AN EXTENSION OF A FORMULA OF JOVOVIC

Shane Chern
Dept. of Mathematics, Penn State University, University Park, Pennsylvania
shanechern@psu.edu

Received: 12/28/18, Revised: 4/29/19, Accepted: 8/3/19, Published: 9/30/19

Abstract

Let $u>v$ be two positive integers and c be an integer. In this note, we give a closed form of the number of subsets of $\{1,2, \ldots$, un -1$\}$ of $v n$ elements whose sum is congruent to c modulo n. This extends a formula of Vladeta Jovovic.

1. Introduction

A result of Erdős, Ginzburg and Ziv [3] states as follows.
Theorem. Each set of $2 n-1$ integers contains some subset of n elements the sum of which is a multiple of n.

In particular, if the set of $2 n-1$ integers is $\{1,2, \ldots, 2 n-1\}$, Vladeta Jovovic conjectured a closed form of the number of such n-member subsets, denoted by $s(n)$:

$$
\begin{equation*}
s(n)=\frac{(-1)^{n}}{2 n} \sum_{d \mid n}(-1)^{d} \phi\left(\frac{n}{d}\right)\binom{2 d}{d} \tag{1}
\end{equation*}
$$

where the summation runs over all positive divisors of $n, \phi(\cdot)$ is Euler's totient function, and $\binom{2 d}{d}$ is the d-th central binomial coefficient. This formula was later confirmed by Max Alekseyev [1], whose proof relies on heavy computation on trigonometric functions. We remark that $s(n)$ is sequence A145855 in the OEIS [5].

In this note, we not only provide an alternative proof of (1) that avoids the computation involving trigonometric functions in Alekseyev's proof, but also give the following extension.

Theorem 1.1. Let $u>v$ be two positive integers and c be an integer. Let n be a positive integer. If $s(u, v ; c ; n)$ counts the number of subsets of $\{1,2, \ldots$, un -1$\}$ of
$v n$ elements whose sum is congruent to c modulo n, then

$$
s(u, v ; c ; n)=\left\{\begin{array}{r}
\frac{u-v}{u n} \sum_{d \mid n} \mu\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right)}\binom{u d}{v d} \tag{2}\\
\text { if } n \text { is odd or } n \text { and } v \text { are both even }, \\
\frac{u-v}{u n} \sum_{d \mid n}(-1)^{d} \mu\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right)}\binom{u d}{v d} \\
\text { if } n \text { is even and } v \text { is odd },
\end{array}\right.
$$

where $\mu(\cdot)$ is the Möbius function and $\phi(\cdot)$ is Euler's totient function. We also adopt the convention that $\operatorname{gcd}(0, n)=n$.

3-mem.	$\Sigma \bmod 3$	3-mem.	$\Sigma \bmod 3$	2-mem.	$\Sigma \bmod 2$	2-mem.	$\Sigma \bmod 2$
$\{1,2,3\}$	0	\{1, 4, 5\}	1	\{1, 2\}	1	\{2, 4\}	0
$\{1,2,4\}$	1	$\{2,3,4\}$	0	\{1, 3\}	0	\{2, 5\}	1
\{1, 2, 5\}	2	$\{2,3,5\}$	1	\{1, 4\}	1	\{3, 4\}	1
\{1,3,4\}	2	$\{2,4,5\}$	2	\{1, 5\}	0	\{3, 5\}	0
\{1,3,5\}	0	$\{3,4,5\}$	0	\{2, 3\}	1	\{4, 5\}	1

(a) $n=3, u=2, v=1$
(b) $n=2, u=3, v=1$

4-mem.	$\Sigma \bmod 2$
$\{1,2,3,4\}$	0
$\{1,2,3,5\}$	1
$\{1,2,4,5\}$	0
$\{1,3,4,5\}$	1
$\{2,3,4,5\}$	0

(c) $n=2, u=3, v=2$

Table 1: 2-, 3 - and 4-Member subsets of $\{1,2,3,4,5\}$
In Table 1, we give three examples to illustrate Theorem 1.1. Here " k-mem." means k-member subsets of $\{1,2,3,4,5\}$ and " $\Sigma \bmod d$ " means the sum of elements in the subset modulo d.

