

GENERALIZED FIBONACCI NUMBERS AND THEIR 2-ADIC ORDER

Martin Bunder

School of Mathematics and Applied Statistics, University of Wollongong, Australia martin.bunder@uow.edu.au

Joseph Tonien

School of Computing and Information Technology, University of Wollongong, Australia

joseph.tonien@uow.edu.au

Received: 2/24/20, Accepted: 12/9/20, Published: 12/16/20

Abstract

Lengyel and Marques have determined $v_2(F_n(k))$, the 2-adic order of the generalized Fibonacci number $F_n(k)$, for k=3 and 4 and partially for k=5. This paper gives new recurrence relations and a means of obtaining explicit formulas for $F_n(k)$. It also evaluates $v_2(F_n(k))$ for all k, except for a few cases where n=t(k+1). In the k=5 case, the paper confirms part of a conjecture of Lengyel and Marques and shows that the rest of the conjecture fails.

1. Introduction

For a fixed integer $k \geq 2$, the generalized Fibonacci numbers are defined by

$$F_0(k) = 0, F_1(k) = \dots = F_{k-1}(k) = 1,$$

$$F_n(k) = F_{n-1}(k) + \dots + F_{n-k}(k), \text{ for all } n \ge k.$$

The p-adic order of an integer n is given by $v_p(n)$, which is the highest power of a prime p that divides n.

The p-adic order of a Fibonacci number, $v_p(F_n(2))$, was completely characterized; see [6, 8, 1, 2, 3]. For instance, from Lengyel [2] we have

$$v_2(F_n(2)) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \pmod{3}, \\ 1, & \text{if } n \equiv 3 \pmod{6}, \\ 3, & \text{if } n \equiv 6 \pmod{12}, \\ v_2(n) + 2, & \text{if } n \equiv 0 \pmod{12}. \end{cases}$$

Lenguel and Marques, in [5] and [4], obtain a general formula for $v_2(F_n(3))$ and $v_2(F_n(4))$ and a partial one for $v_2(F_n(5))$:

$$(4)) \text{ and a partial one for } v_2(F_n(5)) :$$

$$v_2(F_n(3)) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \pmod{4}, \\ 1, & \text{if } n \equiv 3, 11 \pmod{16}, \\ 2, & \text{if } n \equiv 4, 8 \pmod{16}, \\ 3, & \text{if } n \equiv 7 \pmod{16}, \\ v_2(n) - 1, & \text{if } n \equiv 0 \pmod{16}, \\ v_2(n+4) - 1, & \text{if } n \equiv 12 \pmod{16}, \\ v_2(n+1) + v_2(n+17) - 3, & \text{if } n \equiv 15 \pmod{16}; \end{cases}$$

$$\begin{cases} 0, & \text{if } n \not\equiv 0 \pmod{5}, \end{cases}$$

$$v_2(F_n(4)) = \begin{cases} 0, & \text{if } n \not\equiv 0 \pmod{5}, \\ 1, & \text{if } n \equiv 5 \pmod{10}, \\ v_2(n) + 2, & \text{if } n \equiv 0 \pmod{10}; \end{cases}$$

$$(v_2(n) + 2, \text{ if } n \equiv 0 \pmod{10};$$

$$v_2(F_n(5)) = \begin{cases} 0, & \text{if } n \not\equiv 0, 5 \pmod{6}, \\ 2, & \text{if } n \equiv 5 \pmod{12}, \\ 1, & \text{if } n \equiv 11 \pmod{12}, \\ v_2(n), & \text{if } n \equiv 0 \pmod{12}, \\ v_2(n+2), & \text{if } n \equiv 6 \pmod{12} \text{ and } v_2(n-6) \neq 3. \end{cases}$$

Lenguel and Marques [4] made the following conjectured values of $v_2(F_n(5))$.

Conjecture 1 (Lengyel-Marques). For any positive integer n,

$$v_2(F_n(5)) = \begin{cases} v_2(n+2), & \text{if } n \equiv 6 \pmod{12} \text{ and } v_2(n+2) < 8; \\ v_2(n+43266), & \text{if } n \equiv 6 \pmod{12} \text{ and } v_2(n+2) \ge 8. \end{cases}$$

For a general value of k, Lengyel and Marques [4] also made the following conjectured values of $v_2(F_n(k))$ when $n \equiv 0 \pmod{2k+2}$.

