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Abstract
In this paper we present an elementary bijection between a set of two-line matrices
and the set of all partitions of n with the smallest part being at least ¢ and the
minimum distance between parts at least A\. We then describe a procedure to find
the cardinality of the set of those two-line matrices. A special case that deserves
to be highlighted is that we have a closed formula for the number of unrestricted
partitions.

1. Introduction

Let n,c € N, with ¢ <n—1, and A € NU{0}. Let us define M(n, ¢, A) to be the set

of all two-line matrices
_ ap az -+ Qs
M—(bl mo ) 1)
such that a;,b; € NU {0} and

as =C, @ = Q541 + b_]-‘rl + A and Z(al + bz) =n.

i=1
The condition ¢ < n — 1 follows from the fact that
M(n,n,A\)| = M(n,n—1,X)] =1 and M(n,n+t ) =0, VieN.

There is a very strict relationship between two-line matrices and partitions. In fact,
given M € M(n, ¢, ), written as (1), if we define a; + b; = p; we would have the
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partition of n
n = /’L1+"'+,u87

where the least part y1; > cand p; —p;—1 > A. On the other hand, given a partition
n = py+ -+ ps, with us > cand pj_1 — pj > A, we can write

Hs = c+ b87
Hs—1 = U + A + bs—l = Gs—1+t bs—la
Hs—2 = MHs—1 + A + b572 = as—1+t bsfl + A + b572 = as—2+ b5727

and continuing this process we obtain a matrix M € M(n, ¢, A) (see (1)). This es-
tablishes a bijection between the set M(n, ¢, A) and the set P(n, ¢, \) of all partitions
of n with the smallest part being at least ¢ and the minimum distance between parts
being at least A.

The relation between partitions and two-line matrices is not new and dates back
to Frobenius [7] and Andrews [1]. The interpretation used here was introduced by
Mondek-Ribeiro-Santos [11]. We refer the reader to [2], [3], [8] and [10] for more
applications of this theory.

Our goal in this paper is to describe a tree-like structure to count the matrices
in M(n,c, ), and consequently obtain a formula to calculate the cardinality of
P(n,c,A). In particular we present a closed combinatorial formula for p(n), the
partition function.

There is in fact an extensive literature on the partition function, starting with
the groundbreaking work of Hardy and Ramanujan [9] who were the first to have
determined the asymptotic behaviour of p(n). Later Rademacher [12] perfected their
methods (known today as the Circle Method) to derive the first formula for p(n). In
2013, Bruinier and Ono [4] presented a formula for p(n) as a finite sum of algebraic
numbers, and Dewar and Murty [6] used these ideas to derive the Hardy-Ramanujan
asymptotic formula bypassing the Circle Method. Recently, Schneider [13] presented
a way of determining p(n) via computing the number of partitions having no part
equal to one. Although he does not present a closed fromula, estimates on the
number of these special partitions of n are given. All these formulas are derived via
complex function theory, and in this scenario combinatorial formulas for p(n) are a
welcomed addition to the theory.

In 2016, Choliy and Sills [5] also presented a closed combinatorial formula for
p(n), based upon the determination of the number of partitions of n with Durfee
square of order k < y/n. Although we have different starting points, our formulas
bear some interesting similarities to each other.
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2. Special Matrices

We start with some notation that will be helpful for the understanding of the pro-
cedure. Given any pair of two-line matrices A and B, let us define the juxtaposition

operation AW B as

ay -+ Cg W c1 - Ct _ a1
by -+ ds dy -+ dy by

The next matrices are essential to our work. Let

... as cl P ct
) e

c+ X c
0 0

+ 1A +(t1 — DA
Altnta) = < Tt .
and
+ (1 +DA+1+¢
D(ty,t2,t3) = < ¢+t tz} 2 >

Now define recursively, for ¢ > 4,

-1
D(tr, ... tg) = ( et HDAF1IHE 3N+t

te

Example 1. For ¢ = 3 and A\ = 2 we have

A(ty,t2)

2 +3 20t —1)+3
1419 0

2t th +6
D(t17t27t3) = ! 2 )

t3

D(t1,t2,t3,ta,t5) =

D(t17t27t37t4) = (
In particular,
D(2,3,3,4,4,1,1) W A(2,3) = (

1 1 4

Notation 2. For convenience sake, let us define

33 30 24 18 13

‘ ) W D(ty,...,te—1).