Examples. (i). Let $n=3, u=2$ and $v=1$. Then we are considering 3-member subsets of $\{1,2,3,4,5\}$, which are listed in Table 1a. On the other hand, it follows from Theorem 1.1 that $s(2,1 ; 0 ; 3)=4, s(2,1 ; 1 ; 3)=3$ and $s(2,1 ; 2 ; 3)=3$.
(ii). Let $n=2, u=3$ and $v=1$. Then we are considering 2 -member subsets of $\{1,2,3,4,5\}$. One may compute from Theorem 1.1 that $s(3,1 ; 0 ; 2)=4$ and $s(3,1 ; 1 ; 2)=6$. The two values match with Table 1 b .
(iii). Let $n=2, u=3$ and $v=2$. Then we are considering 4 -member subsets of $\{1,2,3,4,5\}$. It can be computed by Theorem 1.1 that $s(3,2 ; 0 ; 2)=3$ and $s(3,2 ; 1 ; 2)=2$, which, again, match with Table 1c.

Further, if we take $c=0$ and 1 respectively in (2), we get the following corollaries.
Corollary 1.2. Let $u>v$ be two positive integers. The number of subsets of $\{1,2, \ldots$, un -1$\}$ of vn elements which sum to a multiple of n equals

$$
\begin{cases}\frac{u-v}{u n} \sum_{d \mid n} \phi\left(\frac{n}{d}\right)\binom{u d}{v d} & \text { if } n \text { is odd or } n \text { and } v \text { are both even, } \tag{3}\\ \frac{u-v}{u n} \sum_{d \mid n}(-1)^{d} \phi\left(\frac{n}{d}\right)\binom{u d}{v d} & \text { if } n \text { is even and } v \text { is odd. }\end{cases}
$$

Corollary 1.3. Let $u>v$ be two positive integers. The number of subsets of $\{1,2, \ldots, u n-1\}$ of vn elements which sum to one more than a multiple of n equals

$$
\begin{cases}\frac{u-v}{u n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right)\binom{u d}{v d} & \text { if } n \text { is odd or } n \text { and } v \text { are both even, } \tag{4}\\ \frac{u-v}{u n} \sum_{d \mid n}(-1)^{d} \mu\left(\frac{n}{d}\right)\binom{u d}{v d} & \text { if } n \text { is even and } v \text { is odd. }\end{cases}
$$

Remark. One may further take $u=2$ and $v=1$ in (3) to deduce Jovovic's formula (1).

2. Proof of the Main Result

We begin with some combinatorial arguments. Let $\left\{x_{1}, x_{2}, \ldots, x_{v n}\right\}$ be a subset of $\{1,2, \ldots$, un -1$\}$ with $1 \leq x_{1}<x_{2}<\cdots<x_{v n} \leq u n-1$. For each $1 \leq i \leq v n$, we write $x_{i}=x_{i}^{\prime}+i$. It follows that $0 \leq x_{1}^{\prime} \leq x_{2}^{\prime} \leq \cdots \leq x_{v n}^{\prime} \leq(u-v) n-1$. Hence, the numbers $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{v n}^{\prime}$ uniquely determine a partition with the largest part not exceeding $(u-v) n-1$ and the number of parts not exceeding $v n$. Here, as usual, a partition of a nonnegative integer N is a weakly decreasing sequence of positive integers (which are called the parts) that sum to N.

