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Abstract
We introduce the tetrahedron trinomial coe�cient transform which takes a Pascal-
like arithmetical triangle to a sequence. We define a Pascal-like infinite tetrahedron
H, and prove that the application of the tetrahedron trinomial transform to one
face T of H provides the opposite edge E to T in H. It follows from the construction
that the other directions in H parallel to E can be obtained similarly. In the case of
Pascal’s triangle, the sequence generated by the trinomial transform coincides with
the binomial transform of the central binomial coe�cients.

1. Introduction

The binomial transform of the sequence {an}10 2 R1 is defined by the terms
bn =

Pn
i=0

�n
i

�
ai of the sequence {bn}10 2 R1. Several studies [3, 10, 11, 12, 14]

examine the properties and the generalizations of the binomial transform. Now we
introduce a 3-dimensional generalization.

Let an arithmetical triangle T be given by tij 2 R, where 0  j  i and i, j 2 N,
and the items tij are arranged in rows and columns according to indices i and j,
respectively. For example, in the case of Pascal’s triangle the items tij =

�i
j

�
are

the classical binomial coe�cients. Let the sequence {bn}1n=0 be the tetrahedron
trinomial coe�cient transform (in short, tetrahedron coe�cients transform) on T
defined by

bn =
nX

i=0

iX

j=0

✓
n

j, n� i, i� j

◆
tij , (1)

where the symbol ✓
n

p, q, r

◆
=

n!
p! q! r!

=
✓

n

p

◆✓
n� p

q

◆
(2)

denotes the tetrahedron trinomial coe�cient, n, p, q, r are non-negative integers,
and p + q + r = n. Thus formula (1) with the binomial coe�cients is

bn =
nX

i=0

iX

j=0

✓
n

j

◆✓
n� j

n� i

◆
tij .
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The trinomial coe�cients have two di↵erent combinatorial meanings in use. One
is
�n

p

�
2

=
Pp

q=0

�n
q

�� q
p�q

�
, which is the special case of the multinomial coe�cient

(see more in [2, 8]). The other interpretation is the so-called Pascal’s pyramid
(more precisely Pascal’s tetrahedron). Here we use the second meaning (see (2))
and, referring to its geometric origin, we call it tetrahedron trinomial coe�cients
(in short, tetrahedron coe�cients).

We note that the seemingly more natural transform

b⇤n =
nX

i=0

iX

j=0

✓
n

i, j, n� i� j

◆
tij

leads to the same result because of the symmetry of Pascal’s tetrahedron.
In this article, we define an arithmetic structure similar to an infinite tetrahedron,

where the elements are arranged in levels, rows and columns. Let the tetrahedron
H be defined the following way. A (infinite) face of this Pascal-like tetrahedron is
the triangle T and let the other elements be given recursively by the sum of the
three items according to Figure 1. The exact definition of hi

j,k is

hi
j,0 = tij , (0  j  i),

hi
j,k = hi�1

j,k�1 + hi
j,k�1 + hi

j+1,k�1, (1  k),

where 0  k  i, 0  j  i � k and i, j, k 2 N. The indices i, j and k show the
position of an item in level i, in row k parallel to T and in column j.INTEGERS: 19 (2019) 3
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Figure 1: Construction of the tetrahedron H

Definition (2) implies immediately the symmetries in variable p, q and r.

The tetrahedron coefficients also satisfy the following recursive properties.
For each n ≥ 0

(

n

n, 0, 0

)

=

(

n

0, n, 0

)

=

(

n

0, 0, n

)

= 1.

If n ≥ 1, pqr ≠ 0, then

(

n

p, q, r

)

=

(

n− 1

p− 1, q, r

)

+

(

n− 1

p, q − 1, r

)

+

(

n− 1

p, q, r − 1

)

,

in other cases the so-called Pascal’s rule holds, for example, k = 0 and pq ≠ 0,
n ≥ 1 give

(

n

p, q, 0

)

=

(

n− 1

p− 1, q, 0

)

+

(

n− 1

p, q − 1, 0

)

.

