

AN EXTENSION OF A FORMULA OF JOVOVIC

Shane Chern

Dept. of Mathematics, Penn State University, University Park, Pennsylvania shanechern@psu.edu

Received: 12/28/18, Revised: 4/29/19, Accepted: 8/3/19, Published: 9/30/19

Abstract

Let u > v be two positive integers and c be an integer. In this note, we give a closed form of the number of subsets of $\{1, 2, \ldots, un-1\}$ of vn elements whose sum is congruent to c modulo n. This extends a formula of Vladeta Jovovic.

1. Introduction

A result of Erdős, Ginzburg and Ziv [3] states as follows.

Theorem. Each set of 2n - 1 integers contains some subset of n elements the sum of which is a multiple of n.

In particular, if the set of 2n - 1 integers is $\{1, 2, ..., 2n - 1\}$, Vladeta Jovovic conjectured a closed form of the number of such *n*-member subsets, denoted by s(n):

$$s(n) = \frac{(-1)^n}{2n} \sum_{d|n} (-1)^d \phi\left(\frac{n}{d}\right) \binom{2d}{d},\tag{1}$$

where the summation runs over all positive divisors of n, $\phi(\cdot)$ is Euler's totient function, and $\binom{2d}{d}$ is the *d*-th central binomial coefficient. This formula was later confirmed by Max Alekseyev [1], whose proof relies on heavy computation on trigonometric functions. We remark that s(n) is sequence A145855 in the OEIS [5].

In this note, we not only provide an alternative proof of (1) that avoids the computation involving trigonometric functions in Alekseyev's proof, but also give the following extension.

Theorem 1.1. Let u > v be two positive integers and c be an integer. Let n be a positive integer. If s(u, v; c; n) counts the number of subsets of $\{1, 2, ..., un - 1\}$ of

vn elements whose sum is congruent to c modulo n, then

$$s(u,v;c;n) = \begin{cases} \frac{u-v}{un} \sum_{d|n} \mu\left(\frac{n}{d \cdot \gcd\left(c,\frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \gcd\left(c,\frac{n}{d}\right)}\right)} \binom{ud}{vd} \\ if n \text{ is odd or } n \text{ and } v \text{ are both even,} \\ \frac{u-v}{un} \sum_{d|n} (-1)^d \mu\left(\frac{n}{d \cdot \gcd\left(c,\frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \gcd\left(c,\frac{n}{d}\right)}\right)} \binom{ud}{vd} \\ if n \text{ is even and } v \text{ is odd,} \end{cases}$$
(2)

where $\mu(\cdot)$ is the Möbius function and $\phi(\cdot)$ is Euler's totient function. We also adopt the convention that gcd(0, n) = n.

3-mem.	$\Sigma \mod 3$	3-mem.	$\Sigma \mod 3$	2-mem.	$\Sigma \mod 2$	2-mem.	$\Sigma \mod 2$
$\{1, 2, 3\}$	0	$\{1, 4, 5\}$	1	$\{1, 2\}$	1	$\{2,4\}$	0
$\{1, 2, 4\}$	1	$\{2, 3, 4\}$	0	$\{1, 3\}$	0	$\{2, 5\}$	1
$\{1, 2, 5\}$	2	$\{2, 3, 5\}$	1	$\{1, 4\}$	1	$\{3, 4\}$	1
$\{1, 3, 4\}$	2	$\{2, 4, 5\}$	2	$\{1, 5\}$	0	$\{3, 5\}$	0
$\{1, 3, 5\}$	0	$\{3, 4, 5\}$	0	$\{2,3\}$	1	$\{4, 5\}$	1

(a)
$$n = 3, u = 2, v = 1$$

(b)
$$n = 2, u = 3, v = 1$$

4-mem.	$\Sigma \mod 2$				
$\{1, 2, 3, 4\}$	0				
$\{1, 2, 3, 5\}$	1				
$\{1, 2, 4, 5\}$	0				
$\{1, 3, 4, 5\}$	1				
$\{2, 3, 4, 5\}$	0				
(c) $n = 2, u = 3, v = 2$					

Table 1: 2-, 3- and 4-Member subsets of $\{1, 2, 3, 4, 5\}$

In Table 1, we give three examples to illustrate Theorem 1.1. Here "k-mem." means k-member subsets of $\{1, 2, 3, 4, 5\}$ and " Σ mod d" means the sum of elements in the subset modulo d.

Examples. (i). Let n = 3, u = 2 and v = 1. Then we are considering 3-member subsets of $\{1, 2, 3, 4, 5\}$, which are listed in Table 1a. On the other hand, it follows from Theorem 1.1 that s(2, 1; 0; 3) = 4, s(2, 1; 1; 3) = 3 and s(2, 1; 2; 3) = 3.

