpha-\left\{n^{c}\right\} \alpha\right)=\sum_{X<n \leqslant 2 X} \Lambda(n) e\left(n^{c} \alpha\right) e\left(-\left\{n^{c}\right\} \alpha\right) \\
= & \sum_{X<n \leqslant 2 X} \Lambda(n) e\left(n^{c} \alpha\right)\left(\sum_{|h| \leqslant H} c_{h}(\alpha) e\left(h n^{c}\right)+O\left(\min \left(1, \frac{1}{H\left\|n^{c}\right\|}\right)\right)\right) \\
= & \sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{X<n \leqslant 2 X} \Lambda(n) e\left((h+\alpha) n^{c}\right)+O\left(\log X \cdot \sum_{X<n \leqslant 2 X} \min \left(1, \frac{1}{H\left\|n^{c}\right\|}\right)\right) . \tag{3}
\end{align*}
$$

By Lemma 7 and Lemma 2 with the exponential pair $(\kappa, \lambda)=B(0,1)=\left(\frac{1}{2}, \frac{1}{2}\right)$, we derive that

$$
\begin{align*}
& \sum_{X<n \leqslant 2 X} \min \left(1, \frac{1}{H\left\|n^{c}\right\|}\right) \\
&=\left.\sum_{X<n \leqslant 2 X} \sum_{\ell=-\infty}^{+\infty} a_{\ell} e\left(\ell n^{c}\right) \ll \sum_{\ell=-\infty}^{+\infty}\left|a_{\ell}\right|\right|_{X<n \leqslant 2 X} e\left(\ell n^{c}\right) \mid \\
& \ll \left.\frac{X \log 2 H}{H}+\left.\sum_{1 \leqslant \ell \leqslant H} \frac{1}{\ell}\right|_{X<n \leqslant 2 X} e\left(\ell n^{c}\right)\left|+\sum_{\ell>H} \frac{H}{\ell^{2}}\right| \sum_{X<n \leqslant 2 X} e\left(\ell n^{c}\right) \right\rvert\, \\
& \ll \frac{X \log 2 H}{H}+\sum_{1 \leqslant \ell \leqslant H} \frac{1}{\ell}\left(\left(X^{c-1} \ell\right)^{\frac{1}{2}} X^{\frac{1}{2}}+\frac{1}{\ell X^{c-1}}\right) \\
&+\sum_{\ell>H} \frac{H}{\ell^{2}}\left(\left(X^{c-1} \ell\right)^{\frac{1}{2}} X^{\frac{1}{2}}+\frac{1}{\ell X^{c-1}}\right) \\
& \ll X^{\frac{24983}{27030}} \log X+H^{\frac{1}{2}} X^{\frac{c}{2}}+X^{1-c} \ll X^{\frac{24983}{27030}} \log X . \tag{4}
\end{align*}
$$

Taking $U=X^{\frac{2047}{13515}}, V=X^{\frac{355}{901}}$, and $Z=\left[X^{\frac{5734}{13515}}\right]+\frac{1}{2}$ in Lemma 4, it is easy to see that the sum

$$
\sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{X<n \leqslant 2 X} \Lambda(n) e\left((h+\alpha) n^{c}\right)
$$

can be represented as $O\left(\log ^{10} X\right)$ sums, each of which either of Type I

$$
\mathcal{S}_{I}(\alpha)=\sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{M<m \leqslant 2 M} a(m) \sum_{K<k \leqslant 2 K} e\left((h+\alpha)(m k)^{c}\right)
$$

with $K \gg Z, a(m) \ll m^{\varepsilon}, M K \asymp X$, or of Type II

$$
\mathcal{S}_{I I}(\alpha)=\sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{M<m \leqslant 2 M} a(m) \sum_{K<k \leqslant 2 K} b(k) e\left((h+\alpha)(m k)^{c}\right)
$$

with $U \ll M \ll V, a(m) \ll m^{\varepsilon}, b(k) \ll k^{\varepsilon}, M K \asymp X$. For the Type I sums, by noting the fact that $K \gg Z$ and $M K \asymp X$, we deduce that $M \ll X^{\frac{7781}{13515}}$. From Lemma 8 , we have $\mathcal{S}_{I}(\alpha) \ll X^{\frac{24983}{27030}+\varepsilon}$. For the Type II sums, by Lemma 9 , we have $\mathcal{S}_{I I}(\alpha) \ll X^{\frac{24983}{27030}+\varepsilon}$. Therefore, we conclude that

$$
\begin{equation*}
\sum_{|h| \leqslant H} c_{h}(\alpha) \sum_{X<n \leqslant 2 X} \Lambda(n) e\left((h+\alpha) n^{c}\right) \ll X^{\frac{24983}{27030}+\varepsilon} \tag{5}
\end{equation*}
$$

From (3)-(5), we derive the desired result. This completes the proof of Lemma 10.

