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Abstract
Let uw > v be two positive integers and ¢ be an integer. In this note, we give a
closed form of the number of subsets of {1,2,...,un—1} of vn elements whose sum

is congruent to ¢ modulo n. This extends a formula of Vladeta Jovovic.

1. Introduction

A result of Erdés, Ginzburg and Ziv [3] states as follows.

Theorem. Fach set of 2n — 1 integers contains some subset of n elements the sum
of which is a multiple of n.

In particular, if the set of 2n — 1 integers is {1,2,...,2n — 1}, Vladeta Jovovic
conjectured a closed form of the number of such n-member subsets, denoted by

s(n):
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where the summation runs over all positive divisors of n, ¢(-) is Euler’s totient func-
tion, and (Qdd) is the d-th central binomial coefficient. This formula was later con-
firmed by Max Alekseyev [1], whose proof relies on heavy computation on trigono-
metric functions. We remark that s(n) is sequence A145855 in the OEIS [5].
In this note, we not only provide an alternative proof of (1) that avoids the
computation involving trigonometric functions in Alekseyev’s proof, but also give
the following extension.

Theorem 1.1. Let u > v be two positive integers and c be an integer. Let n be a
positive integer. If s(u,v;c;n) counts the number of subsets of {1,2,... ,un — 1} of
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vn elements whose sum is congruent to ¢ modulo n, then
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if n is odd or n and v are both even,

s(u,v;e;m) = (2)

> (1) (d . gcg(c, g)) 5 (ME)J (Zj)

d|n
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if n is even and v is odd,

where p(-) is the Mébius function and ¢(-) is Euler’s totient function. We also
adopt the convention that ged(0,n) = n.

3-mem. Y mod3 | 3-mem. X mod3 2-mem. Y mod?2 | 2-mem. ¥ mod 2
{1,2,3} 0 {1,4,5} 1 {1,2} 1 {2,4} 0
{1,2,4} 1 {2,3,4} 0 {1, 3} 0 {2,5} 1
{1,2,5} 2 {2,3,5} 1 {1, 4} 1 {3,4} 1
{1,3,4} 2 {2,4,5} 2 {1,5} 0 {3,5} 0
{1,3,5} 0 {3,4,5} 0 {2, 3} 1 {4,5} 1
(a)n=3,u=2,v=1 b)yn=2,u=3,v=1
4-mem. Y mod 2

{1,2,3,4} 0

{1,2,3,5} 1

{1,2,4,5} 0

{1,3,4,5} 1

{2,3,4,5} 0

(c)n=2,u=3,v=2

Table 1: 2-; 3- and 4-Member subsets of {1,2,3,4,5}

In Table 1, we give three examples to illustrate Theorem 1.1. Here “k-mem.”
means k-member subsets of {1,2,3,4,5} and “¥ mod d” means the sum of elements
in the subset modulo d.

Examples. (i). Let n = 3, u = 2 and v = 1. Then we are considering 3-member
subsets of {1,2,3,4,5}, which are listed in Table la. On the other hand, it follows
from Theorem 1.1 that s(2,1;0;3) =4, s(2,1;1;3) = 3 and s(2,1;2;3) = 3.

(ii). Let n = 2, u = 3 and v = 1. Then we are considering 2-member subsets
of {1,2,3,4,5}. One may compute from Theorem 1.1 that $(3,1;0;2) = 4 and
$(3,1;1;2) = 6. The two values match with Table 1b.
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(iii). Let n = 2, u = 3 and v = 2. Then we are considering 4-member subsets
of {1,2,3,4,5}. It can be computed by Theorem 1.1 that s(3,2;0;2) = 3 and
5(3,2;1;2) = 2, which, again, match with Table 1c.

Further, if we take ¢ = 0 and 1 respectively in (2), we get the following corollaries.

Corollary 1.2. Let u > v be two positive integers. The number of subsets of

{1,2,...,un — 1} of vn elements which sum to a multiple of n equals
U —v ny\ [ud . .
Zgb (—) if n is odd or n and v are both even,
un d/ \wvd
3)
. J (
uunv ;(1)‘1@7& (g) (Zd) if n is even and v is odd.
Corollary 1.3. Let u > v be two positive integers. The number of subsets of
{1,2,...,un—1} of vn elements which sum to one more than a multiple of n equals
U—v ny\ [(ud . .
Z,u (7) if n is odd or n and v are both even,
un ™ d/ \wvd

(4)

u—v \d E ud . . .
- ;( 1) M(d) (vd) if n is even and v is odd.

Remark. One may further take v = 2 and v = 1 in (3) to deduce Jovovic’s formula

1).

2. Proof of the Main Result

We begin with some combinatorial arguments. Let {21, x2, ..., Zy,} be a subset of
{1,2,...;un—1} with 1 < 1 < 29 < -+ < Ty, < un — 1. For each 1 < i < vn,
we write x; = 2} + 4. It follows that 0 < 2} < 2§ < .- - <z, < (u—v)n—1.
Hence, the numbers z, x5, ..., z!  uniquely determine a partition with the largest
part not exceeding (v — v)n — 1 and the number of parts not exceeding vn. Here,
as usual, a partition of a nonnegative integer IV is a weakly decreasing sequence of
positive integers (which are called the parts) that sum to N.