(ii). Let n = 2, u = 3 and v = 1. Then we are considering 2-member subsets of $\{1, 2, 3, 4, 5\}$. One may compute from Theorem 1.1 that s(3, 1; 0; 2) = 4 and s(3, 1; 1; 2) = 6. The two values match with Table 1b.

(iii). Let n = 2, u = 3 and v = 2. Then we are considering 4-member subsets of $\{1, 2, 3, 4, 5\}$. It can be computed by Theorem 1.1 that s(3, 2; 0; 2) = 3 and s(3, 2; 1; 2) = 2, which, again, match with Table 1c.

Further, if we take c = 0 and 1 respectively in (2), we get the following corollaries.

Corollary 1.2. Let u > v be two positive integers. The number of subsets of $\{1, 2, ..., un - 1\}$ of vn elements which sum to a multiple of n equals

$$\begin{cases} \frac{u-v}{un} \sum_{d|n} \phi\left(\frac{n}{d}\right) \begin{pmatrix} ud\\vd \end{pmatrix} & \text{if } n \text{ is odd or } n \text{ and } v \text{ are both even,} \\ \frac{u-v}{un} \sum_{d|n} (-1)^d \phi\left(\frac{n}{d}\right) \begin{pmatrix} ud\\vd \end{pmatrix} & \text{if } n \text{ is even and } v \text{ is odd.} \end{cases}$$
(3)

Corollary 1.3. Let u > v be two positive integers. The number of subsets of $\{1, 2, ..., un - 1\}$ of vn elements which sum to one more than a multiple of n equals

$$\begin{cases} \frac{u-v}{un} \sum_{d|n} \mu\left(\frac{n}{d}\right) \begin{pmatrix} ud \\ vd \end{pmatrix} & \text{if } n \text{ is odd } or n \text{ and } v \text{ are both even,} \\ \frac{u-v}{un} \sum_{d|n} (-1)^d \mu\left(\frac{n}{d}\right) \begin{pmatrix} ud \\ vd \end{pmatrix} & \text{if } n \text{ is even and } v \text{ is odd.} \end{cases}$$
(4)

Remark. One may further take u = 2 and v = 1 in (3) to deduce Jovovic's formula (1).

2. Proof of the Main Result

We begin with some combinatorial arguments. Let $\{x_1, x_2, \ldots, x_{vn}\}$ be a subset of $\{1, 2, \ldots, un-1\}$ with $1 \le x_1 < x_2 < \cdots < x_{vn} \le un-1$. For each $1 \le i \le vn$, we write $x_i = x'_i + i$. It follows that $0 \le x'_1 \le x'_2 \le \cdots \le x'_{vn} \le (u-v)n-1$. Hence, the numbers $x'_1, x'_2, \ldots, x'_{vn}$ uniquely determine a partition with the largest part not exceeding (u-v)n-1 and the number of parts not exceeding vn. Here, as usual, a partition of a nonnegative integer N is a weakly decreasing sequence of positive integers (which are called the parts) that sum to N.

It is a standard result (cf. Chapter 3 in [2]) in the theory of partitions that the generating function of partitions into at most M parts, each not exceeding L, is given by the conventional q-binomial coefficient

$$\begin{bmatrix} M+L \\ M \end{bmatrix}_q := \prod_{k=1}^M \frac{1-q^{L+k}}{1-q^k} = \prod_{k=1}^L \frac{1-q^{M+k}}{1-q^k}.$$

We remark that it is indeed a polynomial in q of degree LM. Hence, the generating function of partitions with the largest part not exceeding (u - v)n - 1 and the number of parts not exceeding vn is

$$R(q) = \sum_{m=0}^{vn((u-v)n-1)} r(m)q^m := \begin{bmatrix} un-1\\ vn \end{bmatrix}_q.$$
 (5)

Let $G(q)=\sum_{n\geq 0}g(n)q^n$ be a formal power series. From the orthogonality of roots of unity, we have the following identity

$$\sum_{\substack{n \ge 0\\ n \equiv h \pmod{H}}} g(n)q^n = \frac{1}{H} \sum_{\ell=1}^H e^{-\frac{2\pi i h\ell}{H}} G\left(e^{\frac{2\pi i \ell}{H}}q\right).$$
(6)

To determine the expression of s(u,v;c;n), we notice that $\sum_{i=1}^{vn} x_i \equiv c \pmod{n}$ is equivalent to

$$\sum_{i=1}^{vn} x'_i \equiv \begin{cases} c \pmod{n} & \text{if } n \text{ is odd or } n \text{ and } v \text{ are both even,} \\ \frac{n}{2} + c \pmod{n} & \text{if } n \text{ is even and } v \text{ is odd,} \end{cases}$$

since

$$1 + 2 + \dots + vn = \frac{vn(vn+1)}{2}$$
$$\equiv \begin{cases} 0 \pmod{n} & \text{if } n \text{ is odd or } n \text{ and } v \text{ are both even,} \\ \frac{n}{2} \pmod{n} & \text{if } n \text{ is even and } v \text{ is odd.} \end{cases}$$