O ot
o W
N——

2t1+t2+t3+8 2ty +ta +6 )

2t1+222t +10 2ty +ty+1t3+8 2t1+t2+6)
t3 ‘

Liz)=c+(z+1)A+1 and Q(z)=clz+1)+\——.
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Lemma 1. Let A be any two-line matriz and define o(A) to be equal to the sum of
all entries of A. Then (see (3))

O’(A(?fl,tg)) = Q(tl) + 1 + tg.

and
-2
o(D(ty,..., 1)) = (I —2)L(ty) + AL;I_?)) U=t + > Gt
j=1

Proof. The first equality follows directly from the definition of A(¢1,t3). Note that
o(D(t1,ta,...,t) = (L{t1) + U =3)A+ (ta+---+ ;) +o(D(t1, ta, ..., t1—1)),
and in particular

O’(D(tl,t27t3,t4)) = L(tl) + A + tz + t3 + t4 + U(D(t1,t2,t3))

= 2L(t1) + A+ 2(ty + t3) + t4.

Now the second equality follows from an inductive argument. O

3. The Blocks B(t;1) and Their Generations

Let us call blocks the following matrices in M(n, ¢, \):

50 = (o) ) BO=( 500 6 ).

(4)
o= (g ),
where (see (3))
m(0)=n—c, m(l)=n—2c+A), ... ,m(r)=n—Q(r). (5)

Tt is easy to see that, B(j) = A(j,m(j) — 1), but due to their importance in all that
follows, we have decided to write them explicitly. Let us denote by B(n,c, \) the
set of all blocks in M(n, ¢, ).

Observe that the block B(r) exists if and only if m(r) > 0, that is, if we have
n > Q(r). On the other hand, since by definition n > ¢+ 1 and A > 0, we have
that the quadratic equation (or linear if A = 0)

Qz) —n = %()\m2+x(20+)\)+2(c—n)) ~0 ()

has two distinct non-zero roots, of opposite signs if A # 0 and one root if A = 0.
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Lemma 2. Let us denote by x1 the positive root of (6) andry = |x1]. Thenr;+1
is the number of blocks in M(n, ¢, \), that is |B(n,c, )| =7 + 1.

Proof. Tt follows directly from (6) that m(r;) > 0 and m(r; +1) <O0. O

Example 3. Let n = 25, ¢ = 3 and A = 2. It follows from (6) and Lemma 2
that Q(z) —n = 22 + 4z — 22 and 71 = |z1| = 3. Hence there are four blocks in
M(25, 3,2) and they are:

B(O>:(232>’ B(l):<157 g)

se= (5 ) mo= (Y0 00)

Given a block B(t1), we present here a list of two-line matrices that shall be
called the descendants of B(t1). These descendants will be separated according to
their kinship level. The definition is given recursively, and we will end this section
preseting examples of generations of blocks.

Notation 4. For simplicity, let us adopt the following notation:
Fy=F(ti,...,t)), F;=F(i,...,t-1,0),
Dy = D(t1,...,ts), Dj;=D(t1,...,ti—1,0), (M)
me =m(t1,...,te), mj=m(t1,...,t—1,0).

For ¢t € {0,1,...,71}, we define the second generation of B(t1) as the set Sa(¢1)
of all matrices F(t1,t2), called the first descendants. These matrices are defined as
follows:

_ L(t1) c+t A c+(ti—DX -+ c+X ¢
F(t,0) = (m(tl,O) 1 0 0 o
(®)
_ L(tq)
B (m(tl,O))@A(“’O)v
andfortzzlw.wLwJ
F(t1,ty) = L(t))+ty e+t e+t —DX -+ c+ X ¢
1,t2) = m(ty,ta) 1+ to 0 0 0
9)

- ( L(ty) + 2 >L+JA(t1,t2).

m(t1, tg)
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Hence [Sz(t1)| = s2 = LMJ +1, and for £, = 0,1,..., s2, we have
m(t1,t2) = m(t1,0) — 2ty and m(t1,0) = m(ty) — L(ty) — 1. (10)

For t; € {0,1,...,r1} and ty € {0,1,...,s2}, we define the third generation of
B(t1) as the set Sg(t1) of all matrices F'(t1,t2,t3) (the descendants of the matrices
F(t1,t2)). These matrices are defined as:

_ L(t1)+>\+t2 L(tl)-l-tg C+t1>\ C
F(t1,t2,0) = < m(t1,t2,0) 0 14ty -+ 0
(11)
_ L(t1) + A+ t2
= ( m(t1, 2, 0) ) W D(t1,ta,0) W A(ty,t2),
and for t3 =1,..., Lm(tlf’ho)j define
o L(t1)+)\+t2+t3 L(t1)+t2 C+t1A C
F(ti,ta,t3) = ( m(t1, ta, t3) ts T4ty -+ 0
(12)

< L(t1) + A+ ta + t3

W D(t1, Lo, t3) W A(t1, t2),
m(tlatQat?)) ) ( 12 3) ( ! 2)

where
m(t17t2,t3) = m(tl,tQ,O) —2t3 and m(tl,tg,O) = m(tl,tg) —L(tl) —/\—tQ. (13)

For ¢ > 4 we define recursively the ¢-th generation of B(t1) as the set S(t1) of
all matrices F'(t1,...,t;) (the descendants of F(t1,...,t,—1)). These matrices are
defined as (see (7)):

-1
Ff = ( Lit) + (0= 224200 ) WDy W A(ts, t2), (14)

*

my
and for t, = 0,1, ..., L%J define
¢
F = ( L{t) + (€ =2)A+ X it ) W Dy W A(t, 1), (15)
my

where (see (7))

me = mj — 2t and (16)
mi; = me_y—L(t) — (=21 =20 ts.
This is a formal definition, for these generations only exist if m(ty,...,ts) > 0.

Before addressing this question, let us present two examples that will make all
these concepts clearer.
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Example 5. Assuming n = 25, ¢ = 3 and A = 2, we have in Example 3 the list of
the four blocks. Let us now describe the list of the first descendants of these blocks,
observing that now L(z) = 2z + 6. It follows from (5) that (see Example 3)

m(0) =22, m(1) =17, m(2) =10 and m(3) = 1.
Hence (see (10))
m(0,0) = m(0) — 6 —1 =15 and m(1,0) = 8.

The values of m(2,0) and m(3,0) are negative, hence the blocks B(2) and B(3)
have no descendants. Since

m(07t2) = 15 — 2t2 and A(O,tQ) - < 1 ‘i)t ) )
2

we obtain the following list of first descendants of B(0) (see (8) and (9)):

F(0,0)<165 if) F(o,l)(l?3 g) F(o,2)<
F(0,3)=(g i) F(0,4):(70 2) F(0,5):<151 2)
2 3 3

F(O,G)—<3 > F(O,?)—(1 2)

Hence [S2(0)| = 8. Since

[t

—_
—

m(1,ts) = 8 — 2t5 and A(l,tg)—(lft g)
2

we obtain the list of first descendants of B(1):

rao=(323). ran=(232). rap=(Y

2 5 3
0 5 0 )°

wW
o W
N———

T
—~
—
w
S~—
Il
7N
=
[\Dl—\
= Ot
o W
~_
T
—
p—
B~
N
\
7 N
—

Hence [S2(1)| = 5.

Example 6. Assuming n = 25, ¢ = 3 and A\ = 2, we want the list of the descendants
of F(t1,t2). Now (see Examples 3 and 5) we have m(0,0,0) = m(0,0) —6—-2=17
and m(1,0,0) = m(1,0) — 8 — 2 < 0, hence only the first block has descendants in
the third generation. Since the only positive values of m(0,t2,0) are (see (13))

m(0,0,0) =15—-8=17, m(0,1,0) =13 -9 =4, and m(0,2,0) =11 —10 =1,
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then only F(0,0), F(0,1) and F(0,2) have descendants. Now (see Example 1)

m(0,0,t5) = 7 — 2, A(0,0) = G’) and D(0,0,t5) = (f )
3

( ) and D(0,1,t;) = <t73>
m(0,2,t3) = 1 — 2ts, ( ) . and D(0,2,t5) = (tgg ) :
)

Therefore, the first descendants of F(0,0) are (see (11) and (12))

6 3

1 1)
10

3 11 6 3
Fuamz(g 1),qum=(1 31);

the first descendants of F'(0,1) are

9 7 3 10 7 3
F(0,1,0)=(4 0 2), F(0,0,1)=< 9 1 2),
11 7 3
F(07032)< 0 2 2);

and the first descendant of F(0,2) is

m(0,1,t3) = 4 — 2ts,

ot ©

rooo= (35 %), Foon=(

N D

10 8 3
F(0,2,0)—< Lo 3).

