THE MEAN VALUE OF A HYBRID ARITHMETIC FUNCTION ASSOCIATED TO FOURIER COEFFICIENTS OF CUSP FORMS

Linli Wei
School of Mathematics and Statistics, Shandong Normal University, Ji’nan, Shandong, P. R. China
2576599154@qq.com

Huixue Lao
School of Mathematics and Statistics, Shandong Normal University, Ji’nan, Shandong, P. R. China
lhxsdnu@163.com

Received: 10/8/18, Revised: 4/23/19, Accepted: 8/2/19, Published: 9/4/19

Abstract
Let \(\lambda_f(n)\), \(\sigma(n)\), and \(\phi(n)\) denote the \(n\)th Fourier coefficient of holomorphic cusp form \(f\), the sum-of-divisors function, and the Euler totient function, respectively. We improve the error term of the asymptotic formula of \(\sum_{n \leq x} \lambda^j_f(n)\sigma^b(n)\phi^c(n)\) for \(j = 2, 4, 6\), and estimate the sum \(\sum_{n \leq x} \lambda^j_f(n)\sigma^b(n)\phi^c(n)\) for \(j = 7, 8\).

1. Introduction

In analytic number theory, one of the most basic goals is to establish the asymptotic formulae for the summation function

\[S(x) = \sum_{n \leq x} a(n), \]

where \(a(n)\) is an arithmetic function. In this paper, we investigate a hybrid arithmetic function \(\lambda^j_f(n)\sigma^b(n)\phi^c(n)\), where \(\lambda_f(n)\) is the \(n\)-th Fourier coefficient of holomorphic cusp form \(f\), \(\sigma(n)\) is the sum-of-divisors function, and \(\phi(n)\) is the Euler totient function.

Assume that \(k\) is an even integer and \(H^*_k\) is the set of all normalized Hecke primitive eigencuspform of weight \(k\) for the full modular group \(SL_2(\mathbb{Z})\). The Fourier expansion of \(f \in H^*_k\) at \(z = \infty\) is

\[f(z) = \sum_{n \geq 1} \lambda_f(n)n^{-\frac{k+1}{2}}e(z). \]
Here, $\lambda_f(n)$ is the eigenvalue of Hecke operator T_n, and $\lambda_f(n)$ is real and satisfies the multiplicative property

$$\lambda_f(m)\lambda_f(n) = \sum_{d|(m,n)} \lambda_f\left(\frac{mn}{d^2}\right),$$

where $m \geq 1$ and $n \geq 1$ are arbitrary integers. Fourier coefficients of holomorphic cusp forms are extremely significant and are of interest to many mathematicians. In 1974, Deligne [4] proved the Ramanujan-Petersson conjecture

$$|\lambda_f(n)| \leq d(n),$$

where $d(n)$ is the Dirichlet divisor function.

Rankin [17] studied the sum of Fourier coefficients of cusp forms over natural numbers, and showed that

$$\sum_{n \leq x} \lambda_f(n) \ll x^{1/3}(\log x)^{-\delta},$$

where $0 < \delta < 0.06$. In 1990, Ivić [5] obtained the following result:

$$\sum_{n \leq x} \lambda_f^2(n) = cx + O_f(x^{3/4}).$$

Recently, Manski, Mayle and Zbacnik [15] investigated a hybrid arithmetic function and showed

$$\sum_{n \leq x} d^n(n)\sigma^h(n)\phi^c(n) = x^{b+c+1}P_{2a-1}(\log x) + O(x^{b+c+ra+\epsilon}),$$

where a, b, c are real numbers, $\frac{1}{2} \leq r_a < 1$, and $P_n(t)$ is a polynomial of degree n.

Subsequently, the mean values of the hybrid arithmetic function $\lambda_f^i(n)\sigma^h(n)\phi^c(n)$ were estimated by Li[14] for $i = 1, 2, 3, 4$, and by Cui[3] for $i = 5, 6$.

Combining the classical analytic method with properties of some primitive automorphic L-functions, we improve the results of $\sum_{n \leq x} \lambda_f^i(n)\sigma^h(n)\phi^c(n)$ for $i = 2, 4, 6$, and further study the summation $\sum_{n \leq x} \lambda_f^i(n)\sigma^h(n)\phi^c(n)$ for $i = 7, 8$. In detail, we obtain the following results.