Moreover, the tetrahedron coefficients are arranged in Pascal’s pyramid (or more
precisely Pascal’s tetrahedron), see, e.g., [1, 6]. In case of a fixed n, we gain the
triangular shape level n of Pascal’s tetrahedron. Pascal’s tetrahedron has been
developed by laying the levels below each other. The recursive properties yield that
its sides are Pascal’s triangles and inside the tetrahedron an item is the sum of
the three items directly above it. For some illustrations and its generalization to
the 3-dimensional hyperbolic space see [9]. Figure 2 depicts Pascal’s pyramid up
to level 4 not in a usual ”up-to-down” way, but the ”left-to-right” representation
which is more suitable for our discussion in the next section.

Figure 1: Construction of the tetrahedron H

We shall give some properties of this tetrahedron and show that the edge sequence
{hn

0,n} of H is the tetrahedron coe�cient transform sequence of T . Especially, fo-
cusing on Pascal’s triangle as T , we show, that its tetrahedron coe�cient transform
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is the sequence bn = hn
0,n =

Pn
i=0

�n
i

��2i
i

�
. Hence {bn} is the binomial transform

of the central binomial coe�cients
�2i

i

�
. Moreover, beside some properties of H, we

gain an identity of binomial coe�cients, which is very similar to Vandermonde’s con-
volution formula and a generalization of the well-known identity

Pn
i=0

�n
i

�2 =
�2n

n

�
.

Two similar articles deal with a generalized binomial transform triangle and the
trinomial transform triangle in the plane, for more details see [10, 11].

1.1. Pascal’s Tetrahedron

There are several studies dealing with Pascal’s tetrahedron and tetrahedron (tri-
nomial) coe�cients (ex. [1, 5, 6, 9]). In this section, we give a short summary, in
particular about the properties which will be used later.

Definition (2) implies immediately the symmetries in variable p, q and r.
The tetrahedron coe�cients also satisfy the following recursive properties.

For each n � 0 ✓
n

n, 0, 0

◆
=
✓

n

0, n, 0

◆
=
✓

n

0, 0, n

◆
= 1.

If n � 1, pqr 6= 0, then
✓

n

p, q, r

◆
=
✓

n� 1
p� 1, q, r

◆
+
✓

n� 1
p, q � 1, r

◆
+
✓

n� 1
p, q, r � 1

◆
.

In other cases the so-called Pascal’s rule holds, for example, k = 0 and pq 6= 0,
n � 1 give ✓

n

p, q, 0

◆
=
✓

n� 1
p� 1, q, 0

◆
+
✓

n� 1
p, q � 1, 0

◆
.

Moreover, the tetrahedron coe�cients are arranged in Pascal’s pyramid (or, more
precisely, Pascal’s tetrahedron); see, e.g., [1, 6]. In case of a fixed n, we gain the
triangular shape level n of Pascal’s tetrahedron. Pascal’s tetrahedron has been
developed by laying the levels below each other. The recursive properties yield that
its sides are Pascal’s triangles, and inside the tetrahedron an item is the sum of
the three items directly above it. For some illustrations and its generalization to
the 3-dimensional hyperbolic space, see [9]. Figure 2 depicts Pascal’s pyramid up
to level 4 not in a usual ”up-to-down” way, but the ”left-to-right” representation
which is more suitable for our discussion in the next section.

2. Tetrahedron Coe�cient Transform and Tetrahedron

The value of item hi
j,k of H is determined by the value of the terms tij of T with

tetrahedron coe�cients. The next theorem gives the exact formula. For its geo-
metrical background we have to merge the tetrahedron H and Pascal’s tetrahedron
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Figure 2: Pascal’s tetrahedron

2. Tetrahedron coefficient transform and tetrahedron

The value of item hi
j,k of H is determined by the value of the terms tij of T

with tetrahedron coefficients. The next theorem gives the exact formula. For its
geometrical background we have to merge the tetrahedronH and Pascal’s tetrahedron
(Figures 1 and 2). Putting the start vertex (the first 1) of the Pascal’s tetrahedron
to the position of hi

j,k, the value of hi
j,k is the sum of the products of the elements

of T and the elements in level k of Pascal’s tetrahedron which are in the same
positions. For example, Figure 3 shows the construction of h3

1,2 by the help of the
2nd layer of Pascal’s tetrahedron and a suitable part of T .

