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Abstract
We determine properties of the set of values of [nx]� ([x]/1+ [2x]/2+ · · ·+[nx]/n)
as n and x vary.

1. Introduction

Let x denote a real number and let n denote a positive integer. Problem 5 of the
1981 U.S.A. Mathematical Olympiad was to prove that

[nx] � [x]
1

+
[2x]
2

+
[3x]
3

+ · · · + [nx]
n

, (1)

where [t] denotes the greatest integer less than or equal to t. Observe that

nx =
x

1
+

2x
2

+
3x
3

+ · · · + nx

n
� [x]

1
+

[2x]
2

+
[3x]
3

+ · · · + [nx]
n

. (2)

This relation does not, however, obviously imply (1), because the sum on the right-
hand side of (2) is not necessarily an integer. Proofs of (1) are given by Klamkin
[3, pp. 92–92] and Larsen [5, p. 279].

More can be said about relation (1); for example, if equality does not hold ([nx] 6=
[x]/1 + [2x]/2 + · · · + [nx]/n), then in fact

[nx] � 1
6

+
[x]
1

+
[2x]
2

+
[3x]
3

+ · · · + [nx]
n

.

(This is the content of Proposition 3.1.)
Let fn(x) := [nx] � ([x]/1 + [2x]/2 + · · · + [nx]/n). Let Sn denote the range

of this function; it is a finite set of rational numbers. Let S =
S1

n=1 Sn; it is a
1David Richman died on February 1, 1991, in an airplane accident. This paper was in his files

and has been slightly modified for publication by Michael Filaseta, Je↵rey Lagarias, and Harry
Richman with the consent of David’s wife Shumei Cheng Richman. We thank the referee for
helpful comments and suggestions.



INTEGERS: 19 (2019) 2

countable set of rational numbers and relation (1) is equivalent to the statement
that the elements of S are all nonnegative. The main result of this paper is:

Theorem 1.1. (i) The smallest limit point of the set S is

� =
1X

k=1

1
2k(2k + 1)

= 1� log 2 ⇡ 0.30685.

(ii) The members of S smaller than � are given by 0, 4
15 , and all the partial sums

tm =
Pm

k=1
1

2k(2k+1) for m � 1.

(iii) The members of S larger than � are dense in the interval [�,+1).

The theorem can be summarized in the equivalent form

S =

 

the set of partial sums of
1X

k=1

1
2k(2k + 1)

!
[ ⇢

0,
4
15

�

[
 

a dense subset of the interval
✓ 1X

k=1

1
2k(2k + 1)

,1
◆!

. (3)

In particular, (3) implies that [nx]� ([x]/1 + [2x]/2 + · · ·+ [nx]/n) equals 0 or 1
6 or

1
6 + 1

20 or 1
6 + 1

20 + 1
42 or a number which is greater than or equal to 1

6 + 1
20 + 1

42 + 1
72 .

Remark. Note that [nx]� ([x]/1 + [2x]/2 + · · · + [nx]/n) = 0 when x is an integer
(or, more generally, when x � [x] < 1/n). Let m denote a positive integer; one
can easily prove by induction on m that if n = 2m + 1 and x = 1/(m + 1), then
[nx]� ([x]/1 + [2x]/2 + · · ·+ [nx]/n) =

Pm
k=1 1/(2k(2k + 1)). If n = 5 and x = 1/2,

then [nx]� ([x]/1+[2x]/2+ · · ·+[nx]/n) = 4/15. These observations already imply
that S contains 0, 4

15 and all the partial sums of
P1

k=1 1/(2k(2k + 1)).

The author was able to discover (3) largely because, when n is fixed and x varies,
the values of [nx] � ([x]/1 + [2x]/2 + · · · + [nx]/n) can be calculated explicitily (a
similar observation is made in [3, p. 92]). For example, considering the case that
n = 3, one has

[3x]� [x]
1
� [2x]

2
� [3x]

3
=

8
>>>><

>>>>:

0 when x� [x] < 1
3 ,

2
3 when 1

3  x� [x] < 1
2 ,

1
6 when 1

2  x� [x] < 2
3 ,

5
6 when 2

3  x� [x].