It is a standard result (cf. Chapter 3 in [2]) in the theory of partitions that the generating function of partitions into at most M parts, each not exceeding L, is given by the conventional q-binomial coefficient

$$
\left[\begin{array}{c}
M+L \\
M
\end{array}\right]_{q}:=\prod_{k=1}^{M} \frac{1-q^{L+k}}{1-q^{k}}=\prod_{k=1}^{L} \frac{1-q^{M+k}}{1-q^{k}}
$$

We remark that it is indeed a polynomial in q of degree $L M$. Hence, the generating function of partitions with the largest part not exceeding $(u-v) n-1$ and the number of parts not exceeding $v n$ is

$$
R(q)=\sum_{m=0}^{v n((u-v) n-1)} r(m) q^{m}:=\left[\begin{array}{c}
u n-1 \tag{5}\\
v n
\end{array}\right]_{q}
$$

Let $G(q)=\sum_{n \geq 0} g(n) q^{n}$ be a formal power series. From the orthogonality of roots of unity, we have the following identity

$$
\begin{equation*}
\sum_{\substack{n \geq 0 \\ n \equiv h(\bmod H)}} g(n) q^{n}=\frac{1}{H} \sum_{\ell=1}^{H} e^{-\frac{2 \pi i h \ell}{H}} G\left(e^{\frac{2 \pi i \ell}{H}} q\right) . \tag{6}
\end{equation*}
$$

To determine the expression of $s(u, v ; c ; n)$, we notice that $\sum_{i=1}^{v n} x_{i} \equiv c(\bmod n)$ is equivalent to

$$
\sum_{i=1}^{v n} x_{i}^{\prime} \equiv \begin{cases}c \quad(\bmod n) & \text { if } n \text { is odd or } n \text { and } v \text { are both even } \\ \frac{n}{2}+c \quad(\bmod n) & \text { if } n \text { is even and } v \text { is odd }\end{cases}
$$

since

$$
\begin{aligned}
1+2 & +\cdots+v n=\frac{v n(v n+1)}{2} \\
& \equiv\left\{\begin{array}{lll}
0 & (\bmod n) & \text { if } n \text { is odd or } n \text { and } v \text { are both even, } \\
\frac{n}{2} & (\bmod n) & \text { if } n \text { is even and } v \text { is odd. }
\end{array}\right.
\end{aligned}
$$

As a consequence, we have that

$$
\begin{align*}
s(u, v ; c ; n) & = \begin{cases}\sum_{\substack{m=0 \\
m=c \\
v n\left((\bmod n) \\
\sum_{m=0}^{v n}((u-v) n-1)\right.}}^{\sum_{m=\frac{n}{2}+c}(\bmod n)} r(m) & \text { if } n \text { is odd or } n \text { and } v \text { are both even, } \\
& \text { if } n \text { is even and } v \text { is odd } \\
\frac{1}{n} \sum_{\ell=1}^{n}(-1)^{\ell} e^{-\frac{2 \pi i c \ell}{n}} R\left(e^{\frac{2 \pi i \ell}{n}}\right) & \text { if } n \text { is even and } v \text { is odd. }\end{cases}
\end{align*}
$$

In the next lemma, we evaluate $R\left(e^{2 \pi i \ell / n}\right)$.

Lemma 2.1. Let ℓ be a positive integer. Then

$$
\begin{equation*}
R\left(e^{\frac{2 \pi i \ell}{n}}\right)=\frac{u-v}{u}\binom{u \cdot \operatorname{gcd}(\ell, n)}{v \cdot \operatorname{gcd}(\ell, n)} \tag{8}
\end{equation*}
$$

Proof. Recall that

$$
R(q)=\left[\begin{array}{c}
u n-1 \\
v n
\end{array}\right]_{q}=\prod_{k=1}^{(u-v) n-1} \frac{1-q^{v n+k}}{1-q^{k}}
$$

