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Abstract

Using basic properties of the Pell equation and the theory of congruences, we inves-
tigate the question of when a linear combination of two different types of polygonal
numbers is infinitely often a perfect square. Let Pk(x) denote the x-th k-gonal num-
bers. We give sufficient conditions about m,n such that the Diophantine equation

mPp(x) + nPq(y) = z2

has infinitely many positive integer solutions (x, y, z), where p ≥ 3, q ≥ 3.

1. Introduction

A polygonal number [3] is a positive number, corresponding to an arrangement of

points on the plane, which forms a regular polygon. The x-th k-gonal number [3,

p. 5] is

Pk(x) =
x
(
(k − 2)(x− 1) + 2

)
2

,

where x ≥ 1, k ≥ 3. There are many papers about the polygonal numbers and many

properties of them have been studied, we can refer to the first chapter of [4] and D3

of [7].

In 2005, Bencze [1] raised a problem: determine all positive integers n for which

1 + 9
2n(n + 1) is a perfect square. In 2007, Le [11] showed that all positive integers

n which make the form 1 + 9
2n(n + 1) to be a perfect square were given by

n =
1

2

(
1

6

(
a2k+1 + b2k+1

)
− 1

)
,
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where a = 3 +
√

8, b = 3 −
√

8, and k ∈ Z+. In 2011, Guan [6] proved that all

positive integers n which make the form 1 + 4n(n+1)s2

s2−1 to be a perfect square were

given by

n =
1

2

(
1

2s

(
a2k+1 + b2k+1

)
− 1

)
,

where a = s +
√
s2 − 1, b = s−

√
s2 − 1, and s is a positive odd integer with s > 1,

k ∈ Z+. In 2013, Hu [8] used the theory of the Pell equation to study the positive

integer solutions of the Diophantine equation

1 + nP3(y − 1) = z2,

where

n =



t2 ± 1

2
, t ≡ 1 (mod 2), t ≥ 3,

t2 ± 2

2
, t ≡ 0 (mod 2), t ≥ 2,

t(t− 1)

2
, t ≥ 2.

In 2019, Peng [12] showed that if 2n is not a perfect square, then the Diophan-

tine equation 1 + nP3(y − 1) = z2 has infinitely many positive integer solutions.

Meanwhile, she studied the Diophantine equation

mP3(x− 1) + nP3(y − 1) = z2,

where m,n ∈ Z+, and proved that when m(m+1)
2 = u2, n = 1, there exist infinitely

many pairs (a, b) of integers such that mP3(x − 1) + nP3(y − 1) = z2 has integer

parametric solutions (t, at + b, u(ct + d)), where t is a positive integer greater than

1. Moreover, she got two general results:

1) If 2(m + n) is not a perfect square, r ∈ Z, and the Pellian equation

X2 − 2(m + n)Z2 =

(
m + n

2

)2

− r2mn

has a positive integer solution (X0, Z0) satisfying

X0 − rn +
m + n

2
≡ 0 (mod m + n),

then the Diophantine equation mP3(x − 1) + nP3(y − 1) = z2 has infinitely many

positive integer solutions.

2) Let u, v be integers with u >
√

2v, and u a positive even integer. When m =

(u2−2v2)2, n = 8u2v2, then the Diophantine equation mP3(x−1)+nP3(y−1) = z2

has infinitely many positive integer solutions.

In 2020, Jiang and Li [9] investigated the problem that the linear combination of

two polygonal numbers is a perfect square, and they showed that if k ≥ 5, 2(k−2)n
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is not a perfect square, and there is a positive integer solution (Y ′, Z ′) of Y 2−2(k−
2)nZ2 = (k − 4)2n2 − 8(k − 2)n satisfying

Y ′ + (k − 4)n ≡ 0 (mod 2(k − 2)n), Z ′ ≡ 0 (mod 2),

then the Diophantine equation 1 +nPk(y) = z2 has infinitely many positive integer

solutions (y, z). Moreover, they studied the Diophantine equation

mPk(x) + nPk(y) = z2,

where m,n ∈ Z+, and proved that when ntr
2 is a perfect square, where t = r(k −

2)−1, there exist infinitely many pairs (a, b) of positive integers such that mPk(x)+

nPk(y) = z2 has integer parametric solutions (x, ax + b, u(cx + d)), where k ≥ 5.