Thus S3 = {0, 1
6 , 2

3 , 5
6}. Calculations of this kind are useful for suggesting patterns

and conjectures, but are not needed to prove (1) or (3).
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To prove (3), this paper will focus attention on the smallest number y satisfying
[ky] = [kx] for every k in {1, . . . , n}, when n and x are fixed. This approach, or a
similar idea, is also used in [3, p. 92] and [5, p. 279].

This paper is organized as follows. Section 2 contains a new, simple proof of
(1). In Sections 3 and 4 we obtain necessary and su�cient conditions for [nx] �
([x]/1 + [2x]/2 + · · · + [nx]/n) to be less than � =

P1
k=1 1/(2k(2k + 1)). We will

then establish the main result (3) in Section 5. Finally, Section 6 contains a proof
that [nx]� ([x]/1 + [2x]/2 + · · · + [nx]/n)  1

2 + 1
3 + · · · + 1

n . This gives an upper
bound for Sn which complements the lower bound for Sn implied by (1).

2. A Lower Bound for Sn

We begin by sketching a new proof of the Olympiad problem (1), which we restate
below. Recall that Sn denotes the set of numbers of the form [nx] �

Pn
k=1 [kx]/k

where x varies over all real numbers.

Lemma 2.1 (1981 USAMO, Problem 5). For any positive integer n and any
x,

[nx]�
nX

k=1

[kx]
k
� 0.

Proof. Let n be a fixed positive integer. Define

xn = max{[kx]/k : k = 1, 2, . . . , n}.

Note that x � xn and xn � [kx]/k for every k 2 {1, . . . , n}. Therefore

[kxn] = [kx] for every k 2 {1, . . . , n}. (4)

Let d = dn,x denote the smallest element of {1, 2, . . . , n} such that [dx]/d = xn. If
y < xn, then dy < dxn = [dx], so [dy] < [dx]. Thus xn is the smallest real number
satisfying (4).

The relation [nx] �
Pn

k=1[kx]/k will now be proved by induction on n; it ob-
viously holds for all x when n = 1. Suppose now that n > 1 and let r denote
the element of {0, 1, . . . , d � 1} which is congruent to n modulo d. Observe that
(n� r)xn is an integer, because n� r is a multiple of d and xn = [dx]/d. Therefore

[rxn + (n� r)xn] = [rxn] + (n� r)xn

= [rxn]�
rX

k=1

[kxn]
k

+
nX

k=r+1

kxn � [kxn]
k

+
nX

k=1

[kxn]
k

. (5)
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By the induction hypothesis and (4) we have [rxn] �
Pr

k=1[kxn]/k. Hence (5)
implies that

[nxn] �
nX

k=r+1

kxn � [kxn]
k

+
nX

k=1

[kxn]
k

�
nX

k=1

[kxn]
k

. (6)

This relation and (4) imply [nx] �
Pn

k=1[kx]/k.

3. Preliminary Analysis

We now turn toward establishing the main result (3). The next result is a par-
tial result in this direction and will provide us with some of the background for
establishing (3). We make use of the same notation as in the proof above, namely

xn = max{[kx]/k : k = 1, 2, . . . , n},
dn,x = smallest positive integer d such that [dx]/d = xn.

It is clear that dn,x  n. It is shown in the proof below that dn,x is the denominator
of xn in lowest terms.

Proposition 3.1. If dn,x = 1, then [nx] =
Pn

k=1[kx]/k; otherwise, [nx] � 1
6 +Pn

k=1[kx]/k.

Proof. Suppose at first that d = dn,x = 1. Then [x] = max{[kx]/k : k = 1, 2, . . . , n}.
This observation and the fact that [kx]/k � [x] for any x and any integer k � 1
imply that [kx]/k = [x] for every k 2 {1, . . . , n}. Hence

nX

k=1

[kx]
k

= n[x] = [nx].

