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Abstract
Let u > v be two positive integers and c be an integer. In this note, we give a
closed form of the number of subsets of {1, 2, . . . , un�1} of vn elements whose sum
is congruent to c modulo n. This extends a formula of Vladeta Jovovic.

1. Introduction

A result of Erdős, Ginzburg and Ziv [3] states as follows.

Theorem. Each set of 2n� 1 integers contains some subset of n elements the sum
of which is a multiple of n.

In particular, if the set of 2n � 1 integers is {1, 2, . . . , 2n � 1}, Vladeta Jovovic
conjectured a closed form of the number of such n-member subsets, denoted by
s(n):
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where the summation runs over all positive divisors of n, �(·) is Euler’s totient func-
tion, and

�2d
d

�
is the d-th central binomial coe�cient. This formula was later con-

firmed by Max Alekseyev [1], whose proof relies on heavy computation on trigono-
metric functions. We remark that s(n) is sequence A145855 in the OEIS [5].

In this note, we not only provide an alternative proof of (1) that avoids the
computation involving trigonometric functions in Alekseyev’s proof, but also give
the following extension.

Theorem 1.1. Let u > v be two positive integers and c be an integer. Let n be a
positive integer. If s(u, v; c;n) counts the number of subsets of {1, 2, . . . , un� 1} of
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vn elements whose sum is congruent to c modulo n, then
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if n is even and v is odd,

(2)

where µ(·) is the Möbius function and �(·) is Euler’s totient function. We also
adopt the convention that gcd(0, n) = n.

3-mem. ⌃ mod 3 3-mem. ⌃ mod 3
{1, 2, 3} 0 {1, 4, 5} 1
{1, 2, 4} 1 {2, 3, 4} 0
{1, 2, 5} 2 {2, 3, 5} 1
{1, 3, 4} 2 {2, 4, 5} 2
{1, 3, 5} 0 {3, 4, 5} 0

(a) n = 3, u = 2, v = 1

2-mem. ⌃ mod 2 2-mem. ⌃ mod 2
{1, 2} 1 {2, 4} 0
{1, 3} 0 {2, 5} 1
{1, 4} 1 {3, 4} 1
{1, 5} 0 {3, 5} 0
{2, 3} 1 {4, 5} 1

(b) n = 2, u = 3, v = 1

4-mem. ⌃ mod 2
{1, 2, 3, 4} 0
{1, 2, 3, 5} 1
{1, 2, 4, 5} 0
{1, 3, 4, 5} 1
{2, 3, 4, 5} 0

(c) n = 2, u = 3, v = 2

Table 1: 2-, 3- and 4-Member subsets of {1, 2, 3, 4, 5}

In Table 1, we give three examples to illustrate Theorem 1.1. Here “k-mem.”
means k-member subsets of {1, 2, 3, 4, 5} and “⌃ mod d” means the sum of elements
in the subset modulo d.

Examples. (i). Let n = 3, u = 2 and v = 1. Then we are considering 3-member
subsets of {1, 2, 3, 4, 5}, which are listed in Table 1a. On the other hand, it follows
from Theorem 1.1 that s(2, 1; 0; 3) = 4, s(2, 1; 1; 3) = 3 and s(2, 1; 2; 3) = 3.

(ii). Let n = 2, u = 3 and v = 1. Then we are considering 2-member subsets
of {1, 2, 3, 4, 5}. One may compute from Theorem 1.1 that s(3, 1; 0; 2) = 4 and
s(3, 1; 1; 2) = 6. The two values match with Table 1b.
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(iii). Let n = 2, u = 3 and v = 2. Then we are considering 4-member subsets
of {1, 2, 3, 4, 5}. It can be computed by Theorem 1.1 that s(3, 2; 0; 2) = 3 and
s(3, 2; 1; 2) = 2, which, again, match with Table 1c.

Further, if we take c = 0 and 1 respectively in (2), we get the following corollaries.

Corollary 1.2. Let u > v be two positive integers. The number of subsets of
{1, 2, . . . , un� 1} of vn elements which sum to a multiple of n equals
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Corollary 1.3. Let u > v be two positive integers. The number of subsets of
{1, 2, . . . , un�1} of vn elements which sum to one more than a multiple of n equals
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Remark. One may further take u = 2 and v = 1 in (3) to deduce Jovovic’s formula
(1).

2. Proof of the Main Result

We begin with some combinatorial arguments. Let {x1, x2, . . . , xvn} be a subset of
{1, 2, . . . , un � 1} with 1  x1 < x2 < · · · < xvn  un � 1. For each 1  i  vn,
we write xi = x0i + i. It follows that 0  x01  x02  · · ·  x0vn  (u � v)n � 1.
Hence, the numbers x01, x

0
2, . . . , x

0
vn uniquely determine a partition with the largest

part not exceeding (u � v)n � 1 and the number of parts not exceeding vn. Here,
as usual, a partition of a nonnegative integer N is a weakly decreasing sequence of
positive integers (which are called the parts) that sum to N .

It is a standard result (cf. Chapter 3 in [2]) in the theory of partitions that the
generating function of partitions into at most M parts, each not exceeding L, is
given by the conventional q-binomial coe�cient
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We remark that it is indeed a polynomial in q of degree LM . Hence, the generating
function of partitions with the largest part not exceeding (u � v)n � 1 and the
number of parts not exceeding vn is

R(q) =
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. (5)

Let G(q) =
P

n�0 g(n)qn be a formal power series. From the orthogonality of
roots of unity, we have the following identity
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To determine the expression of s(u, v; c;n), we notice that
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As a consequence, we have that
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In the next lemma, we evaluate R(e2⇡i`/n).
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Lemma 2.1. Let ` be a positive integer. Then
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where in the second identity we set k = k0n0.
Consequently, we have that
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which is our desired result.
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If n is odd or n and v are both even, then it follows from (7) and (8) that
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where in the last identity we use the following evaluation of Ramanujan’s sum
(cf. Theorem 272 in [4])
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To show the second case of the main result, we have that if n is even and v is
odd, then
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Since n is even, we see that ` and gcd(`, n) have the same parity. Hence, (�1)` =
(�1)gcd(`,n). Following the same argument as above, we conclude that
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We therefore arrive at the desired result.
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3. Closing Remarks

If we replace the set {1, 2, . . . , un� 1} in Theorem 1.1 by an arbitrary set of un� 1
consecutive integers, say {a+1, a+2, . . . , a+un�1}, the formula in (2) still holds.
In fact, if {x1, x2, . . . , xvn} (with x1 < x2 < · · · < xvn) is a subset, we may put
xi = x0i + a + i for each 1  i  vn and then carry out the same procedure as in
Section 2.

For a general set S of 2n � 1 integers in the theorem of Erdős, Ginzburg and
Ziv stated at the beginning of this note, there seems to be no closed form that
enumerates the number of n-member subsets whose elements sum to a multiple of
n. Apparently, our approach would fail for general S as the initial combinatorial
argument in Section 2 now does not make sense. On the other hand, following
Alekseyev [1], we know that the number of such subsets is
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However, there is no obvious approach that can simplify this expression.
It would be an intriguing problem to find other examples of S that give nice

closed forms of the number of the desired n-member subsets, or even may lead to
parallel extensions like our Theorem 1.1.
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