Hence [S3(0)| = 8.

As can be seen from the construction above, matrices that are first descendants
of a two-line matrix have exactly one more column.

4. Properties of the Descendants

Lemma 3. Let £ > 2. For F(ty1,...,ts) € S¢(t1) we have

L
m(th...,tg) :m(tl)—(é—l)L(tl) — )\W — Zj'tg,jJrQ —1. (17)

=2
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Proof. From (10) and (13) we have
mo :m(tl)—L<t1)—1—2t2 and mgzmg—L(tl)—)\—tg—th,

hence
ms = m(tl) - 2L(t1) — A= 3t2 - 2t3 - 1,

and these cases confirm (17) for £ = 2 and ¢ = 3. Since from (16) we have

-1
My = Myp_1 — L(tl) — (ﬂ — 2))\ — Zti — 2ty,
i=2
the result follows from an inductive argument. O

Lemma 4. If B(t;) € M(n, ¢, X) then any descendant of B(t1) is also in M(n, ¢, A).

Proof. Let F(t1,...,t) be a descendant of B(t1). We have to check whether
F(ty,...,t;) satisfies all the properties of M(n,c,A). By construction, the matrix
A(ty,t2) satisfies the conditions

cs=c¢, and ¢j =cjp1+djp1+ A
The matrix D(¢1,...,%), also by construction, satisfies the condition
¢ =1+ djp + A

(see Example 1), and observe that the matrix D(ty,...,t;) W A(t1, t2) satisfies both
conditions
Cs = C, and C; = Cj+1 + dj+1 + )\,

since the last column of D(t1,...,%;) and the first column of A(t1,t2) are, respec-

( e+t + DA+ 1+t ) and ( ¢+t )

tively,

tg 1+t2

Finally, observe that the matrix F(¢1,...,t;) also satisfies both conditions since the
first column of F'(t1,...,%) and the first column of D(t1,...,t;) are, respectively,

( L)+ (- 2A+ Yok ) and ( L(t) + (1 =3)A+ ot ) ,

mlty, ... t) t

The only thing left to be proven is that the sum of all entries of F(¢y,...,t;) is equal
to n. From the definition we have (see (7))

4
o(Fy) = L(t) + (L =X+ Y _ti +mg + 0(Dy) + o(A(t, 12)).
=2
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By Lemmas 1 and 3, and by (5), we have

o(Fp) = ((=1)Lt) + MEGED 4 50 Gty +my
= m(t) +Q(t) =mn,

completing the proof. O

Lemma 5. Let M € M(n,c,\). Then there exists a t; € {0,1,...,7r1} such that
M € Sy(t1), for some £ € N.

Proof. Let us write M as
ay az - as—1 C
M= )
( bi by -+ bs—1 b >
where a; = a1 + bj+1 + A and 0(M) = n (see Lemma 1). Hence (see (3))
no=oM) =Q(s—1)+Y j-bu
j=1

It follows from Lemma 2 (see also (6)) that n < Q(z1 + 1), hence s < |x1]| + 1,
for b; € NU {0}, for any j. Therefore the maximum number of columns of M is at

most 71 + 1. Let iy be the biggest value such that by = bs_1 =--- =bs_;, =0, in
this case we have
o @m oa c+ g c+(lo—1)A -+ c+ X ¢
o by by - bs—(i0+1) 0 0 0 ’
that is, M € S;(ip), completing the proof. O

5. Conditions for the Existence of Sy(t1)

The previous section presents a formal tree-graph, with the blocks B(t;) as the
root-vertices, and the descendants are the branches distributed according to its
kinship level. This is a formal definition. The condition for the existence of each
branch-vertex is given in the next lemma.