Suppose now that dn,x > 1, and let r denote (as before) the element of the set
{0, 1, . . . , d� 1} which is congruent to n modulo d. Statements (4) and (6) imply
that

[nx]�
nX

k=1

[kx]
k
�

nX

k=r+1

kxn � [kxn]
k

. (7)

Note that n � r + d, because n � d > r and n ⌘ r (mod d). Therefore

nX

k=r+1

kxn � [kxn]
k

�
r+dX

k=r+1

kxn � [kxn]
k

� 1
r + d

r+dX

k=r+1

(kxn � [kxn])

� 1
2d� 1

r+dX

k=r+1

(kxn � [kxn]). (8)
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Observe that, if k is an element of {1, . . . , n} such that kxn is an integer, then
kxn = [kxn] = [kx] by (4), so xn = [kx]/k. The definition of d = dn,x now implies
that d is the smallest positive integer such that dxn is an integer. Hence d and
dxn are relatively prime. Therefore, if k varies over a set of integers which are
pairwise incongruent modulo d, then the integers kdxn will be pairwise incongruent
modulo d, and hence the integers kdxn � d[kxn] will also be pairwise incongruent
modulo d. Since

0  d(kxn � [kxn]) < d for any k,

we obtain that

if R is a set of d integers which are pairwise incongruent modulo d,
then {kdxn � d[kxn] : k 2 R} = {0, 1, . . . , d� 1}. (9)

A similar observation is made in [3, p. 92]. By (9),

1
2d� 1

r+dX

k=r+1

(kxn � [kxn]) =
1

2d� 1

d�1X

k=0

k

d
=

d� 1
2(2d� 1)

=
1

4 + 2
d�1

. (10)

This equation and the supposition that d = dn,x > 1 (so d � 2) imply that

1
2d� 1

r+dX

k=r+1

(kxn � [kxn]) � 1
6
.

From (7) and (8), we deduce that [nx]�
Pn

k=1[kx]/k � 1
6 .

Corollary 3.2. If x � [x] < 1
n , then [nx] =

Pn
k=1[kx]/k; otherwise, [nx] � 1

6 +Pn
k=1[kx]/k.

Proof. By Proposition 3.1 it su�ces to show that

x� [x] <
1
n

, dn,x = 1.

Suppose at first that x � [x] < 1/n. Then kx < k[x] + k/n  k[x] + 1 for
every k 2 {1, . . . , n}, and hence [kx]  k[x] for every k 2 {1, . . . , n}. Therefore
[x] = max{[kx]/k : k = 1, . . . , n} and hence dn,x = 1.

Suppose now that x� [x] � 1/n. Then nx � n[x] + 1, so [nx] � n[x] + 1. Hence
[nx]/n > [x], so [x] 6= max{[kx]/k : k = 1, . . . , n}. Therefore dn,x > 1.

Note that [nx] = 1
6 +

Pn
k=1[kx]/k when n = 3 and x = 1

2 .

Lemma 3.3 (Rearrangement inequality). Let b1, . . . , bm and c1, . . . , cm denote
real numbers such that c1 > c2 > · · · > cm. Let ⌧ denote a permutation of {1, . . . ,m}
such that b⌧(1)  b⌧(2)  · · ·  b⌧(m). Then

mX

i=1

b⌧(i)ci 
mX

i=1

bici 
mX

i=1

b⌧(m+1�i)ci.
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This result, and a proof of it, can be found in [2, p. 261].

Lemma 3.4. Suppose that p and q are relatively prime integers and q � 2. Then
for every positive integer n

[np/q]�
nX

k=1

[kp/q]
k

< [(n + q)p/q]�
n+qX

k=1

[kp/q]
k

.

In other words, fn(p/q) < fn+q(p/q).

Proof. Let t = p/q, and note that t is not an integer. This implies that (n+ q)t and
(n+q�1)t cannot both be integers, so either [(n+q)t] < (n+q)t or [(n+q�1)t] <
(n + q � 1)t (or both). Thus [kt]/k < t for k = n + q or n + q � 1; note also that
[kt]/k  t for any t and any k � 1. We deduce that

n+qX

k=n+1

[kt]
k

<
n+qX

k=n+1

t = qt = [nt + qt]� [nt],

where the last equality uses that qt = p is an integer. Adding [nt]�
Pn+q

k=1 [kt]/k to
both sides of this relation yields the desired inequality.

Recall that dn,x denotes the smallest element d of {1, . . . , n} such that [dx]/d =
xn = max{[kx]/k : k = 1, 2, . . . , n}.