Lemma 11. For $\alpha \in(0,1)$, we have

$$
\mathcal{T}(\alpha, X) \ll X^{\frac{269 c+538}{1217}+\varepsilon}+\frac{1}{\alpha X^{c-1}} .
$$

Proof. Taking $H_{1}=X^{\frac{679-269 c}{1217}}$, and by Lemma 3, we deduce that

$$
\begin{align*}
& \mathcal{T}(\alpha, X)=\sum_{X<n \leqslant 2 X} e\left(\left(n^{c}-\left\{n^{c}\right\}\right) \alpha\right) \\
= & \sum_{X<n \leqslant 2 X} e\left(n^{c} \alpha\right)\left(\sum_{|h| \leqslant H_{1}} c_{h}(\alpha) e\left(h n^{c}\right)+O\left(\min \left(1, \frac{1}{H_{1}\left\|n^{c}\right\|}\right)\right)\right) \\
= & \sum_{|h| \leqslant H_{1}} c_{h}(\alpha) \sum_{X<n \leqslant 2 X} e\left((h+\alpha) n^{c}\right)+O\left(\sum_{X<n \leqslant 2 X} \min \left(1, \frac{1}{H_{1}\left\|n^{c}\right\|}\right)\right) . \tag{6}
\end{align*}
$$

From Lemma 7, we get

$$
\begin{align*}
\sum_{X<n \leqslant 2 X} \min \left(1, \frac{1}{H_{1}\left\|n^{c}\right\|}\right) & =\sum_{X<n \leqslant 2 X} \sum_{k=-\infty}^{+\infty} a_{k} e\left(k n^{c}\right) \\
& \ll \sum_{k=-\infty}^{+\infty}\left|a_{k}\right|\left|\sum_{X<n \leqslant 2 X} e\left(k n^{c}\right)\right| \tag{7}
\end{align*}
$$

According to Lemma 5, the pair $B A\left(\frac{32}{205}+\varepsilon, \frac{269}{410}+\varepsilon\right)=\left(\frac{269}{948}+\varepsilon, \frac{269}{474}+\varepsilon\right)$ is an exponential pair. Then we shall use Lemma 2 with the exponential pair $\left(\frac{269}{948}+\right.$ $\left.\varepsilon, \frac{269}{474}+\varepsilon\right)$ to estimate the sum over n on the right-hand side in (7), and derive that

$$
\begin{align*}
& \sum_{X<n \leqslant 2 X} \min \left(1, \frac{1}{H_{1}\left\|n^{c}\right\|}\right) \\
& \ll \left.\frac{X \log 2 H_{1}}{H_{1}}+\left.\sum_{1 \leqslant k \leqslant H_{1}} \frac{1}{k}\right|_{X<n \leqslant 2 X} e\left(k n^{c}\right)\left|+\sum_{k>H_{1}} \frac{H_{1}}{k^{2}}\right|_{X<n \leqslant 2 X} e\left(k n^{c}\right) \right\rvert\, \\
& \ll \frac{X \log 2 H_{1}}{H_{1}}+\sum_{1 \leqslant k \leqslant H_{1}} \frac{1}{k}\left(\left(X^{c-1} k\right)^{\frac{269}{948}+\varepsilon} X^{\frac{269}{474}+\varepsilon}+\frac{1}{k X^{c-1}}\right) \\
&+\sum_{k>H_{1}} \frac{H_{1}}{k^{2}}\left(\left(X^{c-1} k\right)^{\frac{269}{948}+\varepsilon} X^{\frac{269}{474}+\varepsilon}+\frac{1}{k X^{c-1}}\right) \\
& \ll X^{\frac{269 c+538}{1217}} \log X+H_{1}^{\frac{269}{948}+\varepsilon} X^{\frac{269(c+1)}{948}+\varepsilon}+X^{1-c} \ll X^{\frac{269 c+538}{1217}+\varepsilon} . \tag{8}
\end{align*}
$$

