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Abstract
A pair of odd primes is said to be symmetric if each prime is congruent to one
modulo their di↵erence. A theorem from 1996 by Fletcher, Lindgren, and the third
author provides an upper bound on the number of primes up to x that belong to
a symmetric pair. In the present paper, that theorem is improved to what is likely
to be the best possible result. We also establish that there exist infinitely many
symmetric pairs of primes. In fact, we show that for every integer m � 2 there is a
string of m consecutive primes, any two of which form a symmetric pair.

–In memory of Peter Fletcher (1939–2019)

1. Introduction

A pair of distinct odd primes {p, q} is said to be a symmetric pair if

gcd(p� 1, q � 1) = |p� q|.

For example, every twin prime pair {p, p + 2} is a symmetric pair. We say that a
prime is symmetric if it is a member of some symmetric pair; otherwise, we say that
it is asymmetric.

Symmetric primes arise naturally when ruminating on a common textbook proof
of Gauss’s quadratic reciprocity law (QRL). Consider the rectangle S with (0, 0)
and (p/2, q/2) as opposite corners, and let l be the diagonal joining those corners.
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Let S(q, p) (resp., S(p, q)) be the number of interior lattice points below (resp.,
above) l. Eisenstein, in his version of Gauss’s third QRL proof, showed that

✓
q

p

◆
= (�1)S(q,p), and

✓
p

q

◆
= (�1)S(p,q).

Since ` has no interior lattice points, S(q, p) + S(p, q) is the total number of lattice
points interior to S, which is p�1

2
q�1
2 ; the law of quadratic reciprocity follows im-

mediately. It is shown in §2 of Fletcher et al. [4] that {p, q} is symmetric precisely
when S(q, p) = S(p, q).

Most primes are asymmetric; this is a consequence of [4, Theorem 3.1], which
asserts that the number S(x) of symmetric primes p  x is O(⇡(x)/(log x)0.027). It
is conjectured in [4] that the exponent 0.027 can be improved to ⌘ + o(1), where

⌘ := 1� 1 + log log 2
log 2

= 0.08607 · · · .

In this note we prove the conjecture.

Theorem 1. For all large x, we have

S(x)  ⇡(x)
(log x)⌘

(log log x)O(1).

The constant ⌘ appears at several places in the literature. An early appearance
is in connection with the Erdős multiplication table problem where, thanks to the
work of Erdős, Tenenbaum, and Ford, we now know that the number M(N) of
distinct entries in the N ⇥ N multiplication table is N2(log N)�⌘(log log N)O(1).
(In fact, Ford [5] has further shown that if the implied constant O(1) is replaced
with �3/2, the resulting expression has the same magnitude as M(N).) A more
recent appearance of ⌘ occurs in Chow and Pomerance [3], where the odd legs in
integer-sided right triangles with prime hypotenuse are considered. (The present
note uses some techniques from [3].)

It was left as an open problem in [4] to prove that there are infinitely many
symmetric primes. The next theorem uses an old result of Heath-Brown [8] together
with the framework of the recent results of Zhang, Maynard, Tao, et al. on small
gaps between primes.

Theorem 2. For every integer m � 2, there exists a string of m consecutive primes,
any two of which form a symmetric pair.

Of course, Theorem 2 implies the infinitude of symmetric primes. Our proof of
Lemma 2 below, in conjunction with the methods of [11, 12, 13], could be developed
to prove that S(x) � ⇡(x)/(log x)49. Comparing this lower bound with the upper
bound of Theorem 1, it is tempting to conjecture that S(x) = ⇡(x)/(log x)c+o(1),



INTEGERS: 19 (2019) 3

as x ! 1, for some positive constant c. In [4] a heuristic argument is presented
suggesting that this conjecture holds with c = ⌘; that is, the inequality of Theorem
1 is actually an equality.

In Sections 2 and 3 we prove the theorems. In Section 4 we present some new
computations of symmetric primes. In Section 5 we close with a few problems of a
somewhat di↵erent nature.

2. The Proof of Theorem 1

Let !(n) denote the number of distinct primes that divide n, and let ⌦(n) denote
the number of prime factors of n counted with multiplicity. Let P+(n) denote the
largest prime factor of n > 1, and put P+(1) = 0.

Let S1(x) denote the number of primes p  x with P+(p�1)  x1/ log log x. Since
the number of integers n  x with P+(n)  x1/ log log x is O(x/(log x)2) (see de
Bruijn [2, Eq. (1.6)]) it follows that S1(x) = O(⇡(x)/ log x).