Theorem 1. For any 0 ≤ k ≤ i, 0 ≤ j ≤ i− k we have

hi
j,k =

k
∑

r=0

r
∑

s=0

(

k

s, k − r, r − s

)

ti−k+r
j+s .

Proof. The proof uses induction on k. If k = 0, then the statement trivially holds
(hi

j,0 = tij). For clarity, in the case k = 1 we have

hi
j,1 = hi−1

j,0 + hi
j,0 + hi

j+1,0 =

(

1

0, 1, 0

)

hi−1
j,0 +

(

1

0, 0, 1

)

hi
j,0 +

(

1

1, 0, 0

)

hi
j+1,0

=
1
∑

r=0

r
∑

s=0

(

1

s, 1− r, r − s

)

ti+r−1
j+s .

Figure 2: Pascal’s tetrahedron

(Figures 1 and 2). Putting the start vertex (the first 1) of the Pascal’s tetrahedron
to the position of hi

j,k, the value of hi
j,k is the sum of the products of the elements

of T and the elements in level k of Pascal’s tetrahedron which are in the same
positions. For example, Figure 3 shows the construction of h3

1,2 with the help of the
2nd layer of Pascal’s tetrahedron and a suitable part of T .
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Figure 3: Value of h3
1,2 from Pascal’s tetrahedron and triangle T

Let us suppose that the theorem is true for up to k − 1. Thus for any i and j the
induction hypothesis is given by

hi
j,k−1 =

k−1
∑

r=0

r
∑

s=0

(

k − 1

s, k − r − 1, r − s

)

ti−k+r−1
j+s .

Then using the properties of the tetrahedron and binomial coefficients we have

hi
j,k = hi−1

j,k−1 + hi
j,k−1 + hi

j+1,k−1

=
k−1
∑

r=0

r
∑

s=0

(

k − 1

s, k − r − 1, r − s

)

ti−k+r
j+s +

k−1
∑

r=0

r
∑

s=0

(

k − 1

s, k − r − 1, r − s

)

ti−k+r+1
j+s

+
k−1
∑

r=0

r
∑

s=0

(

k − 1

s, k − r − 1, r − s

)

ti−k+r+1
j+s+1

=
k−1
∑

r=0

r
∑

s=0

(

k − 1

s, k − r − 1, r − s

)

ti−k+r
j+s +

k
∑

r=1

r−1
∑

s=0

(

k − 1

s, k − r, r − s− 1

)

ti−k+r
j+s

+
k
∑

r=1

r
∑

s=1

(

k − 1

s− 1, k − r, r − s

)

ti−k+r
j+s .

Figure 3: Value of h3
1,2 from Pascal’s tetrahedron and triangle T
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Theorem 1. For any 0  k  i, 0  j  i� k we have

hi
j,k =

kX

r=0

rX

s=0

✓
k

s, k � r, r � s

◆
ti�k+r
j+s .

Proof. The proof uses induction on k. If k = 0, then the statement trivially holds
(hi

j,0 = tij). For clarity, in the case k = 1 we have

hi
j,1 = hi�1

j,0 + hi
j,0 + hi

j+1,0 =
✓

1
0, 1, 0

◆
hi�1

j,0 +
✓

1
0, 0, 1

◆
hi

j,0 +
✓

1
1, 0, 0

◆
hi

j+1,0

=
1X

r=0

rX

s=0

✓
1

s, 1� r, r � s

◆
ti+r�1
j+s .

Let us suppose that the theorem is true for up to k � 1. Thus for any i and j the
induction hypothesis is given by

hi
j,k�1 =

k�1X

r=0

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r�1
j+s .

Then using the properties of the tetrahedron and binomial coe�cients we have

hi
j,k = hi�1

j,k�1 + hi
j,k�1 + hi

j+1,k�1

=
k�1X

r=0

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r
j+s +

k�1X

r=0

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r+1
j+s

+
k�1X

r=0

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r+1
j+s+1

=
k�1X

r=0

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r
j+s +

kX

r=1

r�1X

s=0

✓
k � 1

s, k � r, r � s� 1

◆
ti�k+r
j+s

+
kX

r=1

rX

s=1

✓
k � 1

s� 1, k � r, r � s

◆
ti�k+r
j+s .