Similarly, for the first term in (6), we have

$$
\begin{align*}
& \sum_{|h| \leqslant H_{1}} c_{h}(\alpha) \sum_{X<n \leqslant 2 X} e\left((h+\alpha) n^{c}\right) \\
= & c_{0}(\alpha) \sum_{X<n \leqslant 2 X} e\left(\alpha n^{c}\right)+\sum_{1 \leqslant|h| \leqslant H_{1}} c_{h}(\alpha) \sum_{X<n \leqslant 2 X} e\left((h+\alpha) n^{c}\right) \\
\ll & \frac{1}{\alpha X^{c-1}}+\sum_{1 \leqslant|h| \leqslant H_{1}} \frac{1}{h}\left(\left((h+\alpha) X^{c-1}\right)^{\frac{269}{948}+\varepsilon} X^{\frac{269}{474}+\varepsilon}+\frac{1}{(h+\alpha) X^{c-1}}\right) \\
\ll & \frac{1}{\alpha X^{c-1}}+H_{1}^{\frac{269}{948}+\varepsilon} X^{\frac{269(c+1)}{948}+\varepsilon}+X^{1-c} \\
\ll & \frac{1}{\alpha X^{c-1}}+X^{\frac{269 c+538}{1217}+\varepsilon} . \tag{9}
\end{align*}
$$

Combining (6)-(9), we obtain the desired result. This completes the proof of Lemma 11.

3. Proof of Theorem 1

By the definition of $\mathcal{R}_{3}(N)$, we have

$$
\begin{align*}
\mathcal{R}_{3}(N) & =\int_{0}^{1} S^{3}(\alpha) e(-N \alpha) \mathrm{d} \alpha=\int_{-\tau}^{1-\tau} S^{3}(\alpha) e(-N \alpha) \mathrm{d} \alpha \\
& =\int_{-\tau}^{\tau} S^{3}(\alpha) e(-N \alpha) \mathrm{d} \alpha+\int_{\tau}^{1-\tau} S^{3}(\alpha) e(-N \alpha) \mathrm{d} \alpha \\
& =\mathcal{R}_{3}^{(1)}(N)+\mathcal{R}_{3}^{(2)}(N) \tag{10}
\end{align*}
$$

say. By the argument of Laporta and Tolev [12], we can know that, for $1<c<3 / 2$, there holds

$$
\begin{equation*}
\mathcal{R}_{3}^{(1)}(N)=\frac{\Gamma^{3}(1+1 / c)}{\Gamma(3 / c)} N^{3 / c-1}+O\left(N^{3 / c-1} \exp \left(-(\log N)^{1 / 3-\delta}\right)\right) \tag{11}
\end{equation*}
$$

for any $0<\delta<1 / 3$, where the implied constant in the O-term depends only on c. Thus, it is sufficient to estimate $\mathcal{R}_{3}^{(2)}(N)$. First, we have

$$
\begin{equation*}
S(\alpha)=\sum_{p \leqslant P^{5 / 6}}(\log p) e\left(\left[p^{c}\right] \alpha\right)+\sum_{P^{5 / 6}<p \leqslant P}(\log p) e\left(\left[p^{c}\right] \alpha\right) . \tag{12}
\end{equation*}
$$

By a splitting argument and (12), we deduce that

$$
\begin{align*}
\mathcal{R}_{3}^{(2)}(N) & \ll(\log P) \max _{P^{5 / 6} \ll X \ll P}\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) S(\alpha, X) e(-N \alpha) \mathrm{d} \alpha\right|+P^{\frac{5}{6}} \int_{0}^{1}|S(\alpha)|^{2} \mathrm{~d} \alpha \\
& \ll(\log P)_{P^{5 / 6} \ll X \ll P}\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) S(\alpha, X) e(-N \alpha) \mathrm{d} \alpha\right|+P^{\frac{11}{6}} \log P \tag{13}
\end{align*}
$$