Hence,

$$
R\left(e^{\frac{2 \pi i \ell}{n}}\right)=\prod_{k=1}^{(u-v) n-1} \lim _{q \rightarrow e^{\frac{2 \pi i \ell}{n}}} \frac{1-q^{v n+k}}{1-q^{k}}
$$

where

$$
\lim _{q \rightarrow e^{\frac{2 \pi i \ell}{n}}} \frac{1-q^{v n+k}}{1-q^{k}}= \begin{cases}1 & \text { if }\left(e^{\frac{2 \pi i \ell}{n}}\right)^{k} \neq 1 \\ \frac{v n+k}{k} & \text { if }\left(e^{\frac{2 \pi i \ell}{n}}\right)^{k}=1\end{cases}
$$

Furthermore, $\left(e^{\frac{2 \pi i \ell}{n}}\right)^{k}=1$ implies that n divides $k \ell$.
For convenience, we write $n=n^{\prime} d$ and $\ell=\ell^{\prime} d$ where $d=\operatorname{gcd}(\ell, n)$. Then $n \mid k \ell$ is equivalent to $n^{\prime} \mid k$. Hence,

$$
\begin{aligned}
\prod_{k=1}^{(u-v) n-1} \lim _{q \rightarrow e^{\frac{2 \pi i \ell}{n}}} \frac{1-q^{v n+k}}{1-q^{k}} & =\prod_{\substack{k=1 \\
\left(\bmod n^{\prime}\right)}}^{(u-v) n-1} \frac{v n+k}{k}=\prod_{k^{\prime}=1}^{(u-v) d-1} \frac{v n+k^{\prime} n^{\prime}}{k^{\prime} n^{\prime}} \\
& =\prod_{k^{\prime}=1}^{(u-v) d-1} \frac{v d+k^{\prime}}{k^{\prime}}=\binom{u d-1}{(u-v) d-1}=\frac{u-v}{u}\binom{u d}{v d}
\end{aligned}
$$

where in the second identity we set $k=k^{\prime} n^{\prime}$.
Consequently, we have that

$$
R\left(e^{\frac{2 \pi i \ell}{n}}\right)=\frac{u-v}{u}\binom{u d}{v d}=\frac{u-v}{u}\binom{u \cdot \operatorname{gcd}(\ell, n)}{v \cdot \operatorname{gcd}(\ell, n)}
$$

which is our desired result.

If n is odd or n and v are both even, then it follows from (7) and (8) that

$$
\begin{aligned}
s(u, v ; c ; n) & =\frac{1}{n} \sum_{\ell=1}^{n} e^{-\frac{2 \pi i c \ell}{n}} R\left(e^{\frac{2 \pi i \ell}{n}}\right) \\
& =\frac{u-v}{u n} \sum_{\ell=1}^{n} e^{-\frac{2 \pi i c \ell}{n}}\binom{u \cdot \operatorname{gcd}(\ell, n)}{v \cdot \operatorname{gcd}(\ell, n)} \\
& =\frac{u-v}{u n} \sum_{d \mid n}\binom{u d}{v d} \sum_{\substack{\ell=1 \\
\operatorname{gcd}(\ell, n)=d}}^{n} e^{-\frac{2 \pi i c e}{n}} \\
& =\frac{u-v}{u n} \sum_{d \mid n}\binom{u d}{v d} \sum_{\substack{\ell^{\prime}=1 \\
\frac{n}{d}}}^{\operatorname{gcd}\left(\ell^{\prime}, \frac{n}{d}\right)=1} \\
& \exp \left(-\frac{2 \pi i c \ell^{\prime}}{n / d}\right) \\
& =\frac{u-v}{u n} \sum_{d \mid n} \mu\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right)}\binom{u d}{v d},
\end{aligned}
$$

where in the last identity we use the following evaluation of Ramanujan's sum (cf. Theorem 272 in [4])

$$
c_{q}(m):=\sum_{\substack{\ell=1 \\ \operatorname{gcd}(\ell, q)=1}}^{q} \exp \left(\frac{2 \pi i m \ell}{q}\right)=\mu\left(\frac{q}{\operatorname{gcd}(m, q)}\right) \frac{\phi(q)}{\phi\left(\frac{q}{\operatorname{gcd}(m, q)}\right)}
$$