As a consequence, we have that

$$s(u,v;c;n) = \begin{cases} \sum_{\substack{m=0\\m\equiv c\pmod{n}}}^{vn((u-v)n-1)} r(m) & \text{if } n \text{ is odd or } n \text{ and } v \text{ are both even,} \\ m\equiv c\pmod{n} \\ vn((u-v)n-1) \\ \sum_{\substack{m=0\\m\equiv\frac{n}{2}+c\pmod{n}}}^{n} r(m) & \text{if } n \text{ is even and } v \text{ is odd} \\ \end{cases} \\ = \begin{cases} \frac{1}{n} \sum_{\substack{\ell=1\\n\\\ell=1}}^{n} e^{-\frac{2\pi i c\ell}{n}} R\left(e^{\frac{2\pi i \ell}{n}}\right) & \text{if } n \text{ is odd or } n \text{ and } v \text{ are both even,} \\ \frac{1}{n} \sum_{\substack{\ell=1\\\ell=1}}^{n} (-1)^{\ell} e^{-\frac{2\pi i c\ell}{n}} R\left(e^{\frac{2\pi i \ell}{n}}\right) & \text{if } n \text{ is even and } v \text{ is odd.} \end{cases}$$
(7)

In the next lemma, we evaluate $R(e^{2\pi i \ell/n})$.

INTEGERS: 19 (2019)

Lemma 2.1. Let ℓ be a positive integer. Then

$$R\left(e^{\frac{2\pi i\ell}{n}}\right) = \frac{u-v}{u} \binom{u \cdot \gcd(\ell, n)}{v \cdot \gcd(\ell, n)}.$$
(8)

Proof. Recall that

$$R(q) = \begin{bmatrix} un-1\\ vn \end{bmatrix}_{q} = \prod_{k=1}^{(u-v)n-1} \frac{1-q^{vn+k}}{1-q^{k}}$$

Hence,

$$R\left(e^{\frac{2\pi i\ell}{n}}\right) = \prod_{k=1}^{(u-v)n-1} \lim_{q \to e^{\frac{2\pi i\ell}{n}}} \frac{1-q^{vn+k}}{1-q^k},$$

where

$$\lim_{q \to e^{\frac{2\pi i\ell}{n}}} \frac{1 - q^{vn+k}}{1 - q^k} = \begin{cases} 1 & \text{if } \left(e^{\frac{2\pi i\ell}{n}}\right)^k \neq 1, \\ \frac{vn+k}{k} & \text{if } \left(e^{\frac{2\pi i\ell}{n}}\right)^k = 1. \end{cases}$$

Furthermore, $\left(e^{\frac{2\pi i\ell}{n}}\right)^k = 1$ implies that *n* divides $k\ell$.

For convenience, we write n = n'd and $\ell = \ell'd$ where $d = \gcd(\ell, n)$. Then $n \mid k\ell$ is equivalent to $n' \mid k$. Hence,

$$\begin{split} \prod_{k=1}^{(u-v)n-1} \lim_{q \to e^{\frac{2\pi i\ell}{n}}} \frac{1-q^{vn+k}}{1-q^k} &= \prod_{\substack{k=1 \ m \in \mathbb{N}^{(u-v)n-1} \ (m \to d \ n')}}^{(u-v)n-1} \frac{vn+k}{k} = \prod_{\substack{k'=1}}^{(u-v)d-1} \frac{vn+k'n'}{k'n'} \\ &= \prod_{\substack{k'=1 \ k'=1}}^{(u-v)d-1} \frac{vd+k'}{k'} = \binom{ud-1}{(u-v)d-1} = \frac{u-v}{u} \binom{ud}{vd}, \end{split}$$

where in the second identity we set k = k'n'.

Consequently, we have that

$$R\left(e^{\frac{2\pi i\ell}{n}}\right) = \frac{u-v}{u}\binom{ud}{vd} = \frac{u-v}{u}\binom{u\cdot\gcd(\ell,n)}{v\cdot\gcd(\ell,n)},$$

which is our desired result.

