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Abstract
The main object of this paper is to express the values at non-negative integers of
the generalized Bernoulli polynomials by using a class of the Stirling numbers of
the second kind.

1. Introduction

Recall that the r-Stirling number of the second kind, {Z}r’ counts the number of
partitions of the set [n] := {1,2,...,n} into k& non-empty subsets such that the
elements of the set [r] are in different subsets [3]. These numbers are determined
by its generating function to be:

S S = w0 -1 e,

=i k+r), n!
where {}'}, = {1}, == {1} are the Stirling numbers of the second kind.

In [11], the authors expressed B (£r) in terms of the r-Stirling numbers of
both kinds. In [12], they expressed B (+-) in terms of the r~Whitney numbers of
both kinds, where B{" (x) is the n—th order Bernoulli polynomial (see for example
[8, 15]) defined by its exponential generating function to be

tr t “
ZBr(la) (x) i (exp(t)—l) exp (at)

n>0

where B (z) = By, (z) are the classical Bernoulli polynomials.
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The generalized Bernoulli polynomials B,[f ~lel (x) extend the polynomials intro-
duced by Natalini and Bernardini [13] (see also [6, 2]), and are defined by Kurt [7]
(see also [16]) as follows:

«

tn ﬁ
ZBLS—LQ] (x) — = s—',l exp (xt), s> 1. (1)
n>0 G — ) 12
> exp () — > 5
j=0

In order to give explicit formulas for these polynomials at non-negative integers,
we introduce in this paper a class of the r-Stirling numbers of the second kind which
can be viewed as a special case of those given in [10].

Definition 1. For s > 1, we define the s-quasi-associated r-Stirling numbers of
the second kind, denoted by {Z}i, by the number of partitions of an n-set into k
blocks such that the first r elements are in different blocks, a block from the other
(k — r)-blocks must be of cardinality greater than or equal to s.

Below, we show that the numbers BLS ~Lel (r) are linked to these numbers (Theorems
2, 3) by

n 2o\ 1 : s+1
1. n+ sj n+sj+r
BLS bl (r) = Z(n S, ... s) { j+r } (_a)j’

n . y| . -1 . s
Bls~1al (r):a(a—l—n)z(_ly (n> 4! ( n+ sj ) {n—l—‘sg—l—r}’
nJi5 jJa+j3\n,s,...,8 j+r .
where (z), =z (x—1)---(x —n+1) forn >1, (z), =1,
n+sj \ _ (n+sj)!
n,s,....s) " nl(s)!

Before proving these identities, let us give some combinatorial properties of the
s-quasi-associated r-Stirling numbers of the second kind defined above.

2. Combinatorial Properties

From the above definition, we may state that

{Z} =0, n<sk ork<r,

0 S
= k>
{k} k,05 >0,
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Using combinatorial arguments, we assert that these numbers admit an expression
given by the following theorem.

Theorem 1. Forn > sk > sr > 1, the s-quasi-associated r-Stirling numbers of the
second kind can be written as

{n} _(n—n)! Z 1

T (k—=1) 1...n.1 ... 1’
k r (k T)' n1+...+nk:n7rfs(k:7r)nl. Tr: (nr+1 T S) (nk T S)
Proof. To partition a set [n] into k blocks By, ..., By such that every block does not
contain any element of [r], must be of cardinality greater than or equal to s. The first
r elements are in different blocks (of cardinalities not less than 1), let the elements of
[7] be in different blocks By, ..., B,. So, there are (,C_%T)I(m””’ ) = (nomt 1

= G el

yee Mk
ways to choose nq,...,ng in [n]\ [r] such that
-ny1>0,...,n. >0:nq,...,n, are, respectively, in By, ..., B,,
- Npy1 > Sy..., Nk > S Npy1,...,NE are, respectively, in By11,..., B.

Then the total number of these partitions is:

e > (7))

(n—m)! 1
T (k—r) Z nil-ongl (npgr +8)- - (ng +s)!

“ni4-Anpg=n—r—s(k—r)

By a simple manipulation of Theorem 1, we may state the following.

Corollary 1. The s-quasi-associated r-Stirling numbers of the second kind have
generating function

k

n+r)°th 1 tt
Z{k—f—r}rﬁ = y ZE exp (Tt)

n>k i>s
Using combinatorial arguments, we give below three recurrence relations.

Proposition 1. Forn > sr > 1 we have

Oh = (o)
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Proof. To partition the set [n] into k blocks such that every block from the [n]\ [r]
must be of cardinality greater than or equal to s and the elements of [r] must be in
different blocks, we separate the element n and proceed as follows:

(a) If n is in a block intersecting [r], there are {"gl}i ways to partition the set
[n — 1] into k blocks with the same conditions. The element n (not really used) can
be inserted in the r blocks which intersect [r], so we count r{”gl}i ways.