Next, let S2(x) denote the number of primes p  x with P+(p� 1) > x1/ log log x

and ⌦(p� 1) > L, where L = b(1/ log 2) log log xc. We claim that

S2(x)  ⇡(x)
(log x)⌘

(log log x)O(1). (1)

For any prime counted by S2(x), write p = ar+1, where r = P+(p�1) > x1/ log log x.
For any fixed choice of a < x1�1/ log log x, the number of primes r  x/a with ar +1
prime is (by Brun’s method; see [6, Eq. (6.1)]) at most

x

a(log x)2
(log log x)O(1).

We sum this expression over a assuming ⌦(a) � L. For L  ⌦(a)  1.9 log log x we
use [7, Theorem 08], finding that

P
1/a  (log x)1�⌘(log log x)O(1); this is consistent

with our goal (1). For larger values of ⌦(a) we use [7, Exercise 05], getting
P

1/a⌧
(log x)0.69. This establishes the claim (1).

To finish the proof, we bound the number of symmetric primes p  x with
P+(p � 1) > x1/ log log x and ⌦(p � 1)  L. For any such prime, write p = ar + 1
with r = P+(p � 1) > x1/ log log x and ⌦(a) < L. Since p is symmetric, there is
some d | a with at least one of p + d, p � d, p + dr, p � dr prime. Write a = dm.
For a given pair d,m with dm < x1�1/ log log x, let R(x, d,m) denote the number of
primes r  x/dm with dmr +1 prime and at least one of dmr + d +1, dmr� d +1,
dmr + dr + 1, dmr� dr + 1 prime. Again by Brun’s method we have uniformly for
x large that

R(x, d,m)  x

dm(log x)3
(log log x)O(1).
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It remains to sum this expression over pairs d,m with dm < x1�1/ log log x and
⌦(dm) < L. Let E denote the reciprocal sum of all primes and prime powers less
than x. We have

X

dm<x1�1/ log log x

⌦(dm)<L

1
dm


X

i+j<L

X

d<x
!(d)=i

1
d

X

m<x
!(m)=j

1
m


X

i+j<L

1
i!

Ei 1
j!

Ej =
X

k<L

1
k!

Ek
X

i+j=k

k!
i!j!

=
X

k<L

1
k!

(2E)k ⌧ 1
L!

(2E)L,

since E = log log x + O(1). A short calculation then shows that this expression
is (log x)2�⌘(log log x)O(1). Thus, the sum of R(x, d,m) over pairs d,m is at most
⇡(x)(log x)�⌘(log log x)O(1), so completing the proof.

3. The Proof of Theorem 2

In her dissertation, Spiro [14] showed that the equation d(n) = d(n + 5040) has
infinitely many solutions, where d(n) is the divisor function. Heath-Brown [8] has
shown that one can replace 5040 with 1 in this theorem, a key ingredient (see also
[9, 10]) being the existence of sets with the property described in the next lemma
(and another property that is not needed here).

Lemma 1. For every k � 2 there is a set Ak ⇢ N with k elements such that
gcd(a, b) = |a� b| for all a, b 2 Ak, a 6= b.

An example of such a set when k = 4 is {6, 8, 9, 12}.
If we have two numbers a < b with gcd(a, b) = b� a and an integer n for which

p = an + 1 and q = bn + 1 are both prime, then {p, q} is a symmetric pair. Thus,
under the prime k-tuples conjecture we obtain infinitely many symmetric pairs.
Alternatively, the prime k-tuples conjecture implies the existence of infinitely many
twin prime pairs {p, p + 2}, which are symmetric.

The preceding statements are still conjectural, but the Maynard-Tao theorem
gives us a path for producing infinitely many symmetric primes.

Lemma 2. For every m � 2 there is a set Pm of m primes such that for all
p, q 2 Pm, p 6= q, we have gcd(p� 1, q � 1) = |p� q|. Moreover, one can find such
a set whose least element exceeds m.

Proof. Recall that a k-tuple of linear forms {git + hi}k
i=1 is said to be admissible

if the associated polynomial
Q

i(git + hi) has no fixed prime divisor, i.e., for each
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prime p there is an integer t with none of git + hi divisible by p. To prove the
lemma, we apply a remarkable theorem of Maynard (see, e.g., [11, Theorem 3.4])
and Tao (unpublished) in the direction of the prime k-tuples conjecture.