Proposition 3.5. Suppose that d = dn,x satisfies [dx]� d[x] � 2; then

[nx]�
nX

k=1

[kx]
k
� 1

3
.

Proof. The supposition that [dx]� d[x] � 2 implies that d(x� [x]) � 2. Therefore
d � 2/(x� [x]) > 2 since x� [x] < 1. Hence

d � 3. (11)

Let r denote the element of {0, 1, . . . , d� 1} which is congruent to n modulo d.
Suppose at first that r(x � [x]) � 1, so x � [x] � 1/r. Then by Corollary 3.2

(with n replaced by r), [rx] � 1
6 +

Pr
k=1[kx]/k. This observation and (4) imply

that [rxn] � 1
6 +

Pr
k=1[kxn]/k. Hence, from (5),

[nxn]�
nX

k=1

[kxn]
k

� 1
6

+
nX

k=r+1

kxn � [kxn]
k

.

From (8), (10), and (11), this implies

[nxn]�
nX

k=1

[kxn]
k

� 1
6

+
1

4 + 2
d�1

� 1
6

+
1
5

>
1
3
.
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This inequality and (4) imply that [nx]�
Pn

k=1[kx]/k > 1/3.
Suppose now that r(x � [x]) < 1. This inequality and the initial supposition

that [dx] � d[x] � 2 imply that d(x � [x]) � 2 > 2r(x � [x]). Therefore d > 2r, so
d � 2r + 1. Hence

r 

d� 1

2

�
. (12)

Inequality (7) and the first inequality of (8) imply that

[nx]�
nX

k=1

[kx]
k
�

r+dX

k=r+1

kxn � [kxn]
k

. (13)

We seek a good lower bound for
Pr+d

k=r+1(kxn � [kxn])/k. Statement (9) implies
that

{kxn � [kxn] : k = r + 1, r + 2, . . . , r + d} =
⇢

0
d
,

1
d
, . . . ,

d� 1
d

�
.

This observation and Lemma 3.3, with {b1, . . . , bd} = {kxn�[kxn] : k = r + 1, . . . , r + d}
and {c1, . . . , cd} = {1/(r + 1), . . . , 1/(r + d)}, imply that

r+dX

k=r+1

kxn � [kxn]
k

� 1
d

d�1X

j=0

j

j + r + 1
.

Similar inequalities can be found in [3, pp. 92, 93]. From (12), we obtain

r+dX

k=r+1

kxn � [kxn]
k

� 1
d

d�1X

j=0

j

j + [(d� 1)/2] + 1

=
1
d

d�1X

j=0

✓
1� [(d� 1)/2] + 1

j + [(d� 1)/2] + 1

◆

= 1� 1
d

d�1X

j=0

[(d� 1)/2] + 1
j + [(d� 1)/2] + 1

. (14)

Define h = [(d� 1)/2] + 1. Suppose at first that d is even. Then d = 2h and by
(11) we have h � 2. From (14), we obtain

r+dX

k=r+1

kxn � [kxn]
k

� 1� 1
2h

2h�1X

j=0

h

j + h

= 1� 1
2

3h�1X

j=h

1
j

if dn,x is even. (15)
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Note that
3m�1X

j=m

1
j

is a decreasing function of m for m � 1, (16)

because

3(m+1)�1X

j=m+1

1
j
�

3m�1X

j=m

1
j

=
1

3m
+

1
3m + 1

+
1

3m + 2
� 1

m
< 0.

Statements (15) and (16), together with the fact that h � 2, imply that

r+dX

k=r+1

kxn � [kxn]
k

� 1� 1
2

5X

j=2

1
j

=
43
120

>
1
3
.

This inequality and (13) establish the proposition when d is even.
Suppose now that d is odd. Then h = [(d� 1)/2] + 1 = (d + 1)/2, so d = 2h� 1.