Conjecture 2 (Lengyel-Marques). If $n \equiv 0 \pmod{2k+2}$, then

$$v_2(F_n(k)) = v_2(\frac{n}{k+1}) + c(k),$$

where

$$c(k) = \begin{cases} 2, & \text{if } k = 2; \\ 2, & \text{if } k \equiv 0 \pmod{4}, \\ 1, & \text{if } k \equiv 1 \pmod{4}, \\ v_2(k-2) + 1, & \text{if } k \equiv 2 \pmod{8}, \\ 1, & \text{if } k \equiv 3 \pmod{8}, \\ 3, & \text{if } k \equiv 6 \pmod{8}, \\ 1, & \text{if } k \equiv 7 \pmod{8}. \end{cases}$$

Conjecture 2 is correct for k=2 and 3. Lengyel and Marques [4] proved it for k=4 and 5.

Sobolewski [7] showed that for all even $k \geq 4$,

$$v_2(F_n(k)) = \begin{cases} 0, & \text{if } n \not\equiv 0 \pmod{k+1}, \\ 1, & \text{if } n \equiv k+1 \pmod{2k+2}, \\ v_2(n) + v_2(k-2) + 1, & \text{if } n \equiv 0 \pmod{2k+2}, \end{cases}$$

and thus proved Conjecture 2 for all even $k \geq 4$.

Young [9] showed that for all odd $k \geq 5$,

$$v_2(F_n(k)) = \begin{cases} 0, & \text{if } n \not\equiv 0, k \pmod{k+1}, \\ v_2(k-1), & \text{if } n \equiv k \pmod{2k+2}, \\ v_2(k-3), & \text{if } n \equiv -1 \pmod{2k+2}, \\ v_2(n) - v_2(k+1) + 1, & \text{if } n \equiv 0 \pmod{2k+2}, \\ v_2(n-k-1), & \text{if } n \equiv k+1 \pmod{2k+2} \text{ and } \\ & v_2(n-k-1) < v_2(k^2-1), \\ v_2(n-2) + 1, & \text{if } n \equiv k+1 \pmod{2k+2} \text{ and } \\ & v_2(n-k-1) > v_2(k^2-1), \end{cases}$$

and thus confirmed part of Conjecture 2. Young [9] also showed that Conjecture 2 failed for n=3102462 and n=6248190.

This paper obtains, for any positive integer k, new recurrence relations for $F_n(k)$, using which, $F_n(k)$ can be expressed as a simple formula for each value of n and the 2-adic order $v_2(F_n(k))$ can be derived for all values of n except for some where n = t(k+1).

Our work allows us to prove Conjecture 2 for all $k \geq 3$ in the following compact form (see Theorem 9).

Theorem 1. For any $k \geq 3$, if $n \equiv 0 \pmod{2k+2}$, then

$$v_2(F_n(k)) = v_2(\frac{n}{k+1}) + v_2(k-2) + 1.$$

When k is even, we have the following theorem (see Theorems 6, 7, 9, 10 and 11).

Theorem 2. For k even,

$$v_2(F_n(k)) = \begin{cases} 0, & \text{if } n \not\equiv 0 \pmod{k+1}, \\ 1, & \text{if } n \equiv k+1 \pmod{2k+2}, \\ v_2(n) + v_2(k-2) + 1, & \text{if } n \equiv 0 \pmod{2k+2} \text{ and } k > 2, \\ v_2(n) + 2, & \text{if } n \equiv 0 \pmod{2k+2} \text{ and } k = 2. \end{cases}$$

When k is odd, we have the following theorem (see Theorems 6, 7, 8, 9 and 12).