Theorem 1. Let $b, c \in \mathbb{R}$, $f \in H_0^\infty$, and let $\lambda_f(n)$ denote its n-th normalized Fourier coefficient. Then for any $\varepsilon > 0$,

$$\sum_{n \leq x} \lambda_f^2(n)\sigma^h(n)\phi^c(n) = C_0x^{b+c+1} + O\left(x^{b+c+\frac{32}{15}+\epsilon}\right),$$
where the O-constant depends on f.

Theorem 2. Let $b, c \in \mathbb{R}$, $f \in H_k^*$, and let $\lambda_f(n)$ denote its n-th normalized Fourier coefficient. Then for any $\varepsilon > 0$,

$$\sum_{n \leq x} \lambda_f^b(n) \phi^c(n) = x^{b+c+1} P_1(\log x) + O\left(x^{b+c+\frac{281}{208}+\varepsilon}\right),$$

where $P_1(t)$ is a polynomial in t of degree 1, and the O-constant depends on f.

Theorem 3. Let $b, c \in \mathbb{R}$, $f \in H_k^*$, and let $\lambda_f(n)$ denote its n-th normalized Fourier coefficient. Then for any $\varepsilon > 0$,

$$\sum_{n \leq x} \lambda_f^b(n) \phi^c(n) = x^{b+c+1} P_2(\log x) + O\left(x^{b+c+\frac{281}{612}+\varepsilon}\right),$$

where $P_2(t)$ is a polynomial in t of degree 4, and the O-constant depends on f.

Remark. We improve the results in [3, Theorem 4], [14, Theorem 2] and [14, Theorem 4] respectively. By comparison, $23/37 = 0.621\cdots < 38/59 = 0.644\cdots$ ([14, Theorem 2]), $257/299 = 0.8595\cdots < 139/160 = 0.86875$ ([14, Theorem 4]), $201/208 = 0.9663\cdots < 631/652 = 0.9677\cdots$ ([3, Theorem 4]).

Theorem 4. Let $b, c \in \mathbb{R}$, $f \in H_k^*$, and let $\lambda_f(n)$ denote its n-th normalized Fourier coefficient. Then for any $\varepsilon > 0$,

$$\sum_{n \leq x} \lambda_f^b(n) \phi^c(n) = O\left(x^{b+c+\frac{281}{612}+\varepsilon}\right),$$

where the O-constant depends on f.

Theorem 5. Let $b, c \in \mathbb{R}$, $f \in H_k^*$, and let $\lambda_f(n)$ denote its n-th normalized Fourier coefficient. Then for any $\varepsilon > 0$,

$$\sum_{n \leq x} \lambda_f^b(n) \phi^c(n) = x^{b+c+1} P_{13}(\log x) + O\left(x^{b+c+\frac{117}{124}+\varepsilon}\right),$$

where $P_{13}(t)$ is a polynomial in t of degree 13, and the O-constant depends on f.

2. Preliminaries

In order to prove Theorems 1-5, some relevant results will be given in this section. First, we will introduce several primitive automorphic L-functions.
The definition of the Riemann zeta function is
\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p (1 - p^{-s})^{-1}, \quad \text{Re}(s) > 1. \tag{2.1}
\]

The Hecke \(L\)-function of \(f \in H_k^*\) is a Dirichlet series and has Euler product representation
\[
L(f, s) = \sum_{n=1}^{\infty} \lambda_f(n) n^{-s} = \prod_p (1 - \alpha_f(p)p^{-s})^{-1}(1 - \beta_f(p)p^{-s})^{-1}, \tag{2.2}
\]
where \(\alpha_f(p)\) and \(\beta_f(p)\) are called local roots or local parameters of \(L(f, s)\) at \(p\).

According to Deligne [10], they satisfy
\[
\lambda_f(p) = \alpha_f(p) + \beta_f(p), \quad |\alpha_f(p)| = |\beta_f(p)| = \alpha_f(p)\beta_f(p) = 1. \tag{2.3}
\]

The inequality (1.1) ensures that the Dirichlet series (2.2) is absolutely convergent for \(\text{Re}(s) > 1\).