From (14), we obtain

r+dX

k=r+1

kxn � [kxn]
k

� 1� 1
2h� 1

2h�2X

j=0

h

j + h

= 1� h

2h� 1

3h�2X

k=h

1
k

> 1� h

2h� 1

3h�1X

k=h

1
k

if dn,x is odd. (17)

Note that h
2h�1 = 1

2 + 1
2(2h�1) is a decreasing function of h. Using (16), this implies

h

2h� 1

3h�1X

k=h

1
k

is a decreasing function of h. (18)

Statements (17) and (18) imply that, if h � 5, then

r+dX

k=r+1

kxn � [kxn]
k

> 1� 5
9

14X

k=5

1
k
⇡ 0.351.

This inequality and relation (13) establish the proposition when d is odd and d � 9.
One verifies, using (13) and (14), that the proposition also holds when d = 5 or

d = 7 since

1� 1
5

4X

j=0

3
j + 3

⇡ 0.344 and 1� 1
7

6X

j=0

4
j + 4

⇡ 0.374.
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To finish the proof, by observation (11) it su�ces to consider the case that d = 3.
Assume that d = 3. Note that d(x � [x]) < d = 3; hence [dx] � d[x]  2.

The initial supposition that [dx] � d[x] � 2 implies that [dx] � d[x] = 2. Hence
[dx]/d� [x] = 2/d = 2/3, so xn � [x] = 2/3. From (4), we obtain

[nx]�
nX

k=1

[kx]
k

= [nxn]�
nX

k=1

[kxn]
k

= [2n/3]�
nX

k=1

[2k/3]
k

. (19)

Observe that [2n/3]�
Pn

k=1 [2k/3] /k � 1/3 when n = 3, 4 or 5. This observation
and Lemma 3.4 (with p/q = 2/3) imply that [2n/3]�

Pn
k=1 [2k/3] /k � 1/3 for all

n � 3. Since n � d = 3, statement (19) implies the proposition when d = 3.

4. Smallest Limit Point of S

In this section we address how the value of [nx]�
Pn

k=1[kx]/k, for certain n and x,
is related to the series

P1
k=1 1/(2k(2k + 1)) and its partial sums.

Proposition 4.1. Define � =
1X

k=1

1
2k(2k + 1)

.

(i) If d = dn,x satisfies [dx]� d[x] = 1 and n = 2d� 1, then

[nx]�
nX

k=1

[kx]
k

=
d�1X

k=1

1
2k(2k + 1)

.

(ii) Suppose that d = dn,x > 2. If [dx]� d[x] 6= 1 or n 6= 2d� 1, then

[nx]�
nX

k=1

[kx]
k

> �.

(iii) Suppose that dn,x = 2. If n = 3, then [nx] �
Pn

k=1[kx]/k = 1/6. If n = 5,
then [nx]�

Pn
k=1[kx]/k = 4/15. If n 6= 3 and n 6= 5, then

[nx]�
nX

k=1

[kx]
k
� 71

210
> �.

Proof. Observe that (4) implies

[nx]�
nX

k=1

[kx]
k

= [nxn]�
nX

k=1

[kxn]
k

= [n(xn � [x])]�
nX

k=1

[k(xn � [x])]
k

. (20)
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One can easily prove by induction on m that

1�
2m�1X

k=m

1
k

=
m�1X

k=1

1
2k(2k + 1)

. (21)

Suppose that [dx] � d[x] = 1. This supposition and the fact that xn = [dx]/d
imply that xn � [x] = 1/d. (It follows that d � 2.) Hence, from (20),

[nx]�
nX

k=1

[kx]
k

= [n/d]�
nX

k=1

[k/d]
k

provided [dx]� d[x] = 1. (22)

If in addition n = 2d� 1, then by (21)

[nx]�
nX

k=1

[kx]
k

=

2d� 1

d

�
�

2d�1X

k=1

[k/d]
k

= 1�
2d�1X

k=d

1
k

=
d�1X

k=1

1
2k(2k + 1)

.

This establishes statement (i) of the proposition.
Observe that

P2m�2
k=m 1/k is an increasing function of m � 1, because

2(m+1)�2X

k=m+1

1
k
�

2m�2X

k=m

1
k

=
1

2m� 1
+

1
2m

� 1
m

> 0.

Therefore

1�
2m�2X

k=m

1
k

> lim
m!1

 

1�
2m�2X

k=m

1
k

!