Theorem 3. For k odd,

$$v_2(F_n(k)) = \begin{cases} 0, & \text{if } n \not\equiv -1, 0 \pmod{k+1}, \\ v_2(k-1), & \text{if } n \equiv k \pmod{2k+2}, \\ v_2(k-3), & \text{if } n \equiv -1 \pmod{2k+2} \text{ and } k > 3, \\ v_2(n+1) + v_2(n+17) - 3, & \text{if } n \equiv -1 \pmod{2k+2} \text{ and } k = 3, \\ v_2(n) - v_2(k+1) + 1, & \text{if } n \equiv 0 \pmod{2k+2}, \end{cases}$$

$$v_2((k-2)n+k+1) & \text{if } n \equiv k+1 \pmod{2k+2} \text{ and } \\ -v_2(k+1) + 1, & v_2((k-2)n+k+1) < k+v_2(k+1). \end{cases}$$

We note that there are far fewer cases not dealt with in Young [9] (where $n \equiv k+1$ $\pmod{2k+2}$ than not dealt with in Theorem 3. For example, when k=5, the cases not dealt with by Young have $n \equiv 30 \pmod{48}$, while the cases not dealt with in Theorem 3 have $n \equiv 126 \pmod{192}$. However, Theorem 14 evaluates $v_2(F_n(5))$ for all values of n other than $n \equiv 5886 \pmod{24576}$, thus verifying Conjecture 1 in all these cases. We notice that Conjecture 1 is not correct when n = 3102462; in this particular case, the conjectured value is $v_2(n+43266)=20$ but the correct value is $v_2(F_n(5)) = 22$. This fact was also previously observed by Young [9].

In our calculation of $v_2(F_n(k))$, we will make use of the binary digit sum function $s_2(n)$ which is defined as follows.

Definition 1. Define $s_2(0) = 0$. If $i \ge 1$ and $n_1 > n_2 > \cdots > n_i \ge 0$, then

$$s_2(2^{n_1} + 2^{n_2} + \dots + 2^{n_i}) = i.$$

Lemma 1. We have

- (i) $v_2(n!) = n s_2(n)$.
- (i) $v_2(n!) = n s_2(n)$. (ii) $v_2(\binom{m}{n}) = s_2(n) + s_2(m-n) s_2(m)$. (iii) If $1 \le n < 2^{v_2(m)}$, then $s_2(m-n) = s_2(m) + v_2(m) s_2(n) v_2(n)$.
- (iv) For n > 0, $s_2(n-1) = s_2(n) + v_2(n) 1$.
- (v) For n > m, $s_2(n) s_2(m) = n m \sum_{i=m+1}^n v_2(i)$.

Proof. (i) The result is derived from a well known formula

$$v_p(n!) = \frac{n - s_p(n)}{p - 1},$$

where $s_n(n)$ is the digit sum of n in base p.

(ii) Using (i), we have $v_2(\binom{m}{n}) = m - s_2(m) - (n - s_2(n)) - (m - n - s_2(m - n)) =$ $s_2(n) + s_2(m-n) - s_2(m)$.

(iii) As $1 \le n < 2^{v_2(m)}$ we have $m = 2^{m_1} + \dots + 2^{m_i}$ and $n = 2^{n_1} + \dots + 2^{n_j}$ where $i = s_2(m), m_i = v_2(m), j = s_2(n), n_j = v_2(n)$ and $m_1 > \dots > m_i > n_1 > \dots > n_j$. Therefore,

$$m-n=2^{m_1}+\cdots+2^{m_{i-1}}+2^{m_i-1}+2^{m_i-2}+\cdots+2^{n_j}+2^{n_j}-(2^{n_1}+\cdots+2^{n_j}),$$

so
$$s_2(m-n) = (i-1) + (m_i - n_j) + 1 - j = i + m_i - n_j - j = s_2(m) + v_2(m) - v_2(n) - s_2(n)$$
.

(iv) If n is odd then it is obvious. If n is even, then let $v_2(n) = v$ and write n in binary form $n = x_1 \dots x_i 100 \dots 0_2$ with v trailing zeros. We have $n - 1 = x_1 \dots x_i 011 \dots 1_2$ so $s_2(n-1) = s_2(n) - 1 + v$.