The \(j\)th symmetric power \(L\)-function attached to \(f \in H_k^*\) is defined as
\[
L(\text{sym}^j f, s) := \prod_p \prod_{m=0}^{j} (1 - \alpha_f(p)^{j-m} \beta_f(p)^m p^{-s})^{-1}. \tag{2.4}
\]

The definition of Rankin-Selberg \(L\)-function shows that
\[
L(\text{sym}^i f \times \text{sym}^j f, s) := \prod_p \prod_{m=0}^{i} \prod_{u=0}^{j} (1 - \alpha_f(p)^{(i+j)-2(m+u)} p^{-s})^{-1}. \tag{2.5}
\]

The above products over primes give the Dirichlet series for \(L(\text{sym}^j f, s)\) and \(L(\text{sym}^i f \times \text{sym}^j f, s)\). In view of (2.3)-(2.5), it is easy to see that \(L(\text{sym}^j f, s)\) and \(L(\text{sym}^i f \times \text{sym}^j f, s)\) converge absolutely in half-plane \(\text{Re}(s) > 1\).

Now we give the current best subconvexity (or convexity) bounds of these primitive automorphic \(L\)-functions.

The proofs of the statements in the following lemma may be found in [1], [6, Chapter 5], and [16].

Lemma 2.1. For any \(\varepsilon > 0\), \(\frac{1}{2} \leq \sigma \leq 1\), and \(|t| \geq 2\), we have
\[
\zeta(\sigma + it) \ll_{\varepsilon} (1 + |t|)^{\max\left\{ \frac{1}{2}(1-\sigma), 0 \right\} + \varepsilon},
\]
\[
L(\text{sym}^2 f, \sigma + it) \ll_{f, \varepsilon} (1 + |t|)^{\max\left\{ \frac{1}{2}(1-\sigma), 0 \right\} + \varepsilon},
\]
\[
L(\text{sym}^3 f, \sigma + it) \ll_{f, \varepsilon} (1 + |t|)^{\max\left\{ \frac{2}{3}(1-\sigma), 0 \right\} + \varepsilon}, \quad j = 3, 4,
\]
Define \(L(\text{sym}^i f \times \text{sym}^j f, \sigma + it) \ll_{f, \varepsilon} (1 + |t|)^{\max\left\{ \frac{(i+1)(j+1)}{2}, (1-\sigma), 0 \right\} + \varepsilon}, \ i, j = 1, 2, 3, 4. \)

The following lemma describes the mean-value of symmetric power L-functions and their Rankin-Selberg L-functions.

Lemma 2.2. For \(i, j = 1, 2, 3, 4, \) any \(\varepsilon > 0, \) \(T \geq T_0 \) (where \(T_0 \) is sufficiently large), we have the estimates

\[
\int_T^{2T} \left| L\left(\text{sym}^i f, \frac{1}{2} + \varepsilon + it \right) \right|^2 \, dt \ll_{f, \varepsilon} T^{\frac{i+1}{2} + \varepsilon},
\]

\[
\int_T^{2T} \left| L\left(\text{sym}^i f \times \text{sym}^j f, \frac{1}{2} + \varepsilon + it \right) \right|^2 \, dt \ll_{f, \varepsilon} T^{\frac{(i+1)(j+1)}{2} + \varepsilon}.
\]

Proof. The first assertion is in [10, Lemma 2.5], and the second is in [11, Lemma 2.4]. \(\square \)

Now we introduce the Perron’s formula, which is proved in [9, section 1.2.1].

Lemma 2.3. Let \(F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} \) and \(a(n) \leq A(n) \), and the series of \(F(s) \) converges absolutely for \(\sigma > 1 \), where \(A(n) \) is monotonically increasing function and \(\sum_{n=1}^{\infty} \frac{a(n)}{n^\sigma} = O \left(\frac{1}{(\sigma-1)^\alpha} \right) \) with \(\sigma \to 1^+ \). If \(b > 1 \) and \(x = N + \frac{1}{2} \) with \(N \in \mathbb{N} \). Then for \(T \geq 2 \),

\[
\sum_{n \leq x} a(n) = \frac{1}{2\pi i} \int_{b-iT}^{b+iT} F(s) \frac{x^s}{s} \, ds + O \left(\frac{x^b}{T(b-1)^\alpha} + \frac{x A(2x) \log x}{T} \right).
\]