To show the second case of the main result, we have that if n is even and v is odd, then
$s(u, v ; c ; n)=\frac{1}{n} \sum_{\ell=1}^{n}(-1)^{\ell} e^{-\frac{2 \pi i c \ell}{n}} R\left(e^{\frac{2 \pi i \ell}{n}}\right)=\frac{u-v}{u n} \sum_{\ell=1}^{n}(-1)^{\ell} e^{-\frac{2 \pi i c \ell}{n}}\binom{u \cdot \operatorname{gcd}(\ell, n)}{v \cdot \operatorname{gcd}(\ell, n)}$.
Since n is even, we see that ℓ and $\operatorname{gcd}(\ell, n)$ have the same parity. Hence, $(-1)^{\ell}=$ $(-1)^{\operatorname{gcd}(\ell, n)}$. Following the same argument as above, we conclude that

$$
\begin{aligned}
s(u, v ; c ; n) & =\frac{u-v}{u n} \sum_{\ell=1}^{n}(-1)^{\operatorname{gcd}(\ell, n)} e^{-\frac{2 \pi i c \ell}{n}}\binom{u \cdot \operatorname{gcd}(\ell, n)}{v \cdot \operatorname{gcd}(\ell, n)} \\
& =\frac{u-v}{u n} \sum_{d \mid n}(-1)^{d}\binom{u d}{v d} \sum_{\substack{\ell=1 \\
\operatorname{gcd}(\ell, n)=d}}^{n} e^{-\frac{2 \pi i c \ell}{n}} \\
& =\frac{u-v}{u n} \sum_{d \mid n}(-1)^{d} \mu\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right) \frac{\phi\left(\frac{n}{d}\right)}{\phi\left(\frac{n}{d \cdot \operatorname{gcd}\left(c, \frac{n}{d}\right)}\right)}\binom{u d}{v d} .
\end{aligned}
$$

We therefore arrive at the desired result.

3. Closing Remarks

If we replace the set $\{1,2, \ldots, u n-1\}$ in Theorem 1.1 by an arbitrary set of $u n-1$ consecutive integers, say $\{a+1, a+2, \ldots, a+u n-1\}$, the formula in (2) still holds. In fact, if $\left\{x_{1}, x_{2}, \ldots, x_{v n}\right\}$ (with $x_{1}<x_{2}<\cdots<x_{v n}$) is a subset, we may put $x_{i}=x_{i}^{\prime}+a+i$ for each $1 \leq i \leq v n$ and then carry out the same procedure as in Section 2.

For a general set \mathcal{S} of $2 n-1$ integers in the theorem of Erdős, Ginzburg and Ziv stated at the beginning of this note, there seems to be no closed form that enumerates the number of n-member subsets whose elements sum to a multiple of n. Apparently, our approach would fail for general \mathcal{S} as the initial combinatorial argument in Section 2 now does not make sense. On the other hand, following Alekseyev [1], we know that the number of such subsets is

$$
-1+\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n} \prod_{s \in \mathcal{S}}\left(1+\exp \left(\frac{2 \pi i(j+k s)}{n}\right)\right)
$$

However, there is no obvious approach that can simplify this expression.
It would be an intriguing problem to find other examples of \mathcal{S} that give nice closed forms of the number of the desired n-member subsets, or even may lead to parallel extensions like our Theorem 1.1.

Acknowledgements. I would like to thank the referee for helpful suggestions.

References

[1] M. Alekseyev, Proof of Jovovic's formula, unpublished manuscript (2008). Available at http://oeis.org/A145855/a145855.txt.
[2] G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing Co., Reading, 1976.
[3] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Res. Counc. Israel Sect. F Math. Phys. 10F (1961), no. 1, 41-43.
[4] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Sixth Edition, Oxford University Press, Oxford, 2008.
[5] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://oeis.org.