(v) The result follows from (iv).
$$\Box$$

2. Recurrence Relations and Formulas for $F_n(k)$

Lemma 2. For any $k \geq 2$, we have

- (i) $F_k(k) = k 1$.
- (ii) If $n \geq k+1$,

$$F_n(k) = 2F_{n-1}(k) - F_{n-k-1}(k).$$

(iii) If $n \geq k+1$,

$$F_n(k) = 2^{n-k}(k-1) - \sum_{i=1}^{n-k-1} 2^{n-i-k-1} F_i(k).$$

(iv) If $n \ge 2k + 1$,

$$F_n(k) = 2^{n-k-1}(2k-3) - 2^{n-2k-1}(k-3) - \sum_{i=k+1}^{n-k-1} 2^{n-k-1-i}F_i(k).$$

Proof. (i) Obvious.

(ii) If $n \ge k + 1$,

$$F_n(k) = F_{n-1}(k) + F_{n-2}(k) + \dots + F_{n-k}(k)$$

$$F_{n-1}(k) = F_{n-2}(k) + \dots + F_{n-k}(k) + F_{n-k-1}(k),$$

so
$$F_n(k) = 2F_{n-1}(k) - F_{n-k-1}(k)$$
.

(iii) From (ii), we have

$$2^{-(j-1)}F_{j-1}(k) - 2^{-j}F_{j}(k) = 2^{-j}F_{j-k-1}(k), \forall j \ge k+1.$$

INTEGERS: 20 (2020)

If $n \ge k + 1$, then

$$\sum_{j=k+1}^{n} (2^{-(j-1)} F_{j-1}(k) - 2^{-j} F_j(k)) = \sum_{j=k+1}^{n} 2^{-j} F_{j-k-1}(k),$$
$$2^{-k} F_k(k) - 2^{-n} F_n(k) = \sum_{i=0}^{n-k-1} 2^{-i-k-1} F_i(k).$$

Therefore,

$$F_n(k) = 2^{n-k} F_k(k) - \sum_{i=0}^{n-k-1} 2^{n-i-k-1} F_i(k) = 2^{n-k} (k-1) - \sum_{i=1}^{n-k-1} 2^{n-i-k-1} F_i(k).$$

(iv) If $n \ge 2k + 1$, using (iii), we have

$$F_n(k) = 2^{n-k}(k-1) - 2^{n-2k-1}F_k(k) - \sum_{i=1}^{k-1} 2^{n-i-k-1}F_i(k) - \sum_{i=k+1}^{n-k-1} 2^{n-i-k-1}F_i(k)$$

$$= 2^{n-k}(k-1) - 2^{n-2k-1}(k-1) - \sum_{i=1}^{k-1} 2^{n-i-k-1} - \sum_{i=k+1}^{n-k-1} 2^{n-i-k-1}F_i(k)$$

$$= 2^{n-k}(k-1) - 2^{n-2k-1}(k-1) - (2^{n-k-1} - 2^{n-2k}) - \sum_{i=k+1}^{n-k-1} 2^{n-i-k-1}F_i(k)$$

$$= 2^{n-k-1}(2k-3) - 2^{n-2k-1}(k-3) - \sum_{i=k+1}^{n-k-1} 2^{n-k-1-i}F_i(k).$$

The following theorem gives an explicit formula for $F_n(k)$.

Theorem 4. Let $n \ge k+1$ and $t = \lfloor \frac{n+1}{k+1} \rfloor$. Then

$$F_n(k) = 1 + 2^{n-(k+1)} A_1(n,k) + 2^{n-2(k+1)} A_2(n,k) + \dots + 2^{n-t(k+1)} A_t(n,k), \quad (1)$$

where $A_1(n,k), A_2(n,k), A_3(n,k), \ldots, A_t(n,k)$ are integers defined as

$$A_{s}(n,k) = \begin{cases} 2k-3, & \text{if } s=1, \\ (-1)^{s-1} \left((2k-3) \binom{n-sk}{s-1} - \binom{n-sk-1}{s-2} \right), & \text{if } s>1 \end{cases}$$
$$= (-1)^{s-1} \frac{(n-sk-1)! \left((2k-3)n - s(2k^2 - 3k + 1) + 1 \right)}{(s-1)!(n-sk-s+1)!}. \tag{2}$$