Hence

hi
j,k =

✓
k � 1

0, k � 1, 0

◆
ti�k
j +

k�1X

r=1

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r
j+s

+
k�1X

s=0

✓
k � 1

s, k � k, k � s� 1

◆
ti�k+k
j+s +

k�1X

r=1

r�1X

s=0

✓
k � 1

s, k � r, r � s� 1

◆
ti�k+r
j+s

kX

s=1

✓
k � 1

s� 1, k � k, k � s

◆
ti�k+k
j+s +

k�1X

r=1

rX

s=1

✓
k � 1

s� 1, k � r, r � s

◆
ti�k+r
j+s
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so that

hi
j,k = ti�k

j +
k�1X

s=0

✓
k � 1

s, 0, k � s� 1

◆
tij+s +

kX

s=1

✓
k � 1

s� 1, 0, k � s

◆
tij+s

+
k�1X

r=1

rX

s=0

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r
j+s +

k�1X

r=1

r�1X

s=0

✓
k � 1

s, k � r, r � s� 1

◆
ti�k+r
j+s

+
k�1X

r=1

rX

s=1

✓
k � 1

s� 1, k � r, r � s

◆
ti�k+r
j+s

= ti�k
j + tij + tij+k +

k�1X

s=1

✓✓
k � 1

s, 0, k � s� 1

◆
+
✓

k � 1
s� 1, 0, k � s

◆◆
tij+s

+
k�1X

r=1

✓✓
k � 1

0, k � r � 1, r

◆
ti�k+r
j +

✓
k � 1

r, k � r � 1, 0

◆
ti�k+r
j+r

+
r�1X

s=1

✓
k � 1

s, k � r � 1, r � s

◆
ti�k+r
j+s

+
✓

k � 1
0, k � r, r � 1

◆
ti�k+r
j +

r�1X

s=1

✓
k � 1

s, k � r, r � s� 1

◆
ti�k+r
j+s

+
✓

k � 1
r � 1, k � r, 0

◆
ti�k+r
j+r +

r�1X

s=1

✓
k � 1

s� 1, k � r, r � s

◆
ti�k+r
j+s

!

= ti�k
j + tij + tij+k +

k�1X

s=1

✓
k

s, 0, k � s

◆
tij+s

+
k�1X

r=1

 ✓
k

0, k � r, r

◆
ti�k+r
j +

✓
k

r, k � r, 0

◆
ti�k+r
j+r +

r�1X

s=1

✓
k

s, k � r, r � s

◆
ti�k+r
j+s

!

= ti�k
j +

kX

s=0

✓
k

s, 0, k � s

◆
tij+s +

k�1X

r=1

rX

s=0

✓
k

s, k � r, r � s

◆
ti�k+r
j+s

= ti�k
j +

kX

r=1

rX

s=0

✓
k

s, k � r, r � s

◆
ti�k+r
j+s

=
kX

r=0

rX

s=0

✓
k

s, k � r, r � s

◆
ti�k+r
j+s .

Theorem 2. The items hn
0,n of H in edge E opposite to T form the tetrahedron

coe�cient transform sequence {bn} of T .
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Proof. Let i = k = n and j = 0. Then from Theorem 1 we gain

hn
0,n =

nX

r=0

rX

s=0

✓
n

s, n� r, r � s

◆
trs,

which is the same as (1) if bn = hn
0,n.

Re-indexing the result of Theorem 1 we obtain the values of hi
j,k by simple

indexed forms of terms of T .

Corollary 1. For any 0  k  i, 0  j  i� k we have

hi
j,k =

iX

r=i�k

j+k�i+rX

s=j

✓
k

s� j, i� r, k + j + r � s� i

◆
trs.

In the following, we show that Pascal’s rule (an item inside an arithmetical
triangle is the sum of items directly above it) and symmetry are inherited in H.

Theorem 3. If 2  i, 1  j  i� 1 and tij = ti�1
j�1 + ti�1

j hold for T , then for any
0  k + 2  i, 1  j  i� 1� k we have

hi
j,k = hi�1

j�1,k + hi�1
j,k .

Proof. The proof is by induction on k. The case k = 0 is trivial. Recall hi
j,0 = tij .