For $P^{5 / 6} \ll X \ll P$, we have

$$
\begin{aligned}
&\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) S(\alpha, X) e(-N \alpha) \mathrm{d} \alpha\right| \\
&=\left|\sum_{X<p \leqslant 2 X}(\log p) \int_{\tau}^{1-\tau} S^{2}(\alpha) e\left(\left(\left[p^{c}\right]-N\right) \alpha\right) \mathrm{d} \alpha\right| \\
& \leqslant \sum_{X<p \leqslant 2 X}(\log p)\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) e\left(\left(\left[p^{c}\right]-N\right) \alpha\right) \mathrm{d} \alpha\right| \\
& \ll(\log X) \sum_{X<n \leqslant 2 X}\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) e\left(\left(\left[n^{c}\right]-N\right) \alpha\right) \mathrm{d} \alpha\right| .
\end{aligned}
$$

By Cauchy's inequality, we deduce that

$$
\begin{align*}
&\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) S(\alpha, X) e(-N \alpha) \mathrm{d} \alpha\right| \\
& \ll X^{\frac{1}{2}+\varepsilon}\left(\sum_{X<n \leqslant 2 X}\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) e\left(\left(\left[n^{c}\right]-N\right) \alpha\right) \mathrm{d} \alpha\right|^{2}\right)^{\frac{1}{2}} \\
&= X^{\frac{1}{2}+\varepsilon}\left(\sum_{X<n \leqslant 2 X} \int_{\tau}^{1-\tau} S^{2}(\alpha) e\left(\left(\left[n^{c}\right]-N\right) \alpha\right) \mathrm{d} \alpha \cdot \int_{\tau}^{1-\tau} \overline{S^{2}(\beta) e\left(\left(\left[n^{c}\right]-N\right) \beta\right)} \mathrm{d} \beta\right)^{\frac{1}{2}} \\
&= X^{\frac{1}{2}+\varepsilon}\left(\int_{\tau}^{1-\tau} \overline{S^{2}(\beta) e(-N \beta)} \mathrm{d} \beta \int_{\tau}^{1-\tau} S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X) e(-N \alpha) \mathrm{d} \alpha\right)^{\frac{1}{2}} \\
& \ll X^{\frac{1}{2}+\varepsilon}\left(\int_{\tau}^{1-\tau}|S(\beta)|^{2} \mathrm{~d} \beta \int_{\tau}^{1-\tau}\left|S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X)\right| \mathrm{d} \alpha\right)^{\frac{1}{2}} \tag{14}
\end{align*}
$$

For the inner integral in (14), we have

$$
\begin{align*}
& \int_{\tau}^{1-\tau}\left|S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X)\right| \mathrm{d} \alpha \\
\ll & \left(\int_{(\tau, 1-\tau) \cap\left\{\alpha:|\alpha-\beta| \leqslant X^{-c}\right\}}+\int_{(\tau, 1-\tau) \cap\left\{\alpha:|\alpha-\beta|>X^{-c}\right\}}\right)\left|S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X)\right| \mathrm{d} \alpha . \tag{15}
\end{align*}
$$

For the first term on the right-hand side of (15), we use Lemma 10 and the trivial estimate $\mathcal{T}(\alpha-\beta, X) \ll X$ to deduce that

$$
\begin{align*}
& \int_{(\tau, 1-\tau) \cap\left\{\alpha:|\alpha-\beta| \leqslant X^{-c}\right\}}\left|S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X)\right| \mathrm{d} \alpha \\
\ll & X \cdot \sup _{\alpha \in(\tau, 1-\tau)}|S(\alpha)|^{2} \times \int_{|\alpha-\beta| \leqslant X^{-c}} \mathrm{~d} \alpha \ll P^{\frac{49966}{27030}+\varepsilon} X^{1-c} . \tag{16}
\end{align*}
$$

For the second term on the right-hand side of (15), by Lemma 10 and Lemma 11, we obtain

$$
\begin{align*}
& \int_{(\tau, 1-\tau) \cap\left\{\alpha:|\alpha-\beta|>X^{-c}\right\}}\left|S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X)\right| \mathrm{d} \alpha \\
\ll & \int_{(\tau, 1-\tau) \cap\left\{\alpha:|\alpha-\beta|>X^{-c}\right\}}|S(\alpha)|^{2}\left(X^{\frac{269 c+538}{1217}+\varepsilon}+\frac{1}{|\alpha-\beta| X^{c-1}}\right) \mathrm{d} \alpha \\
\ll & X^{\frac{269 c+538}{1217}+\varepsilon} \times \int_{0}^{1}|S(\alpha)|^{2} \mathrm{~d} \alpha+\sup _{\alpha \in(\tau, 1-\tau)}|S(\alpha)|^{2} \times \int_{|\alpha-\beta|>X^{-c}} \frac{\mathrm{~d} \alpha}{|\alpha-\beta| X^{c-1}} \\
\ll & X^{\frac{269 c+538}{1217}+\varepsilon} P \log P+P^{\frac{49966}{27030}+\varepsilon} X^{1-c} . \tag{17}
\end{align*}
$$