Theorem 3 (Maynard–Tao). For every m � 2 there is an integer k = km,
depending only on m, such that if {git + hi}k

i=1 is admissible,

g1, . . . , gk > 0, and
Q

1i<jk(gihj � gjhi) 6= 0,

then {gin+hi}k
i=1 contains m primes for infinitely many n 2 N. In fact, the number

of such n  x is � x/(log x)k.

We apply Theorem 3 to the linear forms {ait + 1}k
i=1, where k = km and the

integers ai are the elements of a set Ak of the type described in Lemma 1. Then
{ain + 1}k

i=1 contains m primes for infinitely many n 2 N, and Lemma 2 follows at
once.

One can adapt the work of [12, 13] to show that 50 is an acceptable value of k2

in Theorem 3. This explains the “49” in the lower bound S(x) � ⇡(x)/(log x)49

claimed in the introduction.
To prove Theorem 2, which asserts that some of the sets Pm in Lemma 2 consist

of consecutive primes, we use the following result from Banks et al. [1].

Theorem 4 (Banks–Freiberg–Turnage-Butterbaugh). Let m � 2 and k =
km, where km is as in the Maynard–Tao theorem. Let b1, . . . , bk be distinct integers
such that {t + bj}k

j=1 is admissible, and let g be an arbitrary positive integer that is
coprime to b1 · · · bk. Then, for some subset {h1, . . . , hm} ✓ {b1, . . . , bk}, there are
infinitely many n 2 N such that gn + h1, . . . , gn + hm are consecutive primes.

Now, let m � 2 and k � km. By Lemma 2 there exists a set of primes Pk =
{b1, . . . , bk} such that gcd(bi � 1, bj � 1) = |bi � bj | for all 1  i < j  k, and each
bi exceeds k (thus, the k-tuple {t + bj}k

j=1 is admissible).
Notice that g =

Q
i(bi � 1) is coprime to b1 · · · bk. Otherwise, there are indices

i, j, with i 6= j, for which bj | bi � 1. But then bi � 2bj + 1, and

bj + 1  bi � bj = gcd(bi � 1, bj � 1)  bj � 1,

which is absurd.
By Theorem 4 there is a subset {h1, . . . , hm} ✓ {b1, . . . , bk} with the property

that P1 = gn + h1, . . . , Pm = gn + hm are consecutive primes for infinitely many
n 2 N. Since hi � 1 | Pi � 1 for each i, and

|Pi � Pj | = |hi � hj | = gcd(hi � 1, hj � 1) (1  i < j  m),

it follows that |Pi�Pj | = gcd(Pi�1, Pj�1) when i 6= j, i.e., {Pi, Pj} is a symmetric
pair. This completes the proof of Theorem 2
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4. Computations

In [4] some values of S(x) for x up to the 105th prime were given. The data did
not strongly suggest that S(x) = o(⇡(x)); in fact, it seemed more plausible that
S(x)/⇡(x) ⇡ 0.83. Using Mathematica we have extended the calculation to the
108th prime and we see that S(x)/⇡(x) continues to be in no hurry to get to zero,
but progress towards this limit is somewhat discernible. The descent to zero does
indeed resemble the main term in our upper bound.

n S(pn) S(pn)/n 1/(log pn)⌘

10 9 0.9000 0.9008
102 86 0.8600 0.8536
103 864 0.8640 0.8279
104 8473 0.8473 0.8101
105 83263 0.8326 0.7964
106 819848 0.8198 0.7854
107 8098086 0.8098 0.7761
108 80112625 0.8011 0.7681

Table 1: Tabulation of S(pn), the number of symmetric primes to the nth prime.

5. Graph Problems

Consider a graph on the odd primes where two primes are connected by an edge if
they form a symmetric pair. The asymmetric primes are isolated nodes. Must every
connected component be finite? At the other extreme, removing the asymmetric
primes, is the graph connected? If not, what is the least symmetric prime that is
not in the component containing the prime 3? Does the graph have infinitely many
components? Does it contain a complete graph Km on m vertices for every m? The
answer to this last question is “yes”, from Theorem 2. Clearly there cannot exist
an infinite complete subgraph since if p < q are a symmetric pair, then q < 2p. Say
a prime p is m-symmetric if it is in a Km. It would be interesting to investigate the
distribution of m-symmetric primes; the number of them to x is ⇡(x)/(log x)Om(1),
but what can be said about the exponent here?

Acknowledgment. We thank James Maynard for some helpful comments.
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