Lemma 2.4. Let \(f \in H_k^0 \) and \(\lambda_f(n) \) denote its \(n^{th} \) normalized Fourier coefficient. Define

\[
F_1(s) = \sum_{n=1}^{\infty} \frac{\lambda_f^2(n) \sigma^b(n) \phi(n)}{n^s}.
\]

Then \(F_1(s) \) can be factored as

\[
F_1(s) = L(\text{sym}^4 f \times \text{sym}^3 f, s - b - c) L^5(\text{sym}^3 f \times \text{sym}^2 f, s - b - c) \]

\[
\times L^8(\text{sym}^3 f, s - b - c) L^8(f, s - b - c) H_1(s),
\]

where \(H_1(s) \) is absolutely convergent in \(\text{Re}(s) > b + c + \frac{1}{2} \).
Proof. Because each of \(\lambda_f(n) \), \(\sigma(n) \), and \(\phi(n) \) are multiplicative, \(\lambda_f^2(n) \sigma^2(n) \phi^2(n) \) is multiplicative. Therefore, the Dirichlet series \(F_1(s) \) can be rewirted as a product over primes:

\[
F_1(s) = \prod_p f_{1,p}(s) = \prod_p \sum_{k=0}^{\infty} \frac{\lambda_f^2(p^k) \sigma^2(p^k) \phi^2(p^k)}{p^{ks}} \\
= \prod_p \left(1 + \frac{\lambda_f^2(p) \sigma^2(p) \phi^2(p)}{p^s} + \frac{\lambda_f^2(p^2) \sigma^2(p^2) \phi^2(p^2)}{p^{2s}} + \cdots \right).
\]

From the theory of Hecke operators, we obtain the recursive relation

\[
\lambda_f(p^j) = \lambda_f(p^{j-1}) \lambda_f(p) - \lambda_f(p^{j-2}), \quad j \geq 2.
\]

By induction, we have

\[
\lambda_f(p^j) = \frac{\alpha_f(p^{j+1}) - \beta_f(p^{j+1})}{\alpha_f(p) - \beta_f(p)} = \sum_{m=0}^{j} \alpha_f(p)^{j-m} \beta_f(p)^m.
\]

Therefore,

\[
f_{1,p}(s) = 1 + \frac{(\alpha_f(p) + \beta_f(p))^7 (p + 1)^b (p - 1)^c}{p^s} \\
\quad + \frac{\left(\frac{\alpha_f^3(p) - \beta_f^3(p)}{\alpha_f(p) - \beta_f(p)} \right)^7}{p^{2s}} (p^2 + p + 1)^b (p^2 - p)^c + \cdots \\
= 1 + \frac{(\alpha_f(p) + \beta_f(p))^7 (p + 1)^b (p - 1)^c}{p^s} \\
\quad + \frac{\left(\alpha_f^2(p) + \alpha_f(p) \beta_f(p) + \beta_f^2(p) \right)^7}{p^{2s}} (p^2 + p + 1)^b (p^2 - p)^c + \cdots \\
= 1 + \frac{(\alpha_f(p) + \beta_f(p))^7}{p^{s-b-c}} + O\left(p^{2(b+c-\sigma)} + p^{(b+c-\sigma-1)}\right).
\]
Then,

\[F_1(s) = \prod_p f_{1,p}(s) \]

\[= \prod_p \left(1 + \frac{(\alpha_f(p) + \beta_f(p))^7}{p^{s+b+c}} + O\left(p^{2(b+c-a)} + p^{(b+c-a-1)} \right) \right) \]

\[= \prod_p \left(1 + \frac{\alpha_f^7(p) + 7\alpha_f^2(p) + 21\alpha_f^3(p) + 35\alpha_f(p) + 35\beta_f(p) + 21\beta_f^3(p) + 7\beta_f^2(p)}{p^{s+b+c}} \right. \]

\[+ O\left(p^{2(b+c-a)} + p^{(b+c-a-1)} \right) \]\n
\[= L(\text{sym}^4 f \times \text{sym}^3 f, s - b - c) \]

\[\times \prod_p \left(1 + \frac{5\alpha_f^2(p) + 18\alpha_f^3(p) + 31\alpha_f(p) + 31\beta_f(p) + 18\beta_f^3(p) + 5\beta_f^2(p)}{p^{s+b+c}} \right. \]