= lim
m!1

 

1�
2m�1X

k=m

1
k

!

.

From (21), we deduce

1�
2m�2X

k=m

1
k

>
1X

k=1

1
2k(2k + 1)

= �. (23)

Now suppose [dx] � d[x] = 1 and n < 2d � 1. Recall, from the definition of
d = dn,x, that d  n. Therefore, if n < 2d� 1, then d  n  2d� 2, so [n/d] = 1.
Using (23) this implies

[n/d]�
nX

k=1

[k/d]
k

= 1�
nX

k=d

1
k
� 1�

2d�2X

k=d

1
k

> � if n < 2d� 1.

From this inequality and (22), we get

[nx]�
nX

k=1

[kx]
k

> � if [dx]� d[x] = 1 and n < 2d� 1. (24)
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As mentioned in the introduction, � = 1� log 2. This can be obtained from (21)
by comparing the sum on the left-hand side to an integral. We deduce that

� =
1X

k=1

1
2k(2k + 1)

<
1
3
. (25)

This inequality can in fact be established without evaluating � explicitly by rewrit-
ing the sum defining � as a telescoping series.

Now suppose [dx] � d[x] = 1 and n > 2d � 1. Observe that if 2d  n  3d � 1,
then

[n/d]�
nX

k=1

[k/d]
k

= 2�
nX

k=1

[k/d]
k

� 2�
2d�1X

k=d

1
k
� 2

3d�1X

k=2d

1
k

. (26)

Earlier in this proof, we showed that
P2m�2

k=m 1/k is an increasing function of m � 1.

A similar argument establishes that
P2m�1

k=m 1/k and
P3m�1

k=2m 1/k are decreasing
functions of m. This observation and relation (26) imply that, if 2d  n  3d � 1
and d � 3, then

[n/d]�
nX

k=1

[k/d]
k

� 2�
5X

k=3

1
k
� 2

8X

k=6

1
k

=
73
210

>
1
3
.

From Lemma 3.4 (with p/q = 1/d), we deduce that if n � 2d and d � 3, then
[n/d]�

Pn
k=1[k/d]/k > 1/3. From (22) and (25),

[nx]�
nX

k=1

[kx]
k

> � if [dx]� d[x] = 1 and n > 2d� 1 and d > 2. (27)

Suppose now that [dx] � d[x] 6= 1 and d > 1. The definition of d = dn,x and
the supposition that d > 1 imply that [dx]/d > [x]. Hence [dx] � d[x] > 0. Since
[dx] � d[x] 6= 1, we obtain [dx] � d[x] � 2. Therefore, from Proposition 3.5 and
from (25),

[nx]�
nX

k=1

[kx]
k
� 1

3
> � if [dx]� d[x] 6= 1 and d > 1.

This inequality and relations (24) and (27) establish statement (ii) of the proposi-
tion.

Suppose now that d = 2. Note that [dx] � d[x]  d(x � [x]) < d = 2. Hence
[dx] � d[x]  1. Note also that, by the definition of d = dn,x and the supposition
that d 6= 1, we have [dx]/d > [x], so [dx] � d[x] > 0. Thus, [dx] � d[x] = 1. From
(22), we obtain

[nx]�
nX

k=1

[kx]
k

= [n/2]�
nX

k=1

[k/2]
k

. (28)
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Note that [n/2]�
Pn

k=1[k/2]/k � 71/210 > 1/3 when n = 6 or 7. Hence, Lemma 3.4
(with p/q = 1/2) implies that [n/2]�

Pn
k=1[k/2]/k > 1/3 for all n � 6. Now, (25)

and (28) establish statement (iii) of the proposition for n � 6. Recall that n � d,
so n � 2. One can verify, using (25) and (28), that (iii) holds for n = 2, 3, 4 and 5.
Hence it holds for all n.

Proposition 4.1 implies that, for most pairs (n, x) (especially when n is large),
[nx]�

Pn
k=1[kx]/k > �.

5. Proof of Main Theorem

We now prove the main result of this paper (in equivalent form (3)).