Further, they obtained two general results:

1) If k ≥ 5, 2(k − 2)(m + n) is not a perfect square, r ∈ Z, and the Pellian

equation

X2 − 2(k − 2)(m + n)Z2 = (k − 4)2(m + n)2 − 4(k − 2)2mnr2

has a positive integer solution (X0, Z0) satisfying

X0− 2(k− 2)nr+ (k− 4)(m+n) ≡ 0 (mod 2(k− 2)(m+n)), Z0 ≡ 0 (mod 2),

then mPk(x) + nPk(y) = z2 has infinitely many positive integer solutions.

2) Let k ≥ 5, m = 2(u2−4u−4)2, n = 2(u2 +4u−4)2. If 2(k−2) is not a perfect

square, and the Pell equation X2 − 8(k − 2)(u2 + 4)2Z2 = 1 has a positive integer

solution (U0, V0) satisfying U0− 1 ≡ 0 (mod 2(k− 2)), then mPk(x) + nPk(y) = z2

has infinitely many positive integer solutions.

In this paper, we continue the study of [9], and consider the positive integer

solutions of the Diophantine equation

mPp(x) + nPq(y) = z2, (1)

where m,n are positive integers and p ≥ 3, q ≥ 3. The main results are as follows.

Theorem 1. Let m = (q − 4)2(p − 2)t, n = (p − 4)2(q − 2)rt, for the following

two cases: 1) p = 3, q ≥ 5, r ∈ Z+; 2) p > 4, q > 4, r ≡ −1 (mod (p − 2)).

When tr(r+1)
2 is a perfect square, there exist infinitely many pairs (a, b) of positive

integers such that Equation (1) has integer parametric solutions (au+ b, (p− 2)(q−
4)cu, w(du + e)), where r, w are positive integers.

Theorem 2. If p ≥ 3, q ≥ 3 and 2((p − 2)m + (q − 2)n) is not a perfect square,

r ∈ Z, and the Pellian equation

X2 − 2((p− 2)m + (q − 2)n)Z2

= −4mn(p− 2)(q − 2)r2 − 8mn(p− q)r + ((p− 4)m + (q − 4)n)2
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has a positive integer solution (X0, Z0) satisfying

X0 − 2(q − 2)nr + ((p− 4)m + (q − 4)n) ≡ 0 (mod 2((p− 2)m + (q − 2)n)),

Z0 ≡ 0 (mod 2),

then Equation (1) has infinitely many positive integer solutions.

Theorem 3. For p ≥ 3, q ≥ 3, if m+n is a perfect square, but 2mn(p2(q− 2)m+

q2(p − 2)n) and 2((p − 2)m + (q − 2)n) are not perfect squares, then Equation (1)

has infinitely many positive integer solutions.

Theorem 4. If p ≥ 3, q ≥ 3, p 6= 4, q 6= 4 and 2(u2(p− 2)m + v2(q − 2)n) is not

a perfect square, u, v ∈ Z, and the Pell equation

U2 − 2(u2(p− 2)m + v2(q − 2)n)V 2 = 1

has a positive integer solution (U0, V0) satisfying

U0 + 1 ≡ 0 (mod 2(u2(p− 2)m + v2(q − 2)n)), V0 ≡ 0 (mod 2),

then Equation (1) has infinitely many positive integer solutions.

Remark 1. When p = q, this is the case studied by Jiang and Li [9].

Remark 2. When p = 4, q = 4, this corresponds to a linear combination of two

square numbers. Cohen [2, Corollary 6.3.6.] studied the general case

Ax2 + By2 = Cz2,

and gave the general solutions, i.e., “assume that ABC 6= 0, let (x0, y0, z0) be a

particular nontrivial solution of Ax2 + By2 = Cz2, and assume that z0 6= 0. The

general solution in rational numbers to the equation is given by
x = d

(
x0(As2 −Bt2) + 2y0Bst

)
,

y = d
(
2x0Ast− y0(As2 −Bt2)

)
,

z = dz0(As2 + Bt2),

where d ∈ Q, s, t ∈ Z, and gcd(s, t) = 1.”

2. Preliminaries

To prove the above results, we give the following lemmas.

Lemma 1 ([10]). Let D be a positive integer which is not a perfect square. Then

the Pell equation x2 − Dy2 = 1 has infinitely many positive integer solutions. If
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(U, V ) is the least positive integer solution of the Pell equation x2 −Dy2 = 1, then

all positive integer solutions are given by

xs + ys
√
D = (U + V

√
D)s,

where s is a positive integer.

