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Abstract
We study under which conditions a certain Nim-like game terminates after the very
first round. This is related to a system of diophantine equations and inequalities.

1. Introduction

The game Nim is usually played by two players and three heaps of any number
of objects. The two players take, one after the other, any number of objects from
any single one of the heaps, and the goal is to be the last to take an object. The
origin of Nim is probably the Chinese game picking stones which became known
in the western world in the early 16th century. In the beginning of the twentieth
century Charles L. Bouton (1869-1922) not only coined the name Nim for this and
related games, he also gave a first and complete analysis in his treatise [2], which is
nowadays considered as the birth of combinatorial game theory.

There is an interesting version of Nim due to the game theorist Richard A.
Epstein1; a first discussion of Epstein’s game can be found in the standard reference
[1] of Elwyn R. Berlekamp et al. In Epstein’s game there are again two players but
just one heap of n objects. The two players take alternately m2 objects from the
heap or they add m2 objects to the heap, where m2 is the biggest square below the
number n of objects in the heap. The goal is to be the last to take away a non-zero
square.

1born in 1927; also known as E.P. Stein, a pseudonym which he uses, according to wikipedia,
for writing popular works of fiction, historic and non-fictional books as well as screenplays for
television and motion pictures
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For obvious reasons the game should not be started with a square number of
objects in the heap. If we start with a heap of 6 objects, for example, then the first
player can take or can add 4 objects which leads to a heap consisting of 2 or 10
objects. And after the next round the number of objects can be 2± 1 or 10± 9 and
so forth. If both players play optimal, then a game with initially 3 objects will turn
into a loop consisting of alternating 3 and 2 objects (and there are further loops for
other initial values of n). If they start with n = 5 objects, the game will terminate
after the first move of the second player (since both, 5� 22 and 5+22 are squares).
There are, however, more complicated scenarios which make a complete analysis
of the game di�cult. We refer to Berlekamp et al. [1] for a graph illustrating the
situation of 10 objects in the beginning and to Herbert Möller [6] for a further
analysis of this and related Nim-like games.

In this short note we shall investigate whether there are further examples of n
beyond 5 for which Epstein’s game terminates after the first round.

The game starting with a heap consisting of exactly n objects will terminate
after one round if either n is a perfect square (in which case the first player wins) or
both n�m2 and n + m2 are positive integer squares (and then the second players
wins). We shall consider only the more interesting second case, i.e.,

n�m2 = x2 & n + m2 = y2 (1)

for some positive integers x, y, where m2 is the largest perfect square less than n.
The latter condition can be rephrased by the inequalities

m2 < n < (m + 1)2. (2)

If the system (1) of quadratic equations is solvable in positive integers under the
restriction (2) on m2 to be the largest square below n, then n will be called an
E.P.Stein number and the triple n,m, x will be called a solving triple. If n,m, x are
coprime, then the triple is already pairwise coprime and it will be called primitive.

Our main result is the following.

Theorem 1. i) There is no perfect square amongst the E.P.Stein numbers.
ii) There are infinitely many E.P.Stein numbers.

The proof of this theorem will be given in the following section. In the third
and final section we apply a computer algebra package to list all E.P.Stein numbers
below 105. It turns out that in this range there are 36 and their sequence starts
with 5, 20, 45, 80, 145, 580, 949, . . ..
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2. Solving a System of Quadratic Equations and Inequalities

In order to study those E.P.Stein numbers we begin with a hypothetical solving
triple and multiply the corresponding equations (1). This leads to

n2 = (m2)2 + (xy)2, (3)

which shows that solutions are related to pythagorean triples.

Assume the solving triple is not primitive, i.e., n and m are not coprime. Then
every prime factor of gcd(n,m) divides x and y too. Thus, the greatest common
divisor of n and m is a square, gcd(n,m) =: d2 say. Writing n = d2N and m2 =
d2M2, division by d2 leads to a smaller triple (although the letters are capitals),
namely

N �M2 = (x/d)2 & N + M2 = (y/d)2,

where both, x/d and y/d are positive integers; here M2 is the largest square below
N since otherwise (M + 1)2  N would imply

(m + d)2 = m2 + 2d2M + d2 = (dM + d)2 = d2(M + 1)2  d2N = n.