It is a standard result (cf. Chapter 3 in [2]) in the theory of partitions that the
generating function of partitions into at most M parts, each not exceeding L, is
given by the conventional g-binomial coefficient

M+ L ._ﬁl_qL+k_ﬁ1_qM+k
M q._kzl 1—¢* 1—g*

k=1
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We remark that it is indeed a polynomial in ¢q of degree LM . Hence, the generating
function of partitions with the largest part not exceeding (u — v)n — 1 and the
number of parts not exceeding vn is

R(g) = M((ufn_l)r(m)qm — [“" - 1} - (5)

vn
m=0

Let G(q) = >_,509(n)g" be a formal power series. From the orthogonality of
roots of unity, we have the following identity

S gt = Y G (). (6
J4

n>0 =1
n=h (mod H)

vn

To determine the expression of s(u,v;¢;n), we notice that ), z; = ¢ (mod n)
is equivalent to

i , ¢ (mod n) if n is odd or n and v are both even,
xi =
— ! 2+c¢ (modn) ifniseven and v is odd,
i=1 2
since
1
1424 .. +on= %

_ {0 (mod n) if nis odd or n and v are both even,

% (mod n) if niseven and v is odd.

As a consequence, we have that

vn((u—v)n—1)
Z r(m) if n is odd or n and v are both even,

m=
o _ ) m=c (mod n)
S(u’ v; G TL) - on((u—v)n—1)
r(m) if nis even and v is odd
m=0
m=%4c (mod n)
n

1 _ 2mict 2mil . .
— E e n R(e n ) if n is odd or n and v are both even,
n
=1
- n
1 2mil

— Z(—l)ee*hTMR (e n ) if n is even and v is odd.
=1

n

In the next lemma, we evaluate R(e?™/™).
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Lemma 2.1. Let ¢ be a positive integer. Then

R(e¥):u—v(u-gcd(€,n)>. ()

u  \w-ged(l,n)

Proof. Recall that

(u—v)n—1 k
un —1 1— gt
O I | .
un q P 1—g¢q
Hence,
(u—v)n—1 k
2mit 1 — gt
R(e no ) = H hrgme T— g
k:l qg—e n
where

o\ k
1 — gonth 1 if (ey> #1,

27il — gk . 27ib
g—e n l—q # if (e n ) =1.

Ny
Furthermore, (e%TM) = 1 implies that n divides k/.

For convenience, we write n = n'd and ¢ = ¢'d where d = ged(¢,n). Then n | k¢
is equivalent to n’ | k. Hence,

o1 g—en 1—¢* k=1 k k=1 k'n/
k=0 (mod n')
_(ulv—)[dlvd—I—k;’_ ud — 1 _u—v(ud
B o] o \(u—vd—-1) u \vd)’

where in the second identity we set k = k'n/.
Consequently, we have that

2ie\  u—o (ud) u—wv (u-ged(l,n)
R(e )_ u (vd>_ u (v-gcd(ﬁ,n))’

which is our desired result. O




INTEGERS: 19 (2019) 6

If n is odd or n and v are both even, then it follows from (7) and (8) that

n
]. 271'1(‘[ 2mil
s(u,v;e5m) = — E en
n

uU—v Xn: _2nice (- ged(€, n)
(& n
un v - ged(4,n)

=1
n
U—v ud _ 2mict
- DR
un vd
d|n (=1
ged(4,n)=d
i

u— ud 2mict!
un ;;(Ud) z_: P <_ n/d >

:u;vz;ﬂ(d ged (c )>¢<¢(E))) (ZZ)

d-gcd(c,%

where in the last identity we use the following evaluation of Ramanujan’s sum
(cf. Theorem 272 in [4])

am= 3 e (QMTW> o (gcd(iw)> T oo

gcd&:,;):l ged(m,q) )

To show the second case of the main result, we have that if n is even and v is
odd, then

1 n 27”(, 2mil — i 2mc d(@ )
) = LS R () < LSy (1)

(=1

Since n is even, we see that ¢ and gcd(¢,n) have the same parity. Hence, (—1)¢ =
(—1)ged@n) - Following the same argument as above, we conclude that

n

s(u,v;c5m) = u-v Z(_l)gcd(&n) — 2mict (U ged (¢, n))

un v-ged(d,n)

_ d n  omice
CUSe(l) X e

d|n (=1
ged(€,n)=d

W %(—1)% (d.gcg(c, g)) 5 (ME))) (Z@

We therefore arrive at the desired result.
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3. Closing Remarks

If we replace the set {1,2,...,un — 1} in Theorem 1.1 by an arbitrary set of un — 1
consecutive integers, say {a+1,a+2,...,a+un—1}, the formula in (2) still holds.
In fact, if {z1,za,...,2yn} (With 1 < 29 < -+ < zy,) is a subset, we may put
x; =z, + a+i for each 1 <14 < vn and then carry out the same procedure as in
Section 2.

For a general set S of 2n — 1 integers in the theorem of Erdds, Ginzburg and
Ziv stated at the beginning of this note, there seems to be no closed form that
enumerates the number of n-member subsets whose elements sum to a multiple of
n. Apparently, our approach would fail for general S as the initial combinatorial
argument in Section 2 now does not make sense. On the other hand, following
Alekseyev [1], we know that the number of such subsets is

e LSS (1 (D)),

However, there is no obvious approach that can simplify this expression.

It would be an intriguing problem to find other examples of S that give nice
closed forms of the number of the desired n-member subsets, or even may lead to
parallel extensions like our Theorem 1.1.
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