Suppose that the statement of the theorem holds for elements with index k � 1.
Then we have

hi
j,k = hi�1

j,k�1 + hi
j,k�1 + hi

j+1,k�1

= hi�2
j�1,k�1 + hi�2

j,k�1 + hi�1
j�1,k�1 + hi�1

j,k�1 + hi�1
j,k�1 + hi�1

j+1,k�1

= hi�2
j�1,k�1 + hi�1

j�1,k�1 + hi�1
j,k�1 + hi�2

j,k�1 + hi�1
j,k�1 + hi�1

j+1,k�1

= hi�1
j�1,k + hi�1

j,k .

Theorem 4. If T has a vertical symmetry axis, i.e., tij = tii�j (0  j  i), then H
has a symmetry plane, more precisely

hi
j,k = hi

i�(j+k),k, (3)

where 0  k  i, 0  j  i� k.

Proof. With induction on k, if k = 0, then we gain hi
j,0 = tij = tii�j = hi

i�(j+0),k.
Suppose that (3) holds in the case k � 1. Then we have

hi
i�(j+k),k = hi�1

i�(j+k),k�1 + hi
i�(j+k),k�1 + hi

i�(j+k)+1,k�1

= hi�1
j,k�1 + hi

j,k�1 + hi
j+1,k�1 = hi

j,k.
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Theorem 5. Suppose that ti0 = c for any i � 0, where c is a constant and Pascal’s
rule holds for T . Moreover, let m = j + k +1. Then the sequence {hi

j,k}1i=j+k is an
mth order homogeneous linear recurrence sequence (in index i) given by

mX

`=0

(�1)`

✓
m

`

◆
hi+`

j,k = 0, (4)

where i � j + k.

Proof. The left diagonal is constant in triangle T , see Figure 4. The proof is by
induction on k. If k = 0, then hi

j,0 = tij and
j+1X

`=0

(�1)`

✓
j + 1

`

◆
ti+`
j = 0.

We prove it by induction on j. If j = 0, then
P1

`=0(�1)`
�1

`

�
ti+`
0 = c � c = 0.

For clarity, see Figure 4. If j = 1, then
P2

`=0(�1)`
�2

`

�
t1+`
i = t1i � 2ti+1

1 + ti+2
1 =

((i � 1)c + a1) � 2(ic + a1) + ((i + 1)c + a1) = 0. Using the induction hypothesisPj
`=0(�1)`

�j
`

�
ti+`
j�1 = 0 for any i � j, then by ti+`

j =
P`�1

p=0 ti+p
j�1 + tij (from Pascal’s

rule) we obtain
j+1X

`=0

(�1)`

✓
j + 1

`

◆
ti+`
j = tij +

j+1X

`=1

(�1)`

✓
j + 1

`

◆ 

tij +
`�1X

p=0

ti+p
j�1

!

= tji

j+1X

`=0

(�1)`

✓
j + 1

`

◆
+

jX

`=1

(�1)`

✓✓
j

`� 1

◆
+
✓

j

`

◆◆ `�1X

p=0

ti+p
j�1

+(�1)j+1

✓
j + 1
j + 1

◆ jX

p=0

ti+p
j�1

= 0 +
j�1X

`=0

(�1)`+1

✓
j

`

◆X̀

p=0

ti+p
j�1 +

jX

`=1

(�1)`

✓
j

`

◆ `�1X

p=0

ti+p
j�1 + (�1)j+1

jX

p=0

ti+p
j�1

= (�1)tij�1 +
j�1X

`=1

(�1)`+1

✓
j

`

◆ `�1X

p=0

ti+p
j�1 + ti`j�1

!