Hence, every non-primitive solving triple n,m, x comes from a primitive solving
triple N,M, x/d. The converse is not true in general as follows from the E.P.Stein
number n = 5. The number N = 125 = 52 · n is not an E.P.Stein number since the
largest square below 125 is 121 = 112 but 125 + 121 = 246 is not a square.

Now imagine that n,m, x are coprime. Then m2, xy, n is a primitive pythagorean
triple and it follows from Euclid’s parametrization that either

n = a2 + b2 & m2 = 2ab & xy = a2 � b2 (4)

or
n = a2 + b2 & m2 = a2 � b2 & xy = 2ab,

where a and b are coprime positive integers of di↵erent parity satisfying a > b (see
[4], §13.2). If m2 = a2 � b2, then x2 = n�m2 = 2b2, which is impossible since

p
2

is irrational. Hence, we may assume that (4) holds. This implies x = a � b and
y = a + b.

In view of m2 = 2ab with gcd(a, b) = 1 it follows from the unique prime factor-
ization of the integers that either

a = 2u2 & b = v2 (5)

or
a = u2 & b = 2v2 (6)

with gcd(u, v) = 1. Substituting any of those pairs of quadratic equations in n =
a2 + b2, leads to n = z4 + 4w4. Applying Fermat’s method of infinite descent,
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one can show that the latter equation has no solution n within the set of perfect
squares. This is intimately related to the non-solvability of the biquadratic Fermat
equation which was already demonstrated by Fermat and Euler (see [7], p. 38). We
thus conclude that there is no perfect square amongst the E.P.Stein numbers. This
proves the first assertion of the theorem.

In view of (5) and (6) we have m2 = 2ab = 4u2v2 which shall be the largest
square below n = a2 + b2. Therefore, we make the ansatz a� b = c with some fixed
positive integer c. This leads to the equation

u2 � 2v2 = ±c. (7)

We begin with the case c = 1 and the well-known Pell equation:

u2 � 2v2 = ±1 (8)

(which is named after the 17th century mathematician John Pell who had nothing
to do with it; see [5], p. 4). For each sign ± there exist infinitely many solutions
in positive integers (uj , vj)j , and they are all generated by powers of the so-called
fundamental solution (u1, v1) = (1, 1) as follows. Taking 1 +

p
2 to the power j,

leads, in view of the irrationality of
p

2, to some unique integers uj , vj :

(1 +
p

2)j = uj + vj

p
2

(see [4], §14.5); e.g., (1+
p

2)1 = 1+1·
p

2, which yields a = 2, b = 1 and the E.P.Stein
number n = 22 + 12 = 5. Another example results from (1 +

p
2)2 = 3 + 2

p
2 which

leads to the values a = 8, b = 9, giving the E.P.Stein number n = 82+92 = 145 with
m2 = 122; this continues with (1 +

p
2)3 = 7 + 5

p
2 corresponding to the E.P.Stein

number n = 502 + 492 = 4901 with m2 = 702.
Taking the continued fraction expansion of the quadratic irrationality

p
2 = [1, 2]

into account, one observes that the solutions to (8) form the convergents uj/vj top
2 = [1, 2], which implies directly the recursion formula

uj+1 = usj + uj�1 & vj+1 = 2vj + vj�1.

Solving this recursion yields the explicit representations

uj = 1
2 (↵j+1 + (�↵)�j�1) & vj = 1

2
p

2
(↵j+1 � (�↵)�j�1)

where ↵ = 1 +
p

2 (similar to Binet’s formula for the Fibonacci numbers; see again
[4], §10.14 & 14.5). This leads to uj ⇡ 1

2↵j+1, tj ⇡ 1
2
p

2
↵j+1 and a ⇡ 1

4↵2j+2 ⇡ b,
resp. n ⇡ 1

8↵2(j+1) ⇡ 1
8 (3 + 2

p
2)j+1 (which matches the data of the E.P.Stein

numbers below 105 in §3).
Thus, the solutions to the Pell equation (8) lead to solutions of the system (1)

of quadratic equations, however, it remains to check whether also inequality (2) is
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satisfied. In view of (7) we begin with a � b = c and rewrite (2) via (5) or (6)
equivalently as

(2uv)2 < u2 + 4v2 < (2uv + 1)2;

the first inequality is trivially fulfilled, while the second one is equivalent to (u2 �
2v2)2 < 4uv + 1 or

c2 < 1 + 4uv. (9)

For c = 1 and c = 2 this inequality holds for all positive integers u, v. Hence, we
conclude that there exist infinitely many E.P.Stein numbers. This proves the second
assertion of the theorem.

