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Abstract

We study the monotonicity behavior of three (slightly) differently defined additive
representation functions (as first considered by Erdős, Sárközy and Sós), answering
one open question as well as another one partially, and give a slightly simpler proof
for a result of Chen and Tang.

1. Introduction

For a set A ⊂ N0 = N ∪ {0} of non-negative integers and every n ∈ N0 we define,

using the notation card(S) =
∑

s∈S 1 for a finite set S,

r1(A, n) = card
({

(a, b) ∈ A×A : a + b = n
})

,

r2(A, n) = card
({

(a, b) ∈ A×A : a + b = n, a 6 b
})

,

r3(A, n) = card
({

(a, b) ∈ A×A : a + b = n, a < b
})

as the additive representation functions r1, r2 and r3 belonging to A, which count

all solutions of the equation a+ b = n inside of A with slightly more restrictions as

the index of r increases.

Our starting point are three results of Erdős, Sárközy and Sós obtained in [4]

(and a bit later improved by Balasubramanian in [1]) demonstrating the surprising

different monotonicity behavior of r1, r2 and r3:

Theorem 0 ([4]). Let A be an infinite set of positive integers.

(1) r1(A, n) can be monotone from a certain point on, only if A contains all the

integers from a certain point on.

(2) r2(A, n) cannot be monotone increasing from a certain point on, when

lim
N→∞

card({1, . . . , N} \ A)/ log(N) =∞.
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(3) There is a set A such that N\A is infinite and r3(A, n) is monotone increasing

for all n > 0.

Later, in his collection of unsolved problems [5], Sárközy has asked with respect to

property (1) of Theorem 0, whether or not one can find an infinite set A ⊂ N0 such

that its upper asymptotic density is less than 1 and r1(A, n) is monotone increasing

for almost all n, which we can answer positively.

Theorem 1. There exists an infinite set A ⊂ N0 such that its natural density is 0

and r1(A, n) is monotone increasing almost everywhere:

r1(A, n) 6 r1(A, n + 1)

holds for almost all n ∈ N.

In addition, we can also find a set A ⊂ N0 such that N0 \A is infinite and r1(A, n)

is strictly monotone increasing almost everywhere:

r1(A, n) < r1(A, n + 1)

holds for almost all n ∈ N.

Until today it remains unknown, whether or not there exists an infinite set A such

that r2(A, n) is monotone increasing from a certain point on, although more and

more conditions have been collected (as in [2] or [3]) under which r2(A, n) cannot

be monotone increasing. On the other hand, in their paper [4] Erdős, Sárközy and

Sós noted that perhaps a similar construction of a set A as the one for property (3)

in Theorem 0 is also possible for r2(A, n), however we can prove this is not possible

in the following sense.

Theorem 2. If A ⊂ N0 is non-empty and N0 \ A is infinite, then r2(A, n) cannot

be monotone increasing for all n > 0.

Finally, we give an alternative proof of the following result by Chen and Tang [3],

in which we do not need property (1) of Theorem 0 for r1(A, n) anymore.

Theorem 3 ([3]). If A ⊂ N0, then r2(A, n) (or r3(A, n), resp.) cannot be strictly

monotone increasing from a certain point on.

We would like to mention that illustrating the pairs (a, b) from N0×N0 as points

(a+ b, a) in the plane, such that the corresponding points of all pairs with the same

sum a+ b = n are on one vertical line, has been helpful in finding our proofs, where

for an integer c > 0 not in A we then remove all points (c, x) and (x, c) with x ∈ N0

lying on two certain lines.
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2. Proofs

Before we start with the proofs of all theorems, let us quickly collect the following

helpful formulas for r1, r2 and r3 in the special case A = N0.

Lemma 1. For n ∈ N0, we have

(1) r1(N0, n) = n + 1,

(2) r2(N0, n) = bn/2c+ 1,

(3) r3(N0, n) = b(n− 1)/2c+ 1,

where bxc denotes the largest integer not exceeding x ∈ R.

Proof. By definition we have

r1(N0, n) = card
({

(a, n− a) : a ∈ {0, 1, . . . , n}
})

= n + 1 ,

and if n = 2m (m ∈ N0) is even, we find

r2(N0, n) = card
({

(a, n− a) : a ∈ N0, a 6 n/2 = m
})

= m + 1 ,

r3(N0, n) = card
({

(a, n− a) : a ∈ N0, a < n/2 = m
})

= m,

or when n = 2m + 1 is odd, then

r2(N0, n) = card
({

(a, n− a) : a ∈ N0, a 6 n/2 = m + 1/2
})

= m + 1 ,

r3(N0, n) = card
({

(a, n− a) : a ∈ N0, a < n/2 = m + 1/2
})

= m + 1 ,

and both cases together also lead us to the formulas (2) and (3).