+
j�1X

`=1

(�1)`

✓
j

`

◆ `�1X

p=0

ti+p
j�1

+(�1)j

✓
j

j

◆ j�1X

p=0

ti+p
j�1 + (�1)j+1

j�1X

p=0

ti+p
j�1 + (�1)j+1ti+j

j�1

= �tij�1 +
j�1X

`=1

(�1)`+1

✓
j

`

◆
ti+`
j�1 + 0 + 0 + (�1)j+1ti+j

j�1

= �
jX

`=0

(�1)`

✓
j

`

◆
ti+`
j�1 = 0.
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Supposing the result is true in the case k� 1 for any j, similarly to the previous
proof, we have

j+k+1X

`=0

(�1)`

✓
j + k + 1

`

◆
hi+`

j,k =
j+k+1X

`=0

(�1)`

✓
j + k + 1

`

◆⇣
hi�1+`

j,k�1 + hi+`
j,k�1 + hi+`

j+1,k�1

⌘

=
⇣
hi�1

j,k�1 + hi
j,k�1

⌘
+
⇣
hi+j+k

j,k�1 + hi+j+k+1
j,k�1

⌘

+
j+kX

`=1

(�1)`

✓
j + k + 1

`

◆⇣
hi�1+`

j,k�1 + hi+`
j,k�1

⌘
+
(j+1)+kX

`=0

(�1)`

✓
(j + 1) + k

`

◆
hi+`

(j+1),k�1

= hi+j+k
j,k�1 + hi+j+k+1

j,k�1 +
j+kX

`=1

(�1)`

✓
j + k

`� 1

◆⇣
hi�1+`

j,k�1 + hi+`
j,k�1

⌘

+hi�1
j,k�1 + hi

j,k�1 +
j+kX

`=1

(�1)`

✓
j + k

`

◆⇣
hi�1+`

j,k�1 + hi+`
j,k�1

⌘
+ 0

= hi+j+k
j,k�1 + hi+j+k+1

j,k�1 +
j+k�1X

`=0

(�1)`+1

✓
j + k

`

◆⇣
hi+`

j,k�1 + hi+1+`
j,k�1

⌘

+
j+kX

`=0

(�1)`

✓
j + k

`

◆⇣
hi�1+`

j,k�1 + hi+`
j,k�1

⌘

=
j+kX

`=0

(�1)`+1

✓
j + k

`

◆⇣
hi+`

j,k�1 + hi+1+`
j,k�1

⌘
+ 0 = 0.
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c

c a1

c c+ a1 a2

c 2c+ a1 c+ a1 + a2 a3

Figure 4: Triangle T with constant c in the left diagonal

conditions of Theorem 5 we have

tij = c
i−j−1
∑

p=0

(

i− 2− p

j − 1

)

+
j−1
∑

q=0

(

i− 2− q

j − 1− q

)

aq+1.

Corollary 2. If the items in the left and right diagonal are the same constant in
T and Pascal’s rule holds for the triangle, then T is symmetric and the sequences
{hi

j,k}
∞

i=j+k and {hi
i−(j+k),k}

∞

i=j+k (where i ≥ j+k) are the same (j+k+1)th order
homogeneous linear recurrence sequence.

3. Tetrahedron with Pascal’s triangle

In this section, we consider the well-known Pascal’s triangle as triangle T . Now the
items of T are the binomial coefficients, so that tij =

(

i
j

)

, (0 ≤ j ≤ i). Figure 5
illustrates the tetrahedron digraph which depicts the transformation.

We give an explicit form for the elements of the tetrahedron.

Theorem 6. For any 0 ≤ k ≤ i, 0 ≤ j ≤ i− k we have

hi
j,k =

k
∑

ℓ=0

(

2ℓ+ i− k

ℓ+ j

)(

k

ℓ

)

. (5)

Proof. Let the triangle T be Pascal’s triangle. Then, replacing the tetrahedron
coefficients by the suitable binomial coefficients we have

hi
j,k =

k
∑

ℓ=0

ℓ
∑

s=0

(

k

s, k − ℓ, ℓ− s

)

ti−k+ℓ
j+s =

k
∑

ℓ=0

ℓ
∑

s=0

(

k

k − ℓ, s, ℓ− s

)(

i+ ℓ− k

j + s

)

=
k
∑

ℓ=0

ℓ
∑

s=0

(

k

k − ℓ

)(

k − (k − ℓ)

s

)(

i + ℓ− k

j + s

)

=
k
∑

ℓ=0

(

k

ℓ

) ℓ
∑

s=0

(

ℓ

s

)(

i+ ℓ − k

j + s

)