Lemma 2 ([10]). Let D be a positive integer which is not a perfect square, N be a

nonzero integer, and (U, V ) be the least positive integer solution of x2−Dy2 = 1. If

(x0, y0) is a positive integer solution of x2−Dy2 = N, then an infinitude of positive

integer solutions are given by

xs + ys
√
D = (x0 + y0

√
D)(U + V

√
D)s,

where s is a nonnegative integer.

Lemma 3 ([5]). Let D be a positive integer which is not a perfect square, m1,m2 be

positive integers, and N be a nonzero integer. If the Pellian equation x2−Dy2 = N

has a positive integer solution (u0, v0) satisfying

u0 ≡ a (mod m1), v0 ≡ b (mod m2),

then it has infinitely many positive integer solutions (u, v) satisfying

u ≡ a (mod m1), v ≡ b (mod m2).

3. Proofs of the Theorems

Proof of Theorem 1. If h(x, y) = mPp(x)+nPq(y), Equation (1) becomes h(x, y) =

z2. When

m = (q − 4)2(p− 2)t, n = (p− 4)2(q − 2)rt,

let

x = au + b, y = (p− 2)(q − 4)cu.

Then

h(au+ b, (p− 2)(q − 4)cu)

=
1

2
(q − 4)2(p− 2)2t(a2 + rc2(q − 2)2(p− 4)2)u2

+
1

2
(q − 4)2(p− 2)t((2(p− 2)b− (p− 4))a− (p− 4)2(q − 2)rc)u

+
1

2
(q − 4)2(p− 2)tb((p− 2)b− (p− 4)).

Consider
g(u) = h(au + b, (p− 2)(q − 4)cu)
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as a quadratic polynomial of u. If g(u) = 0 has multiple roots, then the discriminant
of g(u) is zero, i.e.,

a2 − 2cr(q − 2)(2(p− 2)b− (p− 4))a

− rc2(q − 2)2(4(p− 2)2b2 − 4(p− 2)(p− 4)b− (p− 4)2r) = 0.

It implies
a = c(q − 2)(2(p− 2)br − (p− 4)r + 2

√
∆), (2)

where ∆ = (p− 2)r(r + 1)b((p− 2)b− (p− 4)).

To find a ∈ Z+, we take ∆ = W 2. Then(
2(p− 2)b− (p− 4)

|p− 4|

)2

− r(r + 1)

(
2W

|p− 4|r(r + 1)

)2

= 1.

Letting

X =
2(p− 2)b− (p− 4)

|p− 4|
, Y =

2W

|p− 4|r(r + 1)
, (3)

we obtain the Pell equation

X2 − r(r + 1)Y 2 = 1. (4)

It is easy to see that the pair (X0, Y0) = (2r + 1, 2) is the fundamental solution
of Equation (4). So an infinitude of positive integer solutions of Equation (4) are
given by

Xs + Ys

√
r(r + 1) =

(
2r + 1 + 2

√
r(r + 1)

)s+1

, s ≥ 0.

Thus, {
Xs = 2(2r + 1)Xs−1 −Xs−2, X0 = 2r + 1, X1 = 8r2 + 8r + 1,

Ys = 2(2r + 1)Ys−1 − Ys−2, Y0 = 2, Y1 = 4(2r + 1).

According to the above recurrence relations, we have

Xs − 1 ≡ 0 (mod 2), Ys ≡ 0 (mod 2).

From (2), we get as = cr(q − 2)(p − 4)(Xs + (r + 1)Ys). Hence, as is a positive
integer.

1) When p = 3, q ≥ 5, from (3), we obtain

bs =
Xs − 1

2
, Ws =

r(r + 1)Ys

2
.

It is obvious that bs and Ws are integers.
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2) When p > 4, q > 4, we have

bs =
(p− 4)(Xs + 1)

2(p− 2)
, Ws =

(p− 4)r(r + 1)Ys

2
.

In view of bs is an integer, we need Xs +1 ≡ 0 (mod 2(p−2)). If r ≡ −1 (mod (p−
2)), then X0 + 1 ≡ 0 (mod 2(p − 2)). According to the above recurrence relation,
it is easy to prove that

Xs ≡

{
− 1 (mod 2(p− 2)), s ≡ 0 (mod 2),

1 (mod 2(p− 2)), s ≡ 1 (mod 2).