Theorem 5.1. Let S denote the set of numbers of the form [nx] �
Pn

k=1[kx]/k,
where x varies over all real numbers and n varies over all positive integers. Then

S =

(

partial sums of
1X

k=1

1
2k(2k + 1)

)
[⇢

0,
4
15

�

[
 

a dense subset of the interval
✓ 1X

k=1

1
2k(2k + 1)

,1
◆!

.

Proof. Proposition 3.1 implies that if dn,x = 1, then [nx] �
Pn

k=1[kx]/k = 0, and
Proposition 4.1 implies that if dn,x � 2, then [nx] �

Pn
k=1[kx]/k equals a partial

sum of
P1

k=1 1/(2k(2k + 1)) or 4/15 or a number which is strictly greater thanP1
k=1 1/(2k(2k + 1)). Hence

S ✓
(

partial sums of
1X

k=1

1
2k(2k + 1)

)

[
⇢

0,
4
15

�
[
 1X

k=1

1
2k(2k + 1)

,1
!

. (29)

It was observed in the introduction that S contains 0 and 4/15 and all the partial
sums of the series

P1
k=1 1/(2k(2k +1)). This observation and statement (29) imply

that, to finish the proof, it su�ces to show that S contains a dense subset of the
interval (

P1
k=1 1/(2k(2k + 1)),1).

Let u denote a real number such that u �
P1

k=1 1/(2k(2k + 1)). It will be shown
that there are elements of S which are arbitrarily close to u. Let t denote an integer
such that t � 2.

Claim. There is a positive integer m̂ = m̂u,t such that

m̂�
m̂t+t�1X

k=1

[k/t]
k

< u < m̂�
m̂tX

k=1

[k/t]
k

.
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In other words, fm̂t+t�1(1/t) < u < fm̂t(1/t).

Proof of the claim. Observe that by (21)

1�
2t�1X

k=1

[k/t]
k

= 1�
2t�1X

k=t

1
k

=
t�1X

k=1

1
2k(2k + 1)

< u. (30)

Note that, for every positive integer m,

m�
mt+t�1X

k=1

[k/t]
k

=
mX

j=1

0

@1�
jt+t�1X

k=jt

j

k

1

A =
mX

j=1

0

@
jt+t�1X

k=jt

k � jt

kt

1

A

�
mX

j=1

1
(jt + t� 1)t

jt+t�1X

k=jt

(k � jt)

=
mX

j=1

t� 1
2(jt + t� 1)

=
1
2

mX

j=1

1
j t

t�1 + 1
� 1

6

mX

j=1

1
j
,

where in the last step we have used that t/(t�1)  2 for any t � 2. This inequality
and the fact that

P1
j=1 1/j diverges imply that there are only finitely many positive

integers m such that m �
Pmt+t�1

k=1 [k/t]/k < u. Let m̂ = m̂u,t denote the largest
such integer; statement (30) implies that m̂ exists with m̂ � 1. The definition of m̂
implies that

m̂�
m̂t+t�1X

k=1

[k/t]
k

< u  m̂ + 1�
(m̂+1)t+t�1X

k=1

[k/t]
k

. (31)

Observe that

1�
(m̂+1)t+t�1X

k=m̂t+1

[k/t]
k

= 1�
m̂t+t�1X

k=m̂t+1

m̂

k
�

(m̂+1)t+t�1X

k=(m̂+1)t

m̂ + 1
k

= 1�
t�1X

j=1

m̂

m̂t + j
�

t�1X

j=0

m̂ + 1
(m̂ + 1)t + j

=
t�1X

j=1

✓
j/t

(m̂ + 1)t + j
� m̂

m̂t + j

◆
, (32)

where in the last line we have used that

1�
t�1X

j=0

m̂ + 1
(m̂ + 1)t + j

=
t�1X

j=0

m̂ + 1 + (j/t)� (m̂ + 1)
(m̂ + 1)t + j

=
t�1X

j=1

j/t

(m̂ + 1)t + j
.
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Since j/t < 1  m̂ for j < t, we obtain from (32) that

1�
(m̂+1)t+t�1X

k=m̂t+1

[k/t]
k

< 0.

Adding a constant to both sides of this inequality yields

m̂ + 1�
(m̂+1)t+t�1X

k=1

[k/t]
k

< m̂�
m̂tX

k=1

[k/t]
k

.