,

Figure 4: Triangle T with constant c in the left diagonal

Remark 1. Belbachir and Szalay [4, Theorem 1] gave an explicit form for the
items of the so-called Generalized Arithmetical Triangles (GAT). Applying this for
tij with conditions of Theorem 5 we have

tij = c
i�j�1X

p=0

✓
i� 2� p

j � 1

◆
+

j�1X

q=0

✓
i� 2� q

j � 1� q

◆
aq+1.
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Corollary 2. If the items in the left and right diagonal are the same constant in
T and Pascal’s rule holds for the triangle, then T is symmetric and the sequences
{hi

j,k}1i=j+k and {hi
i�(j+k),k}1i=j+k (where i � j+k) are the same (j+k+1)th order

homogeneous linear recurrence sequence.

3. Tetrahedron With Pascal’s Triangle

In this section, we consider the well-known Pascal’s triangle as triangle T . Now the
items of T are the binomial coe�cients, so that tij =

�i
j

�
, (0  j  i). Figure 5

illustrates the tetrahedron digraph which depicts the transformation.
INTEGERS: 19 (2019) 11
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Figure 5: Tetrahedron coefficient transform based on Pascal’s triangle

where 0 ≤ k ≤ i, 0 ≤ j ≤ i− k.

On the other hand, we use identity (6) for the binomial coefficients similar to
Vandermonde’s convolution formula, which is equation (3.20) in the book of Gould
[7], if x = n+m. For any 0 ≤ k ≤ m we have

n
∑

i=0

(

n

i

)(

n+m

i+ k

)

=

(

2n+m

n+ k

)

. (6)

Thus
ℓ
∑

s=0

(

ℓ

s

)(

i+ ℓ− k

j + s

)

=

(

2ℓ+ i− k

ℓ+ j

)

proves the theorem.

In the following, we give a theorem and some sequences generated by H.

Theorem 7. The tetrahedron coefficient transform sequence of Pascal’s triangle is
the binomial transform sequence of the central binomial coefficients.

Figure 5: Tetrahedron coe�cient transform based on Pascal’s triangle

We give an explicit form for the elements of the tetrahedron.

Theorem 6. For any 0  k  i, 0  j  i� k we have

hi
j,k =

kX

`=0

✓
2` + i� k

` + j

◆✓
k

`

◆
. (5)

Proof. Let the triangle T be Pascal’s triangle. Then, replacing the tetrahedron
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coe�cients by the suitable binomial coe�cients, we have

hi
j,k =

kX

`=0

X̀

s=0

✓
k

s, k � `, `� s

◆
ti�k+`
j+s =

kX

`=0

X̀

s=0

✓
k

k � `, s, `� s

◆✓
i + `� k

j + s

◆

=
kX

`=0

X̀

s=0

✓
k

k � `

◆✓
k � (k � `)

s

◆✓
i + `� k

j + s

◆

=
kX

`=0

✓
k

`

◆X̀

s=0

✓
`

s

◆✓
i + `� k

j + s

◆
,

where 0  k  i, 0  j  i� k.
On the other hand, we use identity (6) for the binomial coe�cients similar to

Vandermonde’s convolution formula, which is equation (3.20) in the book of Gould
[7], if x = n + m. For any 0  k  m we have

nX

i=0

✓
n

i

◆✓
n + m

i + k

◆
=
✓

2n + m

n + k

◆
. (6)

Thus
X̀

s=0

✓
`

s

◆✓
i + `� k

j + s

◆
=
✓

2` + i� k

` + j

◆

proves the theorem.

In the following, we give a theorem and some sequences generated by H.

Theorem 7. The tetrahedron coe�cient transform sequence of Pascal’s triangle is
the binomial transform sequence of the central binomial coe�cients.

Proof. Let j = 0 and i = k = n. Then from Theorem 6 we gain

hn
0,n =

nX

`=0

✓
2`
`

◆✓
n

`

◆
,

where sequence bn = hn
0,n (n = 0, 1, . . .) is the binomial transform of

�2`
`

�
.

Remark 2. Let j = j0 be fixed and put k = i � w, where 0  j0  w  i. Then
the items of sequence {hi

j0,i�w}1i=w (in Figure 5, directions with black arrows) are
given by

hi
j0,i�w =

i�wX

`=0

✓
2` + w

` + j0

◆✓
i� w

`

◆
.