If n is odd or n and v are both even, then it follows from (7) and (8) that

$$\begin{split} s(u,v;c;n) &= \frac{1}{n} \sum_{\ell=1}^{n} e^{-\frac{2\pi i \ell \ell}{n}} R\left(e^{\frac{2\pi i \ell}{n}}\right) \\ &= \frac{u-v}{un} \sum_{\ell=1}^{n} e^{-\frac{2\pi i \ell \ell}{n}} \binom{u \cdot \gcd(\ell,n)}{v \cdot \gcd(\ell,n)} \\ &= \frac{u-v}{un} \sum_{d|n} \binom{ud}{vd} \sum_{\substack{\ell=1\\ \gcd(\ell,n)=d}}^{n} e^{-\frac{2\pi i \ell \ell}{n}} \\ &= \frac{u-v}{un} \sum_{d|n} \binom{ud}{vd} \sum_{\substack{\ell'=1\\ \gcd(\ell',\frac{n}{d})=1}}^{\frac{n}{d}} \exp\left(-\frac{2\pi i \ell \ell'}{n/d}\right) \\ &= \frac{u-v}{un} \sum_{d|n} \mu\left(\frac{n}{d \cdot \gcd(c,\frac{n}{d})}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \gcd\left(c,\frac{n}{d}\right)}\right)} \binom{ud}{vd}, \end{split}$$

where in the last identity we use the following evaluation of Ramanujan's sum (cf. Theorem 272 in [4])

$$c_q(m) := \sum_{\substack{\ell=1\\\gcd(\ell,q)=1}}^q \exp\left(\frac{2\pi i m\ell}{q}\right) = \mu\left(\frac{q}{\gcd(m,q)}\right) \frac{\phi(q)}{\phi\left(\frac{q}{\gcd(m,q)}\right)}.$$

To show the second case of the main result, we have that if n is even and v is odd, then

$$s(u,v;c;n) = \frac{1}{n} \sum_{\ell=1}^{n} (-1)^{\ell} e^{-\frac{2\pi i c\ell}{n}} R\left(e^{\frac{2\pi i \ell}{n}}\right) = \frac{u-v}{un} \sum_{\ell=1}^{n} (-1)^{\ell} e^{-\frac{2\pi i c\ell}{n}} \binom{u \cdot \gcd(\ell,n)}{v \cdot \gcd(\ell,n)}.$$

Since n is even, we see that ℓ and $gcd(\ell, n)$ have the same parity. Hence, $(-1)^{\ell} = (-1)^{gcd(\ell,n)}$. Following the same argument as above, we conclude that

$$s(u, v; c; n) = \frac{u - v}{un} \sum_{\ell=1}^{n} (-1)^{\gcd(\ell, n)} e^{-\frac{2\pi i c\ell}{n}} \begin{pmatrix} u \cdot \gcd(\ell, n) \\ v \cdot \gcd(\ell, n) \end{pmatrix}$$
$$= \frac{u - v}{un} \sum_{d|n} (-1)^{d} \binom{ud}{vd} \sum_{\substack{\ell=1\\ \gcd(\ell, n) = d}}^{n} e^{-\frac{2\pi i c\ell}{n}}$$
$$= \frac{u - v}{un} \sum_{d|n} (-1)^{d} \mu \left(\frac{n}{d \cdot \gcd\left(c, \frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \gcd\left(c, \frac{n}{d}\right)}\right)} \binom{ud}{vd}.$$

We therefore arrive at the desired result.

3. Closing Remarks

If we replace the set $\{1, 2, \ldots, un-1\}$ in Theorem 1.1 by an arbitrary set of un-1 consecutive integers, say $\{a+1, a+2, \ldots, a+un-1\}$, the formula in (2) still holds. In fact, if $\{x_1, x_2, \ldots, x_{vn}\}$ (with $x_1 < x_2 < \cdots < x_{vn}$) is a subset, we may put $x_i = x'_i + a + i$ for each $1 \le i \le vn$ and then carry out the same procedure as in Section 2.

For a general set S of 2n - 1 integers in the theorem of Erdős, Ginzburg and Ziv stated at the beginning of this note, there seems to be no closed form that enumerates the number of *n*-member subsets whose elements sum to a multiple of *n*. Apparently, our approach would fail for general S as the initial combinatorial argument in Section 2 now does not make sense. On the other hand, following Alekseyev [1], we know that the number of such subsets is

$$-1 + \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n \prod_{s \in \mathcal{S}} \left(1 + \exp\left(\frac{2\pi i(j+ks)}{n}\right) \right).$$

However, there is no obvious approach that can simplify this expression.

It would be an intriguing problem to find other examples of S that give nice closed forms of the number of the desired *n*-member subsets, or even may lead to parallel extensions like our Theorem 1.1.

Acknowledgements. I would like to thank the referee for helpful suggestions.

References

- M. Alekseyev, Proof of Jovovic's formula, unpublished manuscript (2008). Available at http://oeis.org/A145855/a145855.txt.
- [2] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing Co., Reading, 1976.
- [3] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Res. Counc. Israel Sect. F Math. Phys. 10F (1961), no. 1, 41–43.
- [4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Sixth Edition, Oxford University Press, Oxford, 2008.
- [5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org.