Proof. When $k+1 \le n < 2(k+1)-1$, using Lemma 2(iii),

$$F_n(k) = 2^{n-k}(k-1) - \sum_{i=1}^{n-k-1} 2^{n-i-k-1} F_i(k)$$

$$= 2^{n-k}(k-1) - \sum_{i=1}^{n-k-1} 2^{n-i-k-1} = 1 + 2^{n-(k+1)}(2k-3).$$

When $n \geq 2(k+1)-1$, the result can be proved by induction on n by using Lemma 2(ii) and by considering the two separate cases: n=t(k+1)-1 and t(k+1)-1 < n < (t+1)(k+1)-1.

Using Theorem 4, we can calculate all the values of $F_n(k)$. Below are some examples.

Lemma 3. We have

(i) If $k + 1 \le n \le 2k$,

$$F_n(k) = 2^{n-(k+1)}(2k-3) + 1.$$

(ii) If
$$2k + 1 \le n \le 3k + 1$$
,

$$F_n(k) = 2^{n-(k+1)}(2k-3) - 2^{n-2(k+1)}((2k-3)n - 4k^2 + 6k - 1) + 1.$$

(iii) If
$$3k + 2 \le n \le 4k + 2$$
,

$$F_n(k) = 2^{n-(k+1)}(2k-3) - 2^{n-2(k+1)}((2k-3)n - 4k^2 + 6k - 1) + 2^{n-3(k+1)}\frac{1}{2}(n-3k-1)((2k-3)n - 6k^2 + 9k - 2) + 1.$$

(iv) If
$$4k + 3 \le n \le 5k + 3$$
,

$$F_n(k) = 2^{n-(k+1)}(2k-3) - 2^{n-2(k+1)}((2k-3)n - 4k^2 + 6k - 1)$$

$$+ 2^{n-3(k+1)}\frac{1}{2}(n-3k-1)((2k-3)n - 6k^2 + 9k - 2)$$

$$- 2^{n-4(k+1)}\frac{1}{6}(n-4k-1)(n-4k-2)((2k-3)n - 8k^2 + 12k - 3) + 1.$$

3. The 2-adic Order of $F_n(k)$

Our method of finding $v_2(F_n(k))$, for $n \ge k+1$, is mainly based on formula (1) of Theorem 4. Throughout this paper, we will write $t = \lfloor \frac{n+1}{k+1} \rfloor$ and n = t(k+1) + r where $-1 \le r \le k-1$. In formula (1), all indices in the power of 2 are greater than

or equal to -1. The lowest index n - t(k+1) is negative only in exactly one case, n = t(k+1) - 1. In this case,

$$2^{n-t(k+1)}A_t(n,k) = (-1)^{t-1}(k-2)$$

is an integer and we have the following theorem.

Theorem 5. Let $n \ge k+1$ and $t = \lfloor \frac{n+1}{k+1} \rfloor$ and

$$F_n(k) = 2^{n-(k+1)} A_1(n,k) + 2^{n-2(k+1)} A_2(n,k) + \dots + (2^{n-t(k+1)} A_t(n,k) + 1),$$

= $f_{t-1}(n,k) + f_{t-2}(n,k) + \dots + f_0(n,k),$ (3)

where $f_0(n,k) = 2^{n-t(k+1)}A_t(n,k) + 1$ and $f_i(n,k) = 2^{n-(t-i)(k+1)}A_{t-i}(n,k)$. Then

- (i) all the values $f_i(n,k)$ are integers;
- (ii) for any $j \ge 0$, if $t \ge j+1$ and for all $j+1 \le i \le t-1$, we have

$$v_2(f_i(n,k)) > v_2(f_j(n,k) + f_{j-1}(n,k) + \dots + f_0(n,k)),$$
 (4)

then

$$v_2(F_n(k)) = v_2(f_j(n,k) + f_{j-1}(n,k) + \dots + f_0(n,k)).$$

Proof. (i) In formula (3), all indices in the power of 2 are greater than or equal to -1. The lowest index n-t(k+1) is negative only in exactly one case, n=t(k+1)-1. In this case,

$$2^{n-t(k+1)}A_t(n,k) = (-1)^{t-1}(k-2)$$

is an integer, and therefore, all $f_i(n,k)$ are integers.