Proof of Theorem 1. First, let us choose A = {2i : i ∈ N} whose natural density

lim
N→∞

card(A ∩ {1, . . . , N})
N

= lim
N→∞

blog2 Nc
N

6 lim
N→∞

log2 N

N
= 0

does exist and equals 0. Out of the blog2 Nc members of A up to N > 1 we can

build no more than (log2 N)2 pairwise sums, or in other words, there are at least

N − (log2 N)2 positive integers n 6 N such that

r1(A, n) = 0 6 r1(A, n + 1) .

Thus, the probability that a positive integer n which is chosen at random satisfies

r1(A, n) 6 r1(A, n + 1) is at least

lim
N→∞

N − (log2 N)2

N
= 1− lim

N→∞

(log2 N)2

N
= 1− 0 = 1 ,
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as desired.

Now, let us choose A = N0 \ {2i : i ∈ N} whose natural density is 1− 0 = 1, and

define the family of sets Aj = N0 \ {2i : i ∈ N, i 6 j}, where for j ∈ N we only have

removed the first j powers of 2.

If n ∈ {2j + 1, 2j + 2, . . . , 2j +1}, we have

r1(Aj− 1, n) = r1(N0, n)− 2 · (j − 1) = n + 1− 2 · (j − 1)

since a + b 6 2j− 1 + 2j− 1 = 2j < n for any a and b in {2i : i ∈ N, i 6 j − 1}.
Moreover, if n is also not of the form 2j + 2i with i ∈ N (i 6 j), we even find

r1(A, n) = r1(Aj , n) = r1(Aj− 1, n)− 2 = n + 1− 2 · j

(while r1(A, n) = n + 1− 2 · (j − 1) in case of n = 2j + 2i) together with

r1(A, n + 1) = r1(Aj , n + 1)

> r1(N0, n + 1)− 2 · j
= (n + 1) + 1− 2 · j > r1(A, n)

as long as n + 1 < 2j +1, and since there are no more than j numbers of the form

2j + 2i from 2j + 1 up to 2j +1 − 2, we have found at least 2j − 2− j numbers n in

{2j + 1, 2j + 2, . . . , 2j +1} such that r1(A, n) < r1(A, n + 1).

In view of the partition

N = {1, 2} ∪
∞⋃

j =1

{2j + 1, 2j + 2, . . . , 2j +1} ,

up to an integer N > 1 we then find at most

2 +

blog2 Nc+1∑
j =1

(2 + j)

6 2 + (blog2 Nc+ 1) · (2 + blog2 Nc+ 1) 6 2 + (log2 N + 3)2

numbers n such that r1(A, n) > r1(A, n + 1). Thus, this time the probability that

a positive integer n chosen at random satisfies r1(A, n) < r1(A, n + 1) is again at

least

lim
N→∞

N − (2 + (log2 N + 3)2)

N

= 1− lim
N→∞

(
(log2 N)2

N
+

6 log2 N

N
+

11

N

)
= 1− (0 + 0 + 0) = 1 ,

as desired.
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Proof of Theorem 2. Let c1, c2, c3, . . . denote the elements of N0 \ A in increasing

order. If c1 = 2m + 1 (m ∈ N0) is odd, then

r2(A, c1 − 1) = r2(A ∩ {0, 1, . . . , c1 − 1}, c1 − 1)

= r2({0, 1, . . . , c1 − 1}, c1 − 1)

= r2(N0, c1 − 1) = b(2m + 1− 1)/2c+ 1 = m + 1 ,

while on the other side

r2(A, c1) = r2(A ∩ {0, 1, . . . , c1 − 1, c1}, c1)

= r2({0, 1, . . . , c1 − 1}, c1) = r2(N0 \ {c1}, c1)

= r2(N0, c1)− 1 = b(2m + 1)/2c+ 1− 1 = m.

Hence, there would be a decrease r2(A, c1 − 1) > r2(A, c1), which means c1 has to

be even. At this point, we distinguish two cases for c1.

Case 1: c1 = 2x for x > 0.