\[+ O\left(p^{2(b+c-a)} + p^{(b+c-a-1)} \right) \]

\[= L(\text{sym}^4 f \times \text{sym}^3 f, s - b - c) L^5(\text{sym}^3 f \times \text{sym}^2 f, s - b - c) \]

\[\times \prod_p \left(1 + \frac{8\alpha_f^2(p) + 16\alpha_f^3(p) + 16\beta_f(p) + 8\beta_f^3(p)}{p^{s+b+c}} + O\left(p^{2(b+c-a)} + p^{(b+c-a-1)} \right) \right) \]

\[= L(\text{sym}^4 f \times \text{sym}^3 f, s - b - c) L^5(\text{sym}^3 f \times \text{sym}^2 f, s - b - c) L^8(\text{sym}^3 f, s - b - c) \]

\[\times \prod_p \left(1 + \frac{8\alpha_f(p) + 8\beta_f(p)}{p^{s+b+c}} + O\left(p^{2(b+c-a)} + p^{(b+c-a-1)} \right) \right) \]

\[= L(\text{sym}^4 f \times \text{sym}^3 f, s - b - c) L^5(\text{sym}^3 f \times \text{sym}^2 f, s - b - c) L^8(\text{sym}^3 f, s - b - c) \]

\[\times L^1(\text{sym}^3 f, s - b - c) H_1(s), \]

where \(H_1(s) \) is absolutely convergent in \(\text{Re}(s) > b + c + 1/2 \).

The proof of the following lemma is similar to that of Lemma 2.4.

Lemma 2.5. Let \(f \in H^*_k \) and \(\lambda_f(n) \) denote its \(n \)-th normalized Fourier coefficient. Define

\[F_2(s) = \sum_{n=1}^{\infty} \frac{\lambda_f(n) \sigma^b(n) \phi^c(n)}{n^s}. \]

Then \(F_2(s) \) can be factored as

\[F_2(s) = L(\text{sym}^4 f \times \text{sym}^3 f, s - b - c) L^6(\text{sym}^4 f \times \text{sym}^2 f, s - b - c) \]

\[\times L^{13}(\text{sym}^4 f, s - b - c) L^{21}(\text{sym}^2 f, s - b - c) \zeta^{13}(s - b - c) H_2(s), \]

where \(H_2(s) \) is absolutely convergent in \(\text{Re}(s) > b + c + 1/2 \).
3. Proofs of Theorems 1-5

The proofs of Theorems 1-5 are similar, so we just prove Theorem 5 in this section.

Proof of Theorem 5. Denote $\lambda_f(n)\sigma^b(n)\phi^c(n)$ by $f_2(n)$. From (1.1), we observe that $f_2(n) \leq B n^{b+c+\varepsilon}$, where B is a real constant on ε. Let

$$L_2(f, s - b - c) = L(sym^4 f \times sym^4 f, s - b - c)L^6(sym^4 f \times sym^2 f, s - b - c)$$

$$\times L^{13}(sym^4 f, s - b - c)L^{21}(sym^2 f, s - b - c)\zeta^{13}(s - b - c).$$

From Lemma 2.5, we learn that $F_2(s) = L_2(f, s - b - c)H_2(s)$.

From the works of Coghell and Mochel [2], Jacquet and Shalika [7] [8], Shahidi [19] [20], and the reformulation of Rudnick and Sarnak [18], symmetric power L-function $L(sym^4 f, s)$ $(1 \leq i \leq 4)$ and Rankin-Selberg L-function $L(sym^4 f \times sym^4 f, s)$ $(1 \leq i < j \leq 4)$ can be extended to be an entire function on the whole complex plane. Lau and Wu [12] showed that for $1 \leq j \leq 4$, $L(sym^4 f \times sym^4 f, s)$ is entire except for simple poles at $s = 0, 1$, and satisfies a functional equation. Thus, $F_2(s)$ can be analytically continued to the half-plane $Re(s) > b + c + \frac{1}{2}$. In this region, $F_2(s)$ only has a pole $s = b + c + 1$ of order 14.

