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Abstract
The main object of this paper is to express the values at non-negative integers of
the generalized Bernoulli polynomials by using a class of the Stirling numbers of
the second kind.

1. Introduction

Recall that the r-Stirling number of the second kind,
�n

k

 
r
, counts the number of

partitions of the set [n] := {1, 2, . . . , n} into k non-empty subsets such that the
elements of the set [r] are in di↵erent subsets [3]. These numbers are determined
by its generating function to be:
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are the Stirling numbers of the second kind.

In [11], the authors expressed B(↵)
n (±r) in terms of the r-Stirling numbers of

both kinds. In [12], they expressed B(↵)
n
�
± r

m

�
in terms of the r-Whitney numbers of

both kinds, where B(↵)
n (x) is the n�th order Bernoulli polynomial (see for example

[8, 15]) defined by its exponential generating function to be
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where B(1)
n (x) = Bn (x) are the classical Bernoulli polynomials.
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The generalized Bernoulli polynomials B[s�1,↵]
n (x) extend the polynomials intro-

duced by Natalini and Bernardini [13] (see also [6, 2]), and are defined by Kurt [7]
(see also [16]) as follows:
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In order to give explicit formulas for these polynomials at non-negative integers,
we introduce in this paper a class of the r-Stirling numbers of the second kind which
can be viewed as a special case of those given in [10].

Definition 1. For s � 1, we define the s-quasi-associated r-Stirling numbers of
the second kind, denoted by

�n
k

 s

r
, by the number of partitions of an n-set into k

blocks such that the first r elements are in di↵erent blocks, a block from the other
(k � r)-blocks must be of cardinality greater than or equal to s.

Below, we show that the numbers B[s�1,↵]
n (r) are linked to these numbers (Theorems

2, 3) by
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where (x)n = x (x� 1) · · · (x� n + 1) for n � 1, (x)0 = 1,
✓

n + sj

n, s, . . . , s

◆
:=

(n + sj)!
n! (s!)j .

Before proving these identities, let us give some combinatorial properties of the
s-quasi-associated r-Stirling numbers of the second kind defined above.

2. Combinatorial Properties

From the above definition, we may state that
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Using combinatorial arguments, we assert that these numbers admit an expression
given by the following theorem.

Theorem 1. For n � sk � sr � 1, the s-quasi-associated r-Stirling numbers of the
second kind can be written as
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.

Proof. To partition a set [n] into k blocks B1, . . . , Bk such that every block does not
contain any element of [r], must be of cardinality greater than or equal to s. The first
r elements are in di↵erent blocks (of cardinalities not less than 1), let the elements of
[r] be in di↵erent blocks B1, . . . , Br. So, there are 1

(k�r)!

� n�r
n1,...,nk

�
:= (n�r)!

(k�r)!
1
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ways to choose n1, . . . , nk in [n] \ [r] such that

- n1 � 0, . . . , nr � 0 : n1, . . . , nr are, respectively, in B1, . . . , Br,

- nr+1 � s, . . . , nk � s : nr+1, . . . , nk are, respectively, in Br+1, . . . , Bk.

Then the total number of these partitions is:
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.

By a simple manipulation of Theorem 1, we may state the following.

Corollary 1. The s-quasi-associated r-Stirling numbers of the second kind have
generating function
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Using combinatorial arguments, we give below three recurrence relations.

Proposition 1. For n > sr � 1 we have
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Proof. To partition the set [n] into k blocks such that every block from the [n] \ [r]
must be of cardinality greater than or equal to s and the elements of [r] must be in
di↵erent blocks, we separate the element n and proceed as follows:
(a) If n is in a block intersecting [r] , there are

�n�1
k

 s

r
ways to partition the set

[n� 1] into k blocks with the same conditions. The element n (not really used) can
be inserted in the r blocks which intersect [r] , so we count r

�n�1
k

 s

r
ways.

(b) If n is in a block of cardinality s and does not intersect [r] , there are
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ways to choose s � 1 elements to be with this element in the same block. The
remaining n� s elements can be partitioned into k � 1 blocks in
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ways. So,
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.

(c) If n is in a block of cardinality � s + 1 and does not intersect [r] , there
are (k � r)

�n�1
k

 s

r
ways. Thus, the number of all partitions is given by
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Proposition 2. For r � 1 we have
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Proof. To partition the set [n] into k blocks such that the first r-elements are in
di↵rent blocks and every block does not intersect [r] must be of cardinality greater
than or equal to s, we operate as follows:
The element r can be in a block of cardinality j + 1 in

�n�r
j

��n�1�j
k�1

 s

r�1
ways, so

we illustrate two cases,
(a) The number of ways for choosing the j elements between (n� 1) � (r � 1)
elements of [n] \ [r] to be in the same block with the element r is

�n�r
j

�
,

(b) The number of ways to partition the remaining n� (j + 1) = n�1� j elements
into k� 1 blocks such that every block does not intersect [r], must be of cardinality
greater than or equal to s, and the elements of [r � 1] are in di↵erent blocks is�n�1�j

k�1

 s

r�1
.

3. Application to the Generalized Bernoulli Polynomials

We give in this section two expressions in terms of the s-quasi-associated r-Stirling
numbers of the second kind for B[s�1,↵]

n (r) . The following theorem gives a simplified
expression for B[s�1,↵]

n (r) for all non-negative integers r.

Theorem 2. We have
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for a non-positive integer ↵, where ↵ = �k. We also have
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Proof. From the definition of B[s�1,↵]
n (x) , we get
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which gives B[s�1,↵]
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nP
k=0

✓
n

k

◆
rn�kfk (�↵) , where (fn (x)) is a sequence of
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. Use the known relation (see [14])
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where Bn,k (xi) := Bn,k (x1, x2, ...) is the partial Bell polynomial, see [1, 4, 9].
Now, the exponential generating function of
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So, we obtain
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The second part of the theorem follows from the expansion
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The next corollary is a particular case from Theorem 2.

Corollary 2. We have
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So, the values of the Bernoulli polynomials at non-negative integers are given by

Bn (r) := B(1)
n (r) =
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and from the known identity B(n+1)
n (x) = (x� 1)n , we may state that for ↵ = n+1
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Other expressions in terms of the s-quasi-associated r-Stirling numbers of the second
kind for B[s�1,↵]

n (r) are given as follows.

Theorem 3. Let p, r, n, s be non-negative integers such that s � 1, p � n. Then
we have
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Proof. For any polynomial f of degree n  p, Melzak’s formula [5] gives
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where
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n! . By Theorem 2, we deduce that B[s�1,↵]
n (x) is a polynomial in ↵
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The desired identity follows by using the second identity of Theorem 2,

Where p = n in Theorem 3 we get the following corollary,

Corollary 3. We have
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This gives the values of the high order Bernoulli polynomials at non-negative inte-
gers to be
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So, the values of the Bernoulli polynomials at non-negative integers are given by
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