Moreover, because of the symmetry property (3), hi
j0,i�w = hi

w�j0,i�w (i = w,w +
1, . . .) also holds.
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Remark 3. Let j = j0 and k = k0 be fixed. Then sequence {hi
j0,k0

}1i=j0+k0
(0 

k0  i, 0  j0  i� w � k0) is given by (5). The terms of this sequence are bellow
each other in Figure 5 and because of symmetry, we have hi

j0,k0
= hi

i�(j0+k0),k0

(i = j0 + k0, j0 + k0 + 1, . . .), where direction of the sequence on the right-hand-
side is parallel to the right diagonal (right leg) of Pascal’s triangle. According to
Theorem 5, these are (j0 +k0 +1)th order homogeneous linear recurrence sequences
with formula (4).

In the collection of ”On-Line Encyclopedia of Integer Sequences” [13], we found
several sequences can also be described by our method. Table 1 shows them.

Sequence in OEIS First few terms

{bn = hn
0,n} A026375 1, 3, 11, 45, 195, 873, 3989, 18483, 86515, . . .

{hn
0,n�1}, {hn

1,n�1} A026378 1, 4, 17, 75, 339, 1558, 7247, 34016, 160795, . . .
{hn

0,n�2}, {hn
2,n�2} A026388 1, 5, 24, 114, 541, 2573, 12275, 58747, 282003, . . .

{hn
0,n�3}, {hn

3,n�3} A034942 1, 6, 32, 163, 813, 4013, 19703, 96477, 471811, . . .

{hn
1,n�2}

A085362
A026387

2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, . . .

{hn
1,1}, {hn

n�2,1} A034856 4, 8, 13, 19, 26, 34, 43, 53, 64, 76, 89, 103, 118, . . .
{hn

2,1}, {hn
n�3,1} A008778 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, . . .

{hn
1,2}, {hn

n�3,2} A023545 17, 34, 58, 90, 131, 182, 244, 318, 405, 506, 622, . . .

Table 1: Some sequences in OEIS [13]

4. Further Work

Our tetrahedron construction has some connecting points to other known arithmeti-
cal triangles, and its examination would be profitable. Now, we show some relations.
Let us extend the tetrahedron by using the convention

�i
j

�
= 0 for j /2 {0, 1, . . . , i}.

(Really, there are more extensions of Pascal’s triangle.) This way we obtain the
3-dimensional arithmetical construction in Figure 6.

The triangle section {hi
j,1} parallel to Pascal’s triangle is the so-called 3-Pascal

triangle (A028262). The triangle (light-blue triangle in Figure 6) described by the
elements hi

j,i, where i 2 N0,�i  j  i is the ”Gegenbauer functional” triangle
T (i, k) = GegenbauerC(m,�i,�3

2 ), where m = k if k < i else 2i� k, for 0  i and
0  k  2i (see A272866). This conjecture is based on our calculation up to i = 20.

More sequences and triangles can be found in OEIS, for example, A026376,
A026374.

Acknowledgement. The author would like to thank the anonymous referee for
carefully reading the manuscript and for his/her useful suggestions and improve-
ments.
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4. Further work

Our tetrahedron construction has some connecting points to other known arithmeti-
cal triangles, its examination would be profitable. Now, we show some relations.
Let us extend the tetrahedron by using the convention

(

i
j

)

= 0 for j /∈ {0, 1, . . . , i}.
(Really, there are more extensions of Pascal’s triangle.) This way we obtain the
3-dimensional arithmetical construction in Figure 6.

The triangle section {hi
j,1} parallel to Pascal’s triangle is the so-called 3-Pascal

triangle (A028262). The triangle (light-blue triangle in Figure 6) described by the
elements hi

j,i, where i ∈ N0,−i ≤ j ≤ i is the ”Gegenbauer functional” triangle
T (i, k) = GegenbauerC(m,−i,− 3

2 ), where m = k if k < i else 2i− k, for 0 ≤ i and
0 ≤ k ≤ 2i (see A272866). This conjecture is based on our calculation up to i = 20.

More sequences and triangles can be found in OEIS, for example, A026376,
A026374.
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