By using Lemma 2.3 (Perron’s formula), we obtain

$$\sum_{n \leq x} \lambda_f(n)^\sigma(n)\phi^c(n) = \frac{1}{2\pi i} \int_{b+c+1+\varepsilon-iT}^{b+c+1+\varepsilon+iT} \sum_{n=1}^\infty f_2(n) \frac{x^s}{ns} ds + O \left(\frac{x^{1+\varepsilon}}{T^{s-b-c-1}} \right) + O \left(\frac{xB(2x)^{b+c+\varepsilon} \log x}{T} \right)$$

$$= \frac{1}{2\pi i} \int_{b+c+1+\varepsilon-iT}^{b+c+1+\varepsilon+iT} L_2(f, s - b - c)H_2(s) \frac{x^s}{s} ds + O \left(\frac{x^{b+c+1+\varepsilon}}{T} \right), \quad (3.1)$$

where T with $1 \leq T \leq x$ is a parameter to be specified later.

Since our goal is to estimate the integral in (3.1), we need to consider the closed contour Γ:

$$I = [b + c + 1 + \varepsilon - iT, b + c + 1 + \varepsilon + iT],$$

$$II = [b + c + 1 + \varepsilon + iT, b + c + \frac{1}{2} + \varepsilon + iT],$$

$$III = [b + c + \frac{1}{2} + \varepsilon + iT, b + c + \frac{1}{2} + \varepsilon - iT],$$

$$IV = [b + c + \frac{1}{2} + \varepsilon - iT, b + c + 1 + \varepsilon - iT].$$

Let

$$I_1 = \int_I L_2(f, s - b - c)H_2(s) \frac{x^s}{s} ds, \quad I_2 = \int_{II} L_2(f, s - b - c)H_2(s) \frac{x^s}{s} ds,$$

$$I_3 = \int_{III} L_2(f, s - b - c)H_2(s) \frac{x^s}{s} ds, \quad I_4 = \int_{IV} L_2(f, s - b - c)H_2(s) \frac{x^s}{s} ds.$$
By Cauchy’s Residue theorem, we obtain
\[
\frac{1}{2\pi i} I_1 = \frac{1}{2\pi i} \int_1 L_2(f, s - b - c) H_2(s) \frac{x^s}{s} ds - \frac{1}{2\pi i} (I_2 + I_3 + I_4)
\]
\[
= x^{b+c+1} P_{13}(\log x) - \frac{1}{2\pi i} (I_2 + I_3 + I_4),
\]
where \(P_{13}(t)\) is the polynomial of degree 13 in \(t\).

By Lemma 2.5, \(H_2(s)\) converges absolutely in the half-plane \(\text{Re}(s) > b + c + \frac{1}{2}\).
Thus, for the integrals over the horizontal segments, \(I_2\) and \(I_4\) can be estimated as
\[
\ll \int_{\frac{1}{2} + \varepsilon}^{1+\varepsilon} L_2(f, \sigma + iT) \frac{x^{b+c+\varepsilon}}{T^\sigma} d\sigma
\]
\[
\ll x^{b+c} \int_{\frac{1}{2} + \varepsilon}^{1+\varepsilon} L_2(f, \sigma + iT) \frac{x^{\sigma}}{T} d\sigma.
\]
Furthermore, Lemma 2.1 leads to
\[
I_2 + I_4 \ll x^{b+c} \int_{\frac{1}{2} + \varepsilon}^{1+\varepsilon} T^{\left(\frac{13}{2} + \varepsilon\right) \times 6 + \frac{5}{2} \times 13 + \frac{1}{2} \times 21 + \frac{11}{2} \times 13 (1-\sigma) + \varepsilon} \frac{x^{\sigma}}{T^\sigma} d\sigma
\]
\[
\ll x^{b+c} \max_{\frac{1}{2} + \varepsilon \leq \sigma \leq 1+\varepsilon} T^{117} \left(\frac{x}{T^{118}}\right)^{\sigma}
\]
\[
\ll x^{b+c+1+\varepsilon} + x^{b+c+\frac{1}{2} + \varepsilon} T^{58+\varepsilon}.
\]