Lemma 6. The matriz F(ty,...,te) is in S¢(t1) if and only if

14
+ Zj~tg_j+2+1. (18)

=2

(-1)(£-2)

o= QU+ (= DL(n) + A
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Proof. The condition for the existence of the matrix F(t1,...,t;) is that mg > 0.
From Lemma 3, (5), (7) and (10) we have

¢
me = m(t)—((—1L(t)) — MEHED N gy -1,
j=2
(19)
¢
= n=Qt) = (L= DLty) = MZHEE = 3 Tty g — 1,
j=2
completing the proof. O
Notation 7. Let us denote by £, the polynomial (see (18))
‘
Loltroeot) = QM)+ (E=DL(L) + MNEED 437t p 41
j=2
, J
= Li(t1,0,...,0) + Y j-tijyo
j=2
(20)

Lemma 7. Fort, € {0,1,...,71} we have:

(a) the set Se(t1) #0 if and only if m(t1,0,...,0) >0;
(b) the set S¢(0) # 0 whenever the set Sy(t1) # 0.

Proof. Clearly if m(t1,0,...,0) > 0, then F(t1,0,...,0) € Sg(t1). Conversely as-
sume F'(t1,...,ts) € S¢(t1). It follows from Lemma 3 that

¢
m(tla"'vte):m(tlaoa-"’o)_ Zj'té—j-‘er (21)
j=2
hence, if m(ty,...,t¢) # 0 then m(¢1,0,...,0) # 0. This proves part (a).
It follows from part (a) that we may assume m(t1,0,...,0) > 0, which gives
(-1)(-2)

n > Le(t1,0,...,0) = Q(t1) + (£ —1)L(t1) + A +1

2 )
by (18). According to (3) we have (recall that ¢ € N and A € NU{0}),
Q(t1) = Q(0) + ety + A2UFD and  L(ty) = L(0) + Ay,

hence, if n > L4(¢1,0,...,0), then necessarily we have n > £,(0,0,...,0), complet-
ing the proof of part (b). O
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Lemma 8. Let xy be the positive root of the polynomial (see (3))

Po(x):n—Q(x)—(a:+1):—%xg—x(c+%+1)—c—1+n. (22)

Then £, = |xo] + 1 is the mazimum value of £ such that S;(0) # 0. In particular,
for any t1 € {0,1,...,71}, if Se(t1) # 0 then £ < L,.

Proof. We want the maximum value of ¢ such that

nzﬁe(o,...,()):Q(0)+(£—1)L(t1)+)\w+l'
Now (see (3))
Lo(0,...,0) = e+ (E—1)(c+1+X)+AERED 41

(=) + D)+ A0 4 (v —1)+1),

= QU-D+((t-1)+1),
and since we are assuming n > ¢+ 1, the equation
Qlz)+(z+1)=n

has two distinct non-zero roots of opposite signs if A # 0, and one root if A = 0.
Let o be its positive root. It is easy to check that Q(|zo]) + (|zo] +1) < n and
Q(|lzo] + 1) + (|mo] + 1) +1 > n. Take €y = |xo] + 1 to complete the proof. [

Example 8. Let us assume n = 25, ¢ = 3 and A\ = 2. The condition stated in
Lemma 8 is equivalent to
2 +5x—21=0,

which gives |xg] = 2, that is, the set M(25, 3,2) has exactly three generations, and
they are given in Examples 3, 5 and 6. In particular (see Lemmas 4 and 5)

IM(25,3,2)] = |B(25,3,2)]| +[S2(0)] + [S2(1)| + |S5(0)] = 44+8+5+8 = 25.

Figure 1 below presents the generational tree of the set M(25, 3, 2).

6. The Cardinality of the Set S;(¢1)

Lemma 6 gives a general condition for the existence of an element in Sy(¢1). Now we
want to establish conditions for the values of the variables t1, ..., t; that guarantees
the existence of the matrix F(tq,...,%p). It follows from Lemma 7 that the condition
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Family of Trees for M(25,3, 2)

B(0)
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

,,,,,,,,,,,,,,,,, ___| 2 Generation
0.7)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |3 " Generation

F(0.0.0) F{0.0.3) F(0,1,0) FO11)  F@O12) F(0.20)

Figure 1: Generational Tree

Se(t1) # 0 is equivalent to n > L(¢1,0,...,0) (see (18),(19) and (20)), thus we
obtain x, as the non-negative root of the equation

Ly(x,0,...,0) =n.

This gives an upper bound for ¢; that guarantees that the block B(t;) has descen-

dants at the £-th generation, whenever t; < ry = |x¢].