In view of the latter inequality, one could imagine to find E.P.Stein numbers
among solutions to (7) with c 6= 1. And this is indeed true: for example, for c = 7
we have 52�2·32 = 7 (with u = 5, v = 3 satisfying (9)), giving the E.P.Stein number
n = 949 with m2 = 900 (and n �m2 = 72, n + m2 = 1849 = 432). Unfortunately,
not every solution of such a Pell-type equation leads to an E.P.Stein number as the
example

112 � 2 · 72 = 23 (10)

shows: here (9) is not satisfied (since c2 = 529 � 308 = 1 + 4uv); indeed, the
corresponding values a = 121 and b = 98 lead to n = 24 245 and this is not a
solution (since 24 245 � 1152 = 220 is not a square). However, we may use (10)
in order to find an E.P.Stein number by the following reasoning. We can combine
an arbitrary integer solution (u, v) to (7) with a solution (uj , vj) of (8) by setting
U = uuj + 2vvj and V = uvj + ujv, and we obtain another solution to (7). This
follows from a straightforward computation:

U2 � 2V 2 = (uuj + 2vvj)2 � 2(uvj + ujv)2

= (uj � 2v2
j )(u� 2v2)

= ±1 · (±c)
= ±c.

For the expert reader we shall mention here that this is related to a group law
on hyperbolas and the norm equation in the quadratic number field Q(

p
2) (see

[5], Chapter 4). If the solution (U, V ) now satisfies (9), then the corresponding n
is an E.P.Stein number. We illustrate this with an example: combining (u, v) =
(11, 7) with (u1, v1) = (1, 1) (both from above), we find (U, V ) = (25, 18) (solving
U2 � 2V 2 = �23 and satisfying (9) since c2 = 529 < 1801 = 1 + 4UV ) as well as
a = 252, b = 182; this gives n = a2 + b2 = 949, which we already know to be an
E.P.Stein number by the solution of another Pell-type equation.

We thus conclude that any solution of (7) in positive integers, leads to an
E.P.Stein number. In view of the classical case c = 1, thus there exist infinitely
many E.P.Stein numbers. It might be di�cult to characterize those coming from
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other values of ±c in (7). By means of algebraic number theory one can study which
integers are values taken by the indefinite quadratic form (x, y)! x2�2y2 (see [5],
§16.3), however, we shall not follow this line of inquiry here.

3. A Computer Search and Only One Prime

Using a computer algebra package one can easily find all E.P.Stein numbers below
a reasonable quantity. A possible program code for Mathematica is listed below:

NN := 100 000

PerfectSquareQ[n ] := IntegerQ[Sqrt[n]]

For[n = 1, n  NN, n + +, m := Floor[Sqrt[n]];

If [PerfectSquareQ[n�m2] == True, If [PerfectSquareQ[n + m2] == True,

Print[“n =00, n, “ 00, “m =00, m, “;00 FactorInteger[n]]]]]

Besides the E.P.Stein number n, the corresponding m (according to our notation
above) is printed as well as the prime factorization of n. Choosing a larger value
for NN one can extend the computations.

We shall provide a list of all E.P.Stein numbers below 100 000. We begin with
the small ones below 500 and have a closer look on their prime factorization:

5,
20 = 22 · 5,

45 = 32 · 5,

80 = (22)2 · 5,

145 = 5 · 29.

We observe that all E.P.Stein numbers so far are multiples of 5. The numbers
n = 20, 45 and 80 result from the very first one by multiplication with a square;
however, as we have already noticed in the previous section, multiplying with the
square 52 would lead to 125 which is not an E.P.Stein number. Actually, whenever
we begin with an E.P.Stein number n, multiplying the solving triple n,m, x with
a su�ciently big square d2 will lead to a solution nd2,md, xd for the system (1),
where the additional condition (2) does not hold; more precisely, when

d2(n�m2) � 2dm + 1. (11)

The next E.P.Stein number is 145, and this as well as 5 correspond to the first
solutions of the Pell equation (8).
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We extend our list of E.P.Stein numbers up to 10 000:

580 = 22 · 5 · 29,

949 = 13 · 73,
1305 = 32 · 5 · 29,

1649 = 17 · 97,
2320 = (22)2 · 5 · 29,

3625 = 52 · 5 · 29,

4901 = 132 · 29,
5220 = (2 · 3)2 · 5 · 29,

7105 = 72 · 5 · 29,

9280 = (23)2 · 5 · 29.