This inequality and relation (31) establish the claim. ⇤
Note that the distance between two adjacent elements of {m̂ �

Pn
k=1[k/t]/k :

n = m̂t, m̂t + 1, . . . , m̂t + t � 1} is less than or equal to m̂/(m̂t + 1) < 1/t. This
observation and the claim imply that there is an integer n̂ = n̂u,t such that

m̂t  n̂  m̂t + t� 1 and

�����u�
 

m̂�
n̂X

k=1

[k/t]
k

!����� <
1
t
. (33)

Define

su,t = fn̂(1/t) = [n̂/t]�
n̂X

k=1

[k/t]
k

.

Note that |u � su,t| < 1/t, by (33), so |u � su,t| approaches 0 as t approaches 1.
Since su,t lies in S for any t � 2, u lies in the closure of S. This holds for any u �P1

k=1 1/(2k(2k+1)), so S contains a dense subset of (
P1

k=1 1/(2k(2k+1)),1).

Remark. The preceding proof and the remark made after statement (3) imply that
Theorem 5.1 holds true when we restrict x in the definition of S to be numbers of
the form 1/t where t is a positive integer.

6. An Upper Bound for Sn

Recall that Sn denotes the set of numbers of the form [nx]�
Pn

k=1 [kx]/k where x
varies over all real numbers. Observe that

[nx]�
nX

k=1

[kx]
k
 nx�

nX

k=1

[kx]
k

=
nX

k=1

kx� [kx]
k

<
nX

k=1

1
k

.

The following theorem sharpens this inequality.

Theorem 6.1. For fixed n and any value of x,

[nx]�
nX

k=1

[kx]
k


nX

k=2

1
k

.

Equality holds when x = 1� 1
n , so this bound is sharp as x varies.
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Proof. We proceed by induction on n. If n = 1, then [nx]�
Pn

k=1[kx]/k = [x]�[x] =
0 and

Pn
k=2 1/k = 0. Therefore the theorem is true when n = 1.

Suppose now that n > 1 and define xn and d = dn,x as in the beginning of
Section 3. Note that

[nxn] = [dxn + (n� d)xn] = [dxn] + [(n� d)xn], (34)

because dxn is an integer (in fact, dxn = [dx]).
Assume at first that d < n. From (4) and (34), we deduce that

[nx]�
nX

k=1

[kx]
k

= [dxn]�
dX

k=1

[kxn]
k

+ [(n� d)xn]�
nX

k=d+1

[kxn]
k

.

We use the induction hypothesis to get an upper bound on the first two expressions
on the right and use that [(n� d)xn]  (n� d)xn to get an upper on the last two
expressions. We obtain that

[nx]�
nX

k=1

[kx]
k


dX

k=2

1
k

+
nX

k=d+1

kxn � [kxn]
k

<
nX

k=2

1
k

.

This proves the desired bound when d < n. (In this case, the bound is strict.)
Assume now that d = n. From relation (4) we have

[nx]�
nX

k=1

[kx]
k

= [nxn]�
nX

k=1

[kxn]
k


nX

k=1

kxn � [kxn]
k

. (35)

The assumption that d = n and statement (9) imply that {kxn � [kxn] : k =
1, 2, . . . , n} = {0/n, 1/n, . . . , (n� 1)/n}. From Lemma 3.3 (with bk = kxn � [kxn]
and ck = 1/k) we obtain

nX

k=1

kxn � [kxn]
k


nX

k=1

n� k

n
· 1
k

=
nX

k=1

✓
1
k
� 1

n

◆
=

nX

k=2

1
k

. (36)

Relations (35) and (36) imply the desired bound when d = n.
If x = 1�1/n, it is straightfoward to verify that [nx]�

Pn
k=1[kx]/k =

Pn
k=2 1/k.

It can be shown that the relation in Theorem 6.1 is an equality if and only if
x� [x] � 1� 1/n. We omit the details.

Remark. Note that the upper bound in Theorem 6.1 is

Hn � 1 = log n + � � 1 + o(1) as n!1

where Hn is the n-th harmonic number and � ⇡ 0.577 is the Euler–Mascheroni
constant.
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