Hence, when s ≡ 0 (mod 2), we have

Xs + 1 ≡ 0 (mod 2(p− 2)),

then bs is a positive integer.

Therefore, Equation (1) becomes

tr(r + 1)

2
(du + e)2 = z2.

If tr(r+1)
2 is a perfect square, there exist infinitely many pairs (a, b) of positive

integers such that Equation (1) has integer parametric solutions (au+ b, (p−2)(q−
4)cu, w(du + e)), where c, w are positive integers.

Example 5. When p = 6, q = 5, r = 3, t = 6, tr(r+1)
2 = 62 is a perfect square,

then m = 24, n = 216 and a0 = 270c, b0 = 2. Hence, Equation (1) has integer

parametric solutions (270cu+2, 4cu, 12(156cu+1)), where c, u are positive integers.

Proof of Theorem 2. Let y = x + r, r ∈ Z, Equation (1) becomes

(2((p− 2)m + (q − 2)n)x− ((p− 4)m− (2(q − 2)r − (q − 4))n))2

− 2((p− 2)m + (q − 2)n)(2z)2

= −4mn(p− 2)(q − 2)r2 − 8mn(p− q)r + ((p− 4)m + (q − 4)n)2.

Take X = 2((p− 2)m+ (q− 2)n)x− ((p− 4)m− (2(q− 2)r− (q− 4))n) and Z = 2z,

we get

X2 − 2((p− 2)m + (q − 2)n)Z2

= −4mn(p− 2)(q − 2)r2 − 8mn(p− q)r + ((p− 4)m + (q − 4)n)2.
(5)

By Lemma 1, if 2((p− 2)m + (q − 2)n) is not a perfect square, the Pell equation

X2 − 2((p− 2)m + (q − 2)n)Z2 = 1
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has infinitely many positive integer solutions. By Lemma 2, if Equation (5) has a

positive integer solution, it has infinitely many positive integer solutions. Assume

that Equation (5) has a positive integer solution (X0, Z0) satisfying

X0 − 2(q − 2)nr + ((p− 4)m + (q − 4)n) ≡ 0 (mod 2((p− 2)m + (q − 2)n)),

Z0 ≡ 0 (mod 2).

By Lemma 3, Equation (5) has infinitely many positive integer solutions (X,Z)

satisfying the above condition, which leads to infinitely many x, z ∈ Z+. Then there

are infinitely many y = x+r ∈ Z+. Hence, Equation (1) has infinitely many positive

integer solutions (x, x + r, z).

Example 6. When p = 6, q = 5, r = 1, m = 2, n = 1, Equation (5) becomes

X2 − 22Z2 = −87. (6)

It has a positive integer solution (X0, Z0) = (1651, 352) satisfying

X0 − 1 ≡ 0 (mod 22), Z0 ≡ 0 (mod 2).

Note that (u, v) = (197, 42) is the least positive integer solution of X2 − 22Z2 = 1.

By Lemma 3, Equation (6) has infinitely many positive integer solutions (X,Z)

satisfying the above condition, which leads to infinitely many x, z ∈ Z+. Then there

are infinitely many y = x+1 ∈ Z+. Hence, Equation (1) has infinitely many positive

integer solutions (x, x + 1, z).

Proof of Theorem 3. By Theorem 2, it is sufficient to find a positive integer solution

(X0, Z0) to Equation (5) satisfying

X0 − 2(q − 2)nr + ((p− 4)m + (q − 4)n) ≡ 0 (mod 2((p− 2)m + (q − 2)n)),

Z0 ≡ 0 (mod 2).

Suppose that

X0 = pm + qn + 4mnt(p− q)((p− 2)m + (q − 2)n),

r =− (pm + qn)t((p− 2)m + (q − 2)n),

then Z0 satisfies

Z2
0 = 2mn(p2(q − 2)m + q2(p− 2)n)((p− 2)m + (q − 2)n)2t2 + 4(m + n). (7)

If m + n is a perfect square but 2mn(p2(q − 2)m + q2(p − 2)n) is not a perfect

square, from Lemma 2, Equation (7) has infinitely many positive integer solutions

(Z0, t). And suppose (Z ′0, t0) is an arbitrary positive integer solution of Equation

(7).
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If 2((p− 2)m + (q − 2)n) is not a perfect square, by Lemma 1, the Pell equation

X2−2((p−2)m+(q−2)n)Z2 = 1 has infinitely many positive integer solutions. Put

(U0, V0) be the least positive integer solution of X2− 2((p− 2)m+ (q− 2)n)Z2 = 1.