For the vertical segment, by using Lemma 2.2 and Cauchy’s inequality, \(I_3\) can be estimated as
\[
\ll \int_1^T \left(L \left(\text{sym}^4 f \times \text{sym}^4 f, \frac{1}{2} + \varepsilon + it \right) L^6 \left(\text{sym}^4 f \times \text{sym}^2 f, \frac{1}{2} + \varepsilon + it \right) \right.
\]
\[
\times L^{13} \left(\text{sym}^4 f, \frac{1}{2} + \varepsilon + it \right) L^{21} \left(\text{sym}^2 f, \frac{1}{2} + \varepsilon + it \right) \zeta^{13} \left(\frac{1}{2} + \varepsilon + it \right)
\]
\[
\times H_2(b + c + \frac{1}{2} + \varepsilon + it) \left| x^{b+c+\frac{1}{2} + \varepsilon} \right|_{|b+c+\frac{1}{2} + \varepsilon + it|} dt
\]
\[
\ll x^{b+c+\frac{1}{2} + \varepsilon} \int_1^T \left(L \left(\text{sym}^4 f \times \text{sym}^4 f, \frac{1}{2} + \varepsilon + it \right) L^6 \left(\text{sym}^4 f \times \text{sym}^2 f, \frac{1}{2} + \varepsilon + it \right) \right.
\]
\[
L^{13} \left(\text{sym}^4 f, \frac{1}{2} + \varepsilon + it \right) L^{21} \left(\text{sym}^2 f, \frac{1}{2} + \varepsilon + it \right) \zeta^{13} \left(\frac{1}{2} + \varepsilon + it \right) \left| \frac{1}{t} dt + x^{b+c+\frac{1}{2} + \varepsilon}.
\]

For convenience, we write
\[
L_{2,1}(f, s - b - c) = L(\text{sym}^4 f \times \text{sym}^4 f, s - b - c) L^4(\text{sym}^4 f \times \text{sym}^2 f, s - b - c)
\]
\[
\times L^6(\text{sym}^4 f, s - b - c),
\]
\[
L_{2,2}(f, s - b - c) = L^2(\text{sym}^4 f \times \text{sym}^2 f, s - b - c) L^5(\text{sym}^4 f, s - b - c).
\]
By a dyadic subdivision, we obtain

\[I_3 \ll x^{b+c+1+\varepsilon} + x^{b+c+\frac{1}{2}+\varepsilon} \log T \max_{1 \leq T_1 \leq T} \frac{1}{T_1} \times \left(\prod_{\frac{1}{2} \leq T_1 \leq T} \left| \zeta^{13} \left(\frac{1}{2} + \varepsilon + it \right) L \left(\text{sym}^4 f, \frac{1}{2} + \varepsilon + it \right) \right| \right) \times \left(\frac{\int_{\frac{T_1}{2}}^{T_1} |L_{2,1}(f, \sigma + iT)|^2 \, dt}{\frac{T_1}{2}} \right)^{\frac{1}{2}} \times \left(\int_{\frac{T_1}{2}}^{T_1} |L_{2,2}(f, \sigma + iT)|^2 \, dt \right)^{\frac{1}{2}} \ll x^{b+c+1+\varepsilon} + x^{b+c+1+\varepsilon} T^{\frac{58}{5}} \ll x^{b+c+\frac{1}{2}+\varepsilon} T^{\frac{58}{5}}. \] (3.6)

Inserting (3.4) and (3.6) into (3.2), we have

\[\frac{1}{2\pi i} \int_{\frac{b+c+1+\varepsilon + iT}{2}}^{b+c+1+\varepsilon + iT} L_1(f, s - b - c) H_2(s) \frac{x^s}{s} \, ds = \frac{1}{2\pi i} \int_{\Gamma} L_1(f, s - b - c) H_2(s) \frac{x^s}{s} \, ds - \frac{1}{2\pi i} (I_2 + I_3 + I_4) = x^{b+c+1} P_{13}(\log x) + O \left(x^{b+c+1+\frac{1}{2}+\varepsilon} T^{\frac{58}{5}} \right) + O \left(x^{b+c+1+\varepsilon} T \right). \]

Setting \(T = x^{\frac{1}{\varepsilon}} \), we obtain

\[S_2(x) = x^{b+c+1} P_{13}(\log x) + O \left(x^{b+c+1+\frac{1}{10}} + \varepsilon \right). \]

This completes the proof of Theorem 5. \(\square \)

Acknowledgments. This work is supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2018MA003). The authors wish to thank to the referee for a careful reading of manuscript and many valuable suggestions.

References