Combining (15) and (17), we conclude that

$$
\begin{equation*}
\int_{\tau}^{1-\tau}\left|S^{2}(\alpha) \mathcal{T}(\alpha-\beta, X)\right| \mathrm{d} \alpha \ll X^{\frac{269 c+538}{1217}+\varepsilon} P \log P+P^{\frac{49966}{27030}+\varepsilon} X^{1-c} \tag{18}
\end{equation*}
$$

Inserting (18) into (14), we obtain

$$
\begin{equation*}
\left|\int_{\tau}^{1-\tau} S^{2}(\alpha) S(\alpha, X) e(-N \alpha) \mathrm{d} \alpha\right| \ll X^{\frac{1}{2}+\varepsilon}\left(X^{\frac{269 c+538}{2434}} P+P^{\frac{24983}{27030}} X^{\frac{1-c}{2}}\right) \ll P^{3-c-\varepsilon} \tag{19}
\end{equation*}
$$

provided that $1<c<\frac{3113}{2703}$. From (13) and (19), we obatin

$$
\begin{equation*}
\mathcal{R}_{3}^{(2)}(N) \ll P^{3-c-\varepsilon} \tag{20}
\end{equation*}
$$

By (10), (11) and (20), we get the desired result. This completes the proof of Theorem 1.

Acknowledgement The authors would like to express the most sincere gratitude to Professor Wenguang Zhai for his valuable advice and constant encouragement. This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019QS02).

References

[1] G. I. Arkhipov and A. N. Zhitkov, On Waring's problem with non-integer degrees, Izv. Akad. Nauk SSSR 48 (1984), 1138-1150.
[2] K. Buriev, Additive problems with prime numbers, Thesis, Moscow University, 1989.
[3] Y. C. Cai, On a Diophantine equation involving primes, Ramamujan J. DOI: 10.1007/s11139-018-0027-6.
[4] J. M. Deshouillers, Problème de Waring avec exposants non entiers, Bull. Soc. Math. France 101 (1973), 285-295.
[5] J. M. Deshouillers, Un problème binaire en théorie additive, Acta Arith. 25 (1974), no. 4, 393-403.
[6] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), no. 3, 311-333.
[7] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge University Press, New York, 1991.
[8] S. A. Gritsenko, Three additive problems, Russian Acad. Sci. Izv. Math. 41 (1993), no. 3, 447-464.
[9] D. R. Heath-Brown, The Pjateckiŭ-S̆apiro prime number theorem, J. Number Theory 16 (1983), no. 2, 242-266.
[10] M. N. Huxley, Exponential sums and the Riemann zeta function V, Proc. London Math. Soc. (3) 90 (2005), no. 1, 1-41.
[11] A. Kumchev and T. Nedeva, On an equation with prime numbers, Acta Arith. 83 (1998), no. $2,117-126$.
[12] M. B. S. Laporta and D. I. Tolev, On an equation with prime numbers, Math. Notes 57 (1995), no. 5-6, 654-657.
[13] B. I. Segal, On a theorem similar to the Waring theorem, Dokl. Akad. Nauk. SSSR 1 (1933), 47-49.
[14] B. I. Segal, The Waring theorem with fractional and irrational degrees, Trudy Mat. Inst. Steklov. 5 (1934), 73-86.
[15] I. M. Vinogradov, I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk. SSSR 15 (1937), 291-294.
[16] J. Wu, Double exponential sums and some applications, Monatsh. Math. 128 (1999), no. 3, 255-262.
[17] W. G. Zhai and X. D. Cao, A Diophantine equation with prime numbers, Acta Math. Sinica (Chin. Ser.) 45 (2002), no. 3, 443-454.

[^0]: ${ }^{1}$ Corresponding author.