In a similar way as above, the E.P.Stein number 145 = 5 · 29 leads to further
E.P.Stein numbers by multiplication with suitable squares. Therefore, we shall
distinguish between primary and induced E.P.Stein numbers. We observe examples
of primary E.P.Stein numbers (not arising from multiplication of a smaller one
with a square), namely, 949, 1649 and 4901. The smallest of those, 949, already
appeared in the context of the special solutions to Pell-type equations above, namely,
52 � 2 · 32 = 7 and 252 � 2 · 182 = �23 in the previous section. The number 1649
is related to 52 � 2 · 42 = �7 or 52 � 2 · 32 = +7, whereas 4901 is linked with
992�2 ·702 = 1 as already mentioned above, so this is a primary E.P.Stein number.
It is interesting that 4901 is divisible by the square 132, however, their quotient
29 is not an E.P.Stein number although it appears as prime factor in many other
E.P.Stein numbers.

It is worth having a closer look at the prime factorization of E.P.Stein numbers.
In view of (1), every E.P.Stein number n is a sum of two integer squares and
therefore all prime factors p ⌘ 3 mod 4 in the prime factorization of n appear with
an even exponent (which, for example, rules out 13 ·29 to be listed). This is related
to the fact that prime numbers p ⌘ 3 mod 4 cannot be written as a sum of two
squares (as follows from squares being congruent to 0 or 1 mod 4) and Fermat’s two
square theorem which states that primes p ⌘ 1 mod 4 can always be represented as
a sum of two squares (which is a consequence of the arithmetic in Z[

p
�1] although

Fermat’s reasoning had been di↵erent; see [4, Section 15.1 & 20.3]).
It appears that 5 is the only prime E.P.Stein number. In fact, it follows from (1)

that an E.P.Stein number n can be written as a di↵erence of two integer squares or
a product of two integers, namely,

n = y2 �m2 = (y + m)(y �m).

If n is prime, then y �m has to be equal to 1. Thus, substituting y = m + 1 in (1)
and (2) leads to n = (m+1)2�m2 = 2m+1 and m2 < n = 2m+1, which is solvable
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only for m = 1 or m = 2, where the first leads to a prime n = 2 · 1 + 1 ⌘ 3 mod 4,
which is impossible by the just mentioned result on sums of two squares, and m = 2
corresponds to the prime n = 5.

We continue with a list of all 36 E.P.Stein numbers below 105. We indicate the
primary E.P.Stein numbers boldfaced and list the induced ones behind;

5 ; 20, 45, 80;
145 ; 580, 1305, 2320, 3625, 5220, 7105, 9280, 11 745, 14 500, 17 545,

20 880, 24 505, 28 420, 32 625, 37 120, 41 905, 46 980, 52 345,
58 000, 63 945, 70 180, 76 705, 83 520;

949;
1649;
4901 ; 19 604, 44 109, 78 416,

31025,

54805.

Notice that some primary E.P.Stein numbers induce (finitely) many others whereas
some (e.g. 949) remain alone in their branch. The reason behind this fact is that
for an induced solving triple nd2,md, xd inequality (11) has to be satisfied which,
for example, in the case n = 949 imposes the condition 49d2 < 1 + 60d on d. It is
easy to compute that there is no induced E.P.Stein number in the branch of 145
beyond 83 520 (which we indicated with a semicolon above). The E.P.Stein number
31 025, however, will induce further not listed E.P.Stein numbers.

It appears that there are 15 E.P.Stein numbers below 104 and 61 below 106.
Therefore, we may expect that their number grows logarithmically (as the solutions
to Pell equations). Concerning the winning positions in Epstein’s game, one can
find a not unrelated open research problem (E26) in Richard Guy’s collection [3] of
unsolved problems in number theory.
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