And Equation (5) becomes

X2 − 2((p− 2)m + (q − 2)n)Z2

= −4nm(q − 2)(p− 2)(mp + nq)2((p− 2)m + n(q − 2))2t20

+ 8nm(p− q)(mp + nq)((p− 2)m + n(q − 2))t0 + ((p− 4)m + n(q − 4))2,

(8)

which has a positive integer solution

(X0, Z0) = (pm + qn + 4mn(p− q)((p− 2)m + (q − 2)n)t0, Z
′
0)

satisfying

X0 + 2n(q − 2)(mp + nq)((p− 2)m + n(q − 2))t0

+(p− 4)m + n(q − 4) ≡ 0 (mod 2((p− 2)m + (q − 2)n)),

Z0 ≡ 0 (mod 2).

By Lemma 2, an infinitude of positive integer solutions of Equation (8) are given

by

Xs + Zs

√
2((p− 2)m + (q − 2)n) =

(
X0 + Z0

√
2((p− 2)m + (q − 2)n)

)
×
(
U0 + V0

√
2((p− 2)m + (q − 2)n)

)s
, s ≥ 0.

From some calculations, we have{
X2s+2 = 2(2U2

0 − 1)X2s −X2s−2,

Z2s+2 = 2(2U2
0 − 1)Z2s − Z2s−2,

where

X0 = pm + qn + 4mn(p− q)((p− 2)m + (q − 2)n)t0,

X2 = (2U2
0 − 1)X0 + 4((p− 2)m + (q − 2)n)U0V0Z0,

Z0 = Z ′0,

Z2 = (2U2
0 − 1)Z0 + 2U0V0X0.

From X = 2((p − 2)m + (q − 2)n)x − ((p − 4)m − (2(q − 2)r − (q − 4))n) and

Z = 2z, we have

x =
X + (p− 4)m + n(q − 4)

2((p− 2)m + (q − 2)n)
+ n(q − 2)(mp + nq)t0, z =

Z

2
.
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Then
x2s+2 = 2(2U2

0 − 1)x2s − x2s−2 − 8n(q − 2)(mp + nq)((p− 2)m + n(q − 2))V 2
0 t0

+ 4V 2
0 ((p− 4)m + n(q − 4)),

y2s+2 = x2s+2 − (mp + nq)t0((p− 2)m + n(q − 2)),

z2s+2 = 2(2U2
0 − 1)z2s − z2s−2,

where

x0 =1 + nq((p− 2)m + n(q − 2))t0, x2 = 2V 2
0 X0 + 2U0V0Z0 + x0,

y0 =1−mp((p− 2)m + n(q − 2))t0, y2 = 2V 2
0 X0 + 2U0V0Z0 + y0,

z0 =
Z0

2
, z2 =

(2U2
0 − 1)Z0 + 2U0V0X0

2
.

Therefore, if m + n is a perfect square, but 2mn(p2(q − 2)m + q2(p − 2)n) and

2((p−2)m+(q−2)n) are not perfect squares, then Equation (1) has infinitely many

positive integer solutions (x2s+2, y2s+2, z2s+2), where s ≥ 0.

Example 7. When p = 6, q = 5, m = 3, n = 1 (m + n = 22), Equation (7)

becomes

Z2 = 572400t2 + 16,

which has a positive integer solution (Z0, t0) = (5296, 7). And Equation (5) becomes

X2 − 30Z2 = −839782391,

which has a positive integer solution

(X0, Z0) = (1283, 5296)

satisfying

X0 + 14497 ≡ 0 (mod 30), Z0 ≡ 0 (mod 2).

Note that (U0, V0) = (11, 2) is the least positive integer solution of X2 − 30Z2 = 1.

Hence, we have
x2s+2 = 482x2s − x2s−2 − 231952, x0 =526, x2 = 243814,

y2s+2 = x2s+2 − 2415, y0 =− 1889, y2 = 241399,

z2s+2 = 482z2s − z2s−2, z0 =2648, z2 = 666394.

Thus, Equation (1) has infinitely many positive integer solutions (x2s+2, y2s+2, z2s+2),

where s ≥ 0.