(b) If n is in a block of cardinality s and does not intersect [r], there are (";"]")
ways to choose s — 1 elements to be with this element in the same block. The

remaining n — s elements can be partitioned into k — 1 blocks in {Z:f}i ways. So,

the number of ways in this case must be (""" {}~? i
(c) If n is in a block of cardinality > s + 1 and does not intersect [r], there
are (k—r) {";1}: ways. Thus, the number of all partitions is given by {Z}j =

P+ (NG + k=) {7 O

Proposition 2. Forr > 1 we have

(20000,

o §=>0 J k=1 J,,4

Proof. To partition the set [n] into k blocks such that the first r-elements are in
diffrent blocks and every block does not intersect [r] must be of cardinality greater
than or equal to s, we operate as follows:

The element r can be in a block of cardinality j + 1 in ("’J_.r) {r
we illustrate two cases,

(a) The number of ways for choosing the j elements between (n—1) — (r —1)
elements of [n]\ [r] to be in the same block with the element r is ("J_.T),

(b) The number of ways to partition the remaining n— (j + 1) = n —1—j elements
into k — 1 blocks such that every block does not intersect [r], must be of cardinality
greater tshan or equal to s, and the elements of [r — 1] are in different blocks is
" -

—1—j1%
k-1 t,_, Ways, so

3. Application to the Generalized Bernoulli Polynomials

We give in this section two expressions in terms of the s-quasi-associated r-Stirling
numbers of the second kind for BLS ~Laf (r) . The following theorem gives a simplified

expression for Blf ~Lal (r) for all non-negative integers r.
Theorem 2. We have

n . —1 . s+1
[s—1,a] _ n—+sj n+sj+r o
Ba (r) Z(n,s,...,s j+r ( a)J

j=0 r
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for a non-positive integer o, where o = —k. We also have

+sk \ Y (n+sktr)®
BlEtH gy =gt " .
" (r) n,5,...,8 k+r .

Proof. From the definition of By[ffl’a] (x), we get

o) . —1,5 -
t" Jj+s tJ _ t"
I RICEE 9 O I IR ) WA
n>0 7=0 n>0

which gives pls—tel (r)y = > (n) n=kfi (—a), where (f, (7)) is a sequence of

-1
binomial type with f, (1) = < nt 8) . Use the known relation (see [14])

~Sn((17) ) o
Bls—1el () 3 ];ﬂ:( ) "B ((iJ;S)_l) ’

Jj=0 J

to obtain

where By, i, (;) := By i (21,22, ...) is the partial Bell polynomial, see [1, 4, 9].
Now, the exponential generating function of

o= $ 0 (1))

must be

" i\ R
Satnn oo yon, () )

n>j k>j
) J
1 slt?
() e
M & (i + s)!
) N\ J
t—7 t*
=— |4 Z | exp (rt)
J: i>s4+1

Z (S') | {n+8]+T}S+1t7L
= (n+sj)! j+r n!

s
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So, we obtain

, nl (s (n+sj+r)*H! - .
A = —— d BE (=34 —a); .
(n7j) (n+5])' j""/’ . an n (T) ]z:% (n7])( O[)]
The second part of the theorem follows from the expansion
k

t" t n4r\°t"

[s=1,—Kk] ().} 2 _ 4—sk ( )k z — kl4—sk i
;}Bn (r) i 7% (8 ;ﬂ exp (rt) = klt ng;k{k N T}Tn!'

The next corollary is a particular case from Theorem 2.

Corollary 2. We have

(a) [0,a] ° n' ’I’L+]+T 2
Bn (’I") = Bn7 (T) = Z(n+])' ]+T’ (_a>j'

=0

So, the values of the Bernoulli polynomials at non-negative integers are given by
n —1 . 2
B, (r):=BL (1) =3 (- ("“) {”“”},
= J+r -
and from the known identity B () = (x — 1)™, we may state that for « = n+1
we have . )
Sy T e
s j+r ),

Other expressions in terms of the s-quasi-associated r-Stirling numbers of the second
kind for B~ (r) are given as follows.

Theorem 3. Let p, r, n, s be non-negative integers such that s > 1, p > n. Then
we have

st -a( ) ()2 ()

Proof. For any polynomial f of degree n < p, Melzak’s formula [5] gives

oo ()

=0

where
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where () = £ By Theorem 2, we deduce that pls—tel (x) is a polynomial in «

n n!

of degree at most n. Then by setting f (x) = plstel (r) in Melzak’s Formula we

obtain . 1,41
_ +p D\ Bn 7 (r)
Bl (r :a(a ) —13(.>7, :
m=a(") o (5)F s
j_
The desired identity follows by using the second identity of Theorem 2, O

Where p = n in Theorem 3 we get the following corollary,
Corollary 3. We have
a+n) e n\ j! n+sji \ '(n+sj+r)®
Bl (r) = S )= , .
= 7/ a+3\n,s,...,8 J+r .

This gives the values of the high order Bernoulli polynomials at non-negative inte-
gers to be

o o a+n\ e . 7-1 n+j+r
Bg)(r) = Bl? ](r) ( > J){ it } .
= j T

So, the values of the Bernoulli polynomials at non-negative integers are given by

_i j ?+1) n+j+r
= n+J jtr T.

Jj=
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