If the next number c2 = 2m + 1 (m > x) missing from A is odd, then

r2(A, c2 − 1) = r2(N0 \ {c1}, c2 − 1)

= r2(N0, c2 − 1)− 1 = b(2m + 1− 1)/2c+ 1− 1 = m,

while due to c1 + c2 6= c2 (c1 > 0) we get

r2(A, c2) = r2(N0 \ {c1, c2}, c2)

= r2(N0, c2)− 2 = b(2m + 1)/2c+ 1− 2 = m− 1 .

Hence, again there would be a decrease r2(A, c2 − 1) > r2(A, c2), which means c2
has to be even, and we write c2 = 2y (y > x).

Assume for a moment that c3 is larger than c1 + c2 + 1, then

r2(A, c1 + c2) = r2(N0 \ {c1, c2}, c1 + c2)

= r2(N0, c1 + c2)− 1

= b(2x + 2y)/2c+ 1− 1

= x + y ,

while due to c1 + c2 6= c1 + c2 + 1 we get

r2(A, c1 + c2 + 1) = r2(N0 \ {c1, c2}, c1 + c2 + 1)

= r2(N0, c1 + c2 + 1)− 2

= b(2x + 2y + 1)/2c+ 1− 2

= x + y − 1 .

The discovered decrease r2(A, c1 + c2) > r2(A, c1 + c2 + 1) even remains as long as

c3 > c2 + 1, because here

(c1 + c2)− ci < (c1 + c2 + 1)− ci 6 (c1 + c2 + 1)− c3 < c1
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for i > 3, which means (c1 + c2)− ci and (c1 + c2 + 1)− ci are not in N0 \ A. Now,

when cj is the largest integer less than c1 + c2 + 2 missing from A, then

r2(A, c1 + c2) = r2(N0 \ {c1, c2, . . . , cj}, c1 + c2)

> r2(N0, c1 + c2)− 1− (j − 2)

= b(2x + 2y)/2c+ 1− 1− (j − 2)

= x + y − j + 2 ,

while due to c1 + c2 6= c1 + c2 + 1 we get

r2(A, c1 + c2 + 1) = r2(N0 \ {c1, c2, . . . , cj}, c1 + c2 + 1)

= r2(N0, c1 + c2 + 1)− 2− (j − 2)

= b(2x + 2y + 1)/2c+ 1− 2− (j − 2)

= x + y − j + 1 .

In order to avoid this decrease all that remains is the choice c3 = c2 + 1. But then

we discover the unavoidable decrease from

r2(A, c2) = r2(N0 \ {c1, c2}, c2)

= r2(N0, c2)− 2

= b2y/2c+ 1− 2 = y − 1

(note that c1 + c2 > 2 + c2 > c2) to

r2(A, c2 + 1) = r2(N0 \ {c1, c2, c3}, c2 + 1)

= r2(N0, c2 + 1)− 3

= b(2y + 1)/2c+ 1− 3 = y − 2

(note that c2 + c3 > c1 + c3 > c1 + c2 > 2 + c2 > c2 + 1).

Case 2: c1 = 0.

In this case, when m > 0 denotes the minimum of A, we can write

r2(A, 2m + n) = r2(A ∩ {m + 0,m + 1, . . . ,m + n}, 2m + n)

= r2((A−m) ∩ {0, 1, . . . , n}, n)

= r2(A−m,n)

for all n > 0, where for the set A −m = {a −m : a ∈ A} (in place of A) we have

already shown in the first case one can find some n such that

r2(A−m,n) > r2(A−m,n + 1) .

By the just found link, this in turn also leads to

r2(A, 2m + n) > r2(A, 2m + n + 1) ,

and so we have found a decrease in any case.
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Proof of Theorem 3. Let us suppose there exists an integer N such that r2(A, n) is

strictly monotone increasing for n > N . But then from this point onwards r2(A, n)

grows by at least one whenever n increases by one, and thus at n = 2N + 3 we find

r2(A, 2N + 3) > r2(A, 2N + 2) + 1 > · · · > r2(A, N) + 1 · (N + 3) > N + 3

in contradiction to

r2(A, 2N + 3) 6 r2(N0, 2N + 3) = b(2N + 3)/2c+ 1 6 N + 5/2

due to Lemma 1 from before. Therefore, all that remains is that r2(A, n) cannot be

strictly monotone increasing from a certain point on. Similarly, we can also show

(by replacing r2 with r3 in the first chain of inequalities, and then noting r3(A, n)

never exceeds r2(A, n), so we have r3(A, 2N + 3) 6 r2(A, 2N + 3) in the other one)

that r3(A, n) cannot be strictly monotone increasing from a certain point on.
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