Proof of Theorem 4. When x = ut, y = vt, u, v, t ∈ Z+, Equation (1) becomes

(2(u2(p− 2)m + v2(q − 2)n)t− (u(p− 4)m + v(q − 4)n))2

− 2(u2(p− 2)m + v2(q − 2)n)(2z)2 = (u(p− 4)m + v(q − 4)n)2.
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Take

X = 2(u2(p− 2)m + v2(q − 2)n)t− (u(p− 4)m + v(q − 4)n), Z = 2z, (9)

we get

X2 − 2(u2(p− 2)m + v2(q − 2)n)Z2 = (u(p− 4)m + v(q − 4)n)2. (10)

By Lemma 1, if 2(u2(p−2)m+v2(q−2)n) is not a perfect square, the Pell equation

U2 − 2(u2(p− 2)m + v2(q − 2)n)V 2 = 1 (11)

has infinitely many positive integer solutions. Therefore, Equation (10) has in-

finitely many positive integer solutions. Suppose (U, V ) is a positive integer solu-

tion of Equation (11), then (|u(p− 4)m + v(q − 4)n|U, |u(p− 4)m + v(q − 4)n|V )

is a positive integer solution of Equation (10). From (9), we have

t =
|u(p− 4)m + v(q − 4)n|(U + 1)

2(u2(p− 2)m + v2(q − 2)n)
, z =

|u(p− 4)m + v(q − 4)n|V
2

. (12)

If Equation (11) has a positive integer solution (U0, V0) satisfying

U0 + 1 ≡ 0 (mod 2(u2(p− 2)m + v2(q − 2)n)), V0 ≡ 0 (mod 2),

then, by Lemma 3, Equation (11) has infinitely many positive integer solutions

(U, V ) satisfying the above condition, which leads to infinitely many t, z ∈ Z+.

Hence, Equation (1) has infinitely many positive integer solutions (x, y, z) satisfying

x = ut, y = vt, where u, v ∈ Z+.

Example 8. When m = n = 1, p = 6, q = 5, u = 2, v = 1, Equation (11) becomes

U2 − 38V 2 = 1.

By the theory of Pell equation, an infinitude of positive integer solutions of the

above Pell equation are given by

Us + Vs

√
38 =

(
37 + 6

√
38
)s+1

, s ≥ 0.

Thus, {
Us = 74Us−1 − Us−2, U0 = 37, U1 = 2737,

Vs = 74Vs−1 − Vs−2, V0 = 6, V1 = 444.

From (12), we have

ts =
5(Us + 1)

38
, zs =

5Vs

2
.
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When s ≡ 0 (mod 2), it is easy to see that

Us + 1 ≡ 0 (mod 38), Vs ≡ 0 (mod 2),

which leads to ts, zs are all positive integers. Hence, Equation (1) has infinitely

many positive integer solutions (xs, ys, zs) satisfying xs = 2ts, ys = ts, where s ≡ 0

(mod 2).

Remark 3. When m = M2, n = 1, for p = 4, q ≥ 3, we can get some parametric

solutions.

1) For p = 4, q = 3, Equation (1) becomes

(z −Mx)(z + Mx) =
y(y + 1)

2
.

Hence, we can take z −Mx =
y + 1

4Mr
,

z + Mx =2Mry,

where r is a positive integer.

It leads to

x =
8M2r2y − y − 1

8M2r
, z =

8M2r2y + y + 1

8Mr
.

Take y = 8M2rt− 1, we get

x = 8M2r2t− r − t, z = M(8M2r2t− r + t).

2) For p = 4, q = 4, Equation (1) becomes

M2x2 + y2 = z2.

By the Pythagorean theorem, we have

x = k(u2 − v2), y = 2Mkuv, z = Mk(u2 + v2),

where u > v.

3) For p = 4, q ≥ 3, Equation (1) becomes

(z −Mx)(z + Mx) =
y
(
(q − 2)(y − 1) + 2

)
2

.

Then we can take {
z −Mx =

y

4Mr
,

z + Mx =2Mr((q − 2)(y − 1) + 2),
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where r is a positive integer.

It leads to

x =
(8M2r2(q − 2)− 1)y

8M2r
− (q − 4)r, z =

(8M2r2(q − 2) + 1)y

8Mr
− (q − 4)Mr.

Take y = 8M2rt, we have

x = 8(q − 2)M2r2t− (q − 4)r − t, z = M(8(q − 2)M2r2t− (q − 4)r + t).

Hence, when m = M2, n = 1, for p = 4, q ≥ 3, Equation (1) has infinitely many

positive integer solutions.
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