As n = t(k+1) + r, $v_2(f_i(n,k)) = i(k+1) + r + v_2(A_{t-i}(n,k)) \ge i(k+1) + r$, the following result is a direct corollary of Theorem 5(ii).

Corollary 1. Let $n \ge k+1$, $t = \lfloor \frac{n+1}{k+1} \rfloor$ and n = t(k+1) + r. For any $j \ge 0$, if $t \ge j+1$ and $(j+1)(k+1) + r > v_2(f_j(n,k) + f_{j-1}(n,k) + \cdots + f_0(n,k))$, then

$$v_2(F_n(k)) = v_2(f_i(n,k) + f_{i-1}(n,k) + \dots + f_0(n,k)).$$

Using formula (2) for $A_s(n, k)$, and the formulas for $v_2(n!)$ and $s_2(n) - s_2(m)$ from Lemma 1, we can calculate $f_0(n, k)$ and $v_2(f_i(n, k))$.

Lemma 4. Let $n \ge k+1$, $t = \lfloor \frac{n+1}{k+1} \rfloor$ and n = t(k+1) + r. Then

$$f_0(n,k) = \begin{cases} (-1)^{t-1} & (k-2)+1, & \text{if } r = -1, \\ (-1)^{t-1} & (t(2k-4)+1)+1, & \text{if } r = 0, \\ 2^r A_t(n,k)+1, & \text{if } 1 \le r \le k-1, \end{cases}$$

and for $1 \le i \le t - 1$ and $-1 \le r \le k - 1$,

$$v_2(f_i(n,k)) = v_2 \left(2t(k-2) + i(2k^2 - 3k + 1) + 1 + r(2k - 3) \right) + s_2(ik + i + 1 + r) - 1 + \sum_{\ell=t-i}^{t+ik+r-1} v_2(\ell).$$

We will use Theorem 5 to determine $v_2(F_n(k))$ for $n \geq k+1$. With n = t(k+1) + r where $-1 \leq r \leq k-1$, there are different formulas for $v_2(F_n(k))$ depending on the value of r. When $r \neq 0$, that is, $n \not\equiv 0 \pmod {k+1}$, it is quite easy to determine $v_2(F_n(k))$. The case $n \equiv 0 \pmod {k+1}$ requires more work. Theorem 6 deals with the case $1 \leq r \leq k-1$, that is, $n \not\equiv -1, 0 \pmod {k+1}$. Theorem 7 deals with the case $n \equiv -1 \pmod {k+1}$. Finally, Theorems 9 and 11 deal with the remaining case $n \equiv 0 \pmod {k+1}$.

3.1. The Case $n \not\equiv 0 \pmod{k+1}$

Theorem 6. If $n \not\equiv -1, 0 \pmod{k+1}$, then $v_2(F_n(k)) = 0$.

Proof. It is obvious for the case $n \le k$. When $n \ge k+1$ and $n \not\equiv -1, 0 \pmod{k+1}$, we have n = t(k+1) + r where $1 \le r \le k-1$. In this case, by Lemma 4, $f_0(n,k)$ is an odd integer and $v_2(f_0(n,k)) = 0$. By Corollary 1 with j = 0 we have $v_2(F_n(k)) = v_2(f_0(n,k)) = 0$.

Theorem 7. If $n \equiv -1 \pmod{k+1}$, then

$$v_2(F_n(k)) = \begin{cases} v_2(k-3), & \text{if } n \equiv -1 \pmod{2k+2} \text{ and } k \neq 3, \\ v_2(k-1), & \text{if } n \equiv k \pmod{2k+2}. \end{cases}$$

Proof. It is obvious for the case n = k as $F_k(k) = k - 1$. If $n \ge k + 1$ and $n \equiv -1 \pmod{k+1}$, we have n = t(k+1) - 1 with $t \ge 2$. The case t is even corresponds to $n \equiv -1 \pmod{2k+2}$ and t is odd corresponds to $n \equiv k \pmod{2k+2}$. By Lemma 4,

$$f_0(n,k) = \begin{cases} -(k-3), & \text{if } t \text{ is even,} \\ k-1, & \text{if } t \text{ is odd.} \end{cases}$$

When t is odd, $v_2(k-1) < k$, so by Corollary 1 with j = 0 we have $v_2(F_n(k)) = v_2(f_0(n,k)) = v_2(k-1)$.