Lemma 9. Supppose S¢(t1) # 0 and, for y € {2,...,£}, consider

Pi(z) = n—Qx)=—-%2>—z(c+%)—c+n, and

Pi@) = n—L;(0,....0) (23)
= 32— alet 32 - 1) = (Gle+ 1) + 356 = 1) = n).

If ©; is the non-negative root of P;i(x) =0, then 1 > xo > -+ > 4. In particular,

TL2T2 2 2Ty
Proof. If A\ = 0 these equations are all linear and the result is easy to obtain. So

let us consider A # 0. For the quadratic equation P;(x) = 0, let us denote by A;
its discriminant, thus

3\

AQZ(c+7)2—2A(2(c+ D4+ A—n)=A; — 4\,
and for 3 € {3,...,¢} we have
Aj = (e+5(2-1)) =2((c+ 1)+ 35( —1) —n)

= Aj1+2XMc+3(25—-3)+ A2 =2A(c+ 1+ A(j— 1))

= Aj,1 — 2.
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Hence 1 < x5 and

1 A 1 AL
Tj= — X(C+ 5(23 —D+VAj ) < - X(C+ 5(23 =3+ VA1) =z,
completing the proof. O

Corollary 1. Assume XA # 0 and let A; be the discriminant of the quadratic equa-
tion P; = 0. Then

(a) AQ = Al — 4)\, and Al = Ai,1 — 2)\, fO’]" ) > 2,
(b) A;=A;— 2\

Proof. This is a direct consequence of the proof of Lemma 9. O

Before going any further, let us collect all the notation used so far in the form of
a lemma.

Lemma 10. Let n,f € N and n,£ > 2. The value of my(t1,...,ts,0,...,0) can be
obtained by the formula:

my(ty, .. t6,0,...,0) = n—Lo(t,...,15,0,...,0) = Pe(ts) — > i-trija.

Proof. Tt follows directly from (19), (20), (21) and (23). O

Let us assume that F(t1,...,ti—1) € Spe—1(¢t1) and recall that the condition for
this matrix to have a descendant is

mg(tl,...,tgfl,()) 2 0, (24)

and in this case, the number of descendants of F'(¢1,...,t,—1) (see (15)) is equal to
tiyee tee1,0

{me(l S )JH. (25)

Let us assume that for a fixed ¢; we have Sy(t1) # 0, thus ¢; < ry, according to
Lemma 9. A condition for the existence of a descendant Fy(t1,t9,0,...,0) is that
(see (24) and Lemma 10)

me(t,t2,0,...,0) = Py(ty) — Lt > 0.

This gives the following condition on ¢y for the existence of Fy(t1,t2,0,...,0):

by < V?e;h)J — O, (26)
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Similarly, given ¢1,t2, the condition on t3 for the existence of Fy(t1,ts,t3,0,...,0)
is given by

mg(tl,t27t370, . 70) - Pe(tl) - ftg — (E — 1)t3 2 0,

which gives

Po(t1) — £t
o= “eilJ = T4 (1, 12). (27)
In general, given t1,t,...,%;_1, the condition on ¢; for the existence of

Fy(ty,ta, tz,...,t5,0...,0)

is given by

Po(t) — S, it
P Fmtorts HQJ = Tt ), (29

t—(G—-2)

for any j < £ — 1. These arguments together with (25) proves the next theorem

Theorem 9. For any ¢ > 2 such that ry > 0 (see Lemma 9), the number of elements
of M(n,c, \) that are descendants of any block at the £-th generation is equal to

¢
re T T, Pe(tl)—g iteiy2
=3

Dp = » > 0 > ‘2 +1

t1=01t2=0 te—1=0

Therefore, for £y given in Lemma 8 we have
Lo
IM(n, e, )| = (ri+1)+ > _Dy.
£=2

The calculation of |M(n,c, A)| can be done in a very effective way. We will
illustrate this procedure in the next example.

Example 10. We want to calculate |M(31,1,2)|. Starting with Lemma 8 we have
that the maximum number of generations is given by ¢y = |xo] + 1 where g is the
root of Py(z) = —x? — 3z + 29. Hence

|zo] =4 and {4y =5.

From Lemma 9 we have

Pi(z) = -—x?—2x+ 30,
Py(z) = —a?—4dx+ 25,
Ps(z) = —x?—6x+19,
Py(z) = —a2?—8zx+11,
Ps(x) = —22—10z+1.
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Denoting by A; the discriminant of the equation P;(z) = 0 we have (see Corollary

1)
Ay =124, Ay =A; —8=116, Az=Ay—4=112,

Ay =As—4=108, As=A,—4=104.

Hence
7"1:47 T2:3, T3:2, T4:1, T5:0.

Therefore

DQtZ_O(LPQ( )J+1)713+11+7+3f34

Now, r3 = 2, and since (see (28))

T, (1) = [ =57
we have
0y =6, 7(1) =4, T{V(2)=1
Hence
9 3
— 3t
> Z 2 4)
t1: :
6193t 1. 12-3¢ L 33t
2 2 2
Z D+ (5 + D+ ) (=5 ]+
2=0 to=0 to=0
= 62
Now r4 = 1, and since (see (28))
Pa(t Pa(ty) — 4t
T () = | 4;% and T (41, 15) = | 244 1; 2]

we have
) =2 1Y) =0

T7iM0,0) =3, TiY(0,1) =2

T3(4) (0,2) =1, Td(4)(170) =0.
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Hence
ra TSV () T4 (t1,t2)
D, = Z Z Z {734(751 4t273t3J+1)
t1=0  t3=0 ts=0
> —3t 73t
3 3
- S n e
t3=0 t3=0
3 — 3ts
5 DI EERRIEIREY
t3=0
= 29.
Finally, 75 = 0 and (see (28))
P5(0) P5(0 P5(0
O =120 0 100.0 = P2~ 0 ana 790,00 = P2V <o,
hence P2 (0
Ds = | 52( )J+1:1
Therefore

M(31,1,2) =(r1 + 1)+ Dy + D3+ Dy + D5 =5+ 34+ 62+ 29 + 1 = 131.

In particular, we have also proved that the number of partitions of 31 with the
smallest part greater than or equal to 1 and distance between parts at least 2 is
equal to 131. The partitions of n with the restrictions given by ¢ =1 and A = 2 are
the ones arising from the Rogers-Ramanujan Identities. For this reason 131 is also
the number of partititons of 31 into parts that are congruent to +1 modulo 5.

The most important application of our procedure is the presentation of a closed
combinatorial formula for the number of unrestricted partitions. The details are
given below.

6.1. Unrestricted Partitions

The number of unrestricted partitions of n is equal to the cardinality of the set
M(n,1,0). The number ¢, of generations is given by the root of

-2
Po(x) =n—2(x+1), thatis, o= LnQ J +1,

which gives the generating polynomials

Pi(z) =n—(x+1) and Pj(z)=n—(x+2j), for y=2,..., 4, (29)
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and the roots of these polynomials are

ri=n—1 ro=n—4, ..., 1y, =n — 20y.

From (28) we can obtain the values of Tj(e) (t1,...,tj—1). Now we have all the neces-
sary ingredients to obtain from Theorem 9 a formula for the number of unrestricted
partitions of n. Let us illustrate this formula with the following example.

Example 11. For n = 10 we have Py(x) = 10 —2(z + 1), hence zg =4 and ¢, =5
(see Lemma 8), that is, there are five generations. Consider the polynomials (see

(29))
Pi(r) =10—(x+1), hence r3 =09,
Pa(x) =10 — (x +4), hence ry =6,
P3(x) =10 — (x +6), hence rz=4,
Py(x) =10 — (x +8), hence ry=2,
Ps(x) =10 — (z + 10), hence r5 =0.

In this case Dy = r; + 1 = 10, that is, there are 10 blocks. The number of elements
at the second generation is Dy which is given by (recall that 7o = 6)

i(VDQgQJ +1) =16.

t1=0

Now (see (26))

3) _ Pa(ty)
1) = | P - 220

Since r3 = 4, we have
3 3 3 3 3
700 =1, 10 =1, V@) =1Y3) =1 4) =0,

and

From (26) and (27) we have

1) = (P8 | 220 g 10, = (PO 220
hence

T 0) = T8 (1) = 79(0,0) = 7Y (1,0) = 0.
Therefore

4 TSV (1) TSV (t,t2)

Dyi=> > Y« 4t2 a1y -4

t1=0 t2=0 t3=0




INTEGERS: 20 (2020) 19

Finally, since r5 = 0, we have (see (26), (27), (28))

PST(O)J =0, 7,7(0,0) = LPST@J =0, 7,7(0,0,0) = |

P5(0)

7,7(0) = | .