When t is even and $k \neq 3$, $v_2(k-3) < k$, so again by Corollary 1 with j = 0 we have $v_2(F_n(k)) = v_2(f_0(n,k)) = v_2(k-3)$.

Theorem 7 does not cover the case k = 3 and $n \equiv -1 \pmod{8}$ so we will look at this exceptional case now.

Theorem 8. If $n \equiv -1 \pmod{8}$, then $v_2(F_n(3)) = v_2(n+1) + v_2(n+17) - 3$.

Proof. Write n = 4t - 1 with t even. By Lemma 4, $f_0(n,3) = 0$, $v_2(f_1(n,3)) = 0$ $1 + v_2(t) + v_2(t+4)$, and for any $i \ge 2$,

$$v_2(f_i(n,3)) = v_2(2t+10i-2) + s_2(4i) - 1 + \sum_{\ell=t-i}^{t+3i-2} v_2(\ell)$$

$$\geq 1 + \sum_{\ell=t-i}^{t+3i-2} v_2(\ell) > 1 + v_2(t) + v_2(t+4).$$

By Theorem 5(ii) with j=1 we obtain $v_2(F_n(3))=v_2(f_1(n,3))=1+v_2(t)+v_2(t)$ $v(t+4) = 1 + v_2(\frac{n+1}{4}) + v(\frac{n+1}{4} + 4) = v_2(n+1) + v_2(n+17) - 3.$

3.2. The Case n = t(k + 1)

In this section we consider the case $n \ge k+1$ and $n \equiv 0 \pmod{k+1}$. So n = t(k+1). We consider two separate cases: t even and t odd. Theorem 9 deals with the case tis even where we prove Conjecture 2 of Lengyel and Marques.

3.2.1. t is Even

The case t is even corresponds to $n \equiv 0 \pmod{2k+2}$. We will prove Conjecture 2 of Lengyel and Marques for all $k \geq 3$ in the following simpler form.

Theorem 9. For any $k \geq 3$, if n = t(k+1) and t is even, then

$$v_2(F_n(k)) = v_2(2t(k-2)) = v_2(n) - v_2(k+1) + v_2(k-2) + 1.$$

Proof. When t is even, by Lemma 4, we have

$$f_0(n,k) = -2t(k-2),$$

and for all $1 \le i \le t - 1$,

$$v_2(f_i(n,k)) = v_2(2t(k-2) + i(2k^2 - 3k + 1) + 1) + s_2(ik + i + 1) - 1 + \sum_{\ell=t-i}^{t+ik-1} v_2(\ell).$$
 (5)

When k is odd, $v_2(f_i(n,k)) \ge 1 + \sum_{\ell=t-i}^{t+ik-1} v_2(\ell) > 1 + v_2(t) = v_2(f_0(n,k))$. When k is even, we consider two cases: i odd and i even. If i is even, then $v_2(f_i(n,k)) \ge 1 + \sum_{\ell=t-i}^{t+ik-1} v_2(\ell)$. There are $\frac{i+ik}{2}$ even numbers ℓ in the interval $t-i \le \ell \le t+ik-1$ and one of those is t. So $v_2(f_i(n,k)) \ge 1 + \sum_{\ell=t-i}^{t+ik-1} v_2(\ell)$.

 $1 + v_2(t) + \frac{i+ik}{2} - 1 \ge 1 + v_2(t) + k > 1 + v_2(t) + v_2(k-2) = v_2(f_0(n,k)).$ If i is odd, then $v_2(f_i(n,k)) \ge 1 + \sum_{\ell=t-i}^{t+ik-1} v_2(\ell)$. There are $\frac{i+ik-1}{2}$ even numbers ℓ in the interval $t-i \le \ell \le t+ik-1$ and one of those is t. So $v_2(f_i(n,k)) \ge 1 + \sum_{\ell=t-i}^{t+ik-1} v_2(\ell)$.