I=0

hence P (0
SLIOTI

Therefore, the number of unrestrited partitions of n = 10 is
(7"1 +1) +D2 +]D)3+]D)4+D5 :42

As expected we can get the cardinality of M(n + k, ¢, \) from the cardinality of
M(n, ¢, ). In our final section we will describe how this can be done using our
methods.

7. The Cardinality of the Set M(n + k, ¢, \)

We start this section with a simple lemma on the roots of quadratic equations.
These ideas will be later applied to the polynomials P;(x).

Lemma 11. Let a,b,c,k € N and define

f(x)=c—ax®—bxr and fir(x) = f(z) +k.
Let us denote by xg,x1 the roots of f(x) with zy < 0 and 1 > 0, and xék),xgk)

the roots of fr(x) with mék) < 0 and acgk) > 0. If we denote by A and Ay the
discriminants of f(x) and f(x)g, respectively, then

(a) Ap = A+ 4dak;

k) _ \/A+4ak—\/ﬁ k) _ \/A+4ak—\/E
b) =z’ =z0 — 5 and z7’ =x1 + 5a .

Proof. Since part (a) follows directly from the definition, we concentrate on part
(b). Tt is easy to check that the roots of both f(x) and fx(z) are symmetric with
respect to the vertical line x = —b/2a. Therefore, since k > 1, there is a t € R,
t > 0, such that

(k)

xék):xo—t and z;’ =x1 +1.

Then
fr@) = —a(z—a”) (@—at") = —a (2 - (30— 1) (z — (21 +1))
= —azx?+ax(zo+ 1) — a (vox1 + t(zo — 1) — 12)

= —az? —bx + (c+tV/A +at?).
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Hence ¢+ k = ¢ + tv/A + at?, and the positive root of at2 + VAt — k =0 is

VA F dak — VA
2a ’

completing the proof. O

Now we can establish a simple procedure to calculate the value of |[M(n+k, ¢, \)|
once we have the value of [M(n,c, A)|. The first step is to calculate ﬁék)
mum number of generations of M(n + k, ¢, \), which is given by the positive root of
the polynomial (see Lemma 8)

, the maxi-

A A
P = (n+k) = Q@) ~ (e +1) = —Za® —alc+ +1) —c—1+n+k

According to Lemma 11, this number can be obtained from the previous calcula-
tions regarding Py, that is, if Ag is the discrimant of Py and =z is its positive root

we obtain
B VAo + 2\k — \/AOJ 41
iy .

Ww%+1{m (30)

The next step is to find the maximum number of blocks inside M(n + k, ¢, A),
which is given by the positive root of the polynomial (see Lemma 9)

A A
v :(nJrk)fQ(:c):—§x2—x(c+§)—c+n+k.

Again by Lemma 11, assuming that A; is the discrimant of P; and x; is its positive
root, we obtain

A1+ 40k — VA
9 = o) = |y 4 YRRV, (31)

and the number of blocks in M(n + k,¢, A) is equal to rgk) + 1. For the values of

r§k) we need the roots of the polynomials

PY = (ntk)—L;(2,0,...,0) = —%x2—x(c+%(2j—1))—(j(c+1)+%j(j—l)—n—k),

forj=2,... ,éék). From Corollary 1 and Lemma 11 it follows that all these values
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can be obtained from a formula based on the value of Ay, in the following way:

(c+2(25 — 1)) +4,/al®
)

(c+ 225 — 1))+ /A% —25x

A

k k
7"](-):|_$§')J _

)

A

(c+3(2 — 1))+ /A =27 — k)J

forj=2,... ,ng). For a fixed ¢ € {2,... ,E(()k)} we obtain (see (26), (27), (28)) for
2<j<t-1

Polty) =S ity i) + K
ij(k)(h,tQ,...,tjfl): (Pelt) = 2ims I+ -it2) J

)

Once we have all these values we can go back to Section 5, and obtain from
Theorem 9 the values of

J4
P (B T O®) TO® (Pg(tl) — E i-te_jio) + k
1=3

DM =S Y Y ' 5 +1

t1=0 t2=0 te_1=0

and
o

M(n+ ke, 0)| = (7 +1)+ > D,
(=2
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