 $1 + v_2(t) + \frac{i+ik-1}{2} - 1 > 1 + v_2(t) + v_2(k-2) = v_2(f_0(n,k))$ for all $i \ge 3$, or i = 1 and k > 6. The remaining case is i = 1 and k = 4 or 6.

If i = 1 and k = 4 equation (5) gives $v_2(f_i(n, k)) = v_2(4t + 22) + s_2(6) - 1 + v_2(t) + v_2(t+2) > v_2(t) + 2 = v_2(f_0(n, k))$.

If i = 1 and k = 6 equation (5) gives $v_2(f_i(n, k)) = v_2(8t + 56) + s_2(8) - 1 + v_2(t) + v_2(t+2) + v_2(t+4) > v_2(t) + 3 = v_2(f_0(n, k))$.

In every case, we have shown that $v_2(f_i(n,k)) > v_2(f_0(n,k))$ for all $1 \le i \le t-1$, and by Theorem 5(ii) with j=0, we have $v_2(F_n(k)) = v_2(f_0(n,k)) = v_2(2t(k-2))$.

Theorem 9 does not cover the case k=2 so we will look at this exceptional case now.

Theorem 10. If $n \equiv 0 \pmod{6}$, then $v_2(F_n(2)) = v_2(n) + 2$.

Proof. Write n = 3t with t even. By Lemma 4, $f_0(n, 2) = 0$, $v_2(f_1(n, 2)) = 2 + v_2(t)$, and for any $i \ge 2$,

$$v_2(f_i(n,2)) = v_2(3i+1) + s_2(3i+1) - 1 + \sum_{\ell=t-i}^{t+2i-1} v_2(\ell) > 2 + v_2(t).$$

By Theorem 5(ii) with j = 1 we obtain $v_2(F_n(2)) = v_2(f_1(n, 2)) = 2 + v_2(t) = 2 + v_2(n)$.

3.2.2. *t* is Odd

In this section we consider the case n = t(k+1) and t is odd, that is, $n \equiv k+1 \pmod{2k+2}$. By Lemma 4,

$$f_0(n,k) = 2(t(k-2)+1).$$

Theorem 11. If k is even and $n \equiv k+1 \pmod{2k+2}$, then $v_2(F_n(k)) = 1$.

Proof. Write n = t(k+1) where t is odd. By Lemma 4, $f_0(n,k) = 2(t(k-2)+1)$ and as k is even, we have $v_2(f_0(n,k)) = 1$. By Corollary 1 with j = 0 we have $v_2(F_n(k)) = v_2(f_0(n,k)) = 1$.

From here on, we consider the case k is odd.

Lemma 5. If k is odd, $n \equiv k+1 \pmod{2k+2}$, and

$$n \not\equiv (k+1) \left(\frac{(k-1)^{\left\lfloor \frac{k-1}{v_2(k-1)} \right\rfloor} - 1}{k-2} + 2^{\left\lfloor \frac{k-1}{v_2(k-1)} \right\rfloor v_2(k-1)} \right)$$

$$\pmod{(k+1)} 2^{\left\lfloor \frac{k-1}{v_2(k-1)} \right\rfloor v_2(k-1)+1}, \tag{6}$$

then

$$v_2(F_n(k)) = v_2((k-2)n + k + 1) - v_2(k+1) + 1.$$

Proof. Let $m = \left\lfloor \frac{k-1}{v_2(k-1)} \right\rfloor$. Then $m \, v_2(k-1) < k$ and by Lemma 4,

$$f_0(n,k) = 2(t(k-2)+1) = 2\left(\left(t - \frac{(k-1)^m - 1}{k-2}\right)(k-2) + (k-1)^m\right).$$

If $t - \frac{(k-1)^m - 1}{k-2} = 0$ or, if $t - \frac{(k-1)^m - 1}{k-2} \neq 0$ and $v_2 \left(t - \frac{(k-1)^m - 1}{k-2} \right) \neq m \, v_2(k-1)$, then $v_2(f_0(n,k)) \leq 1 + m \, v_2(k-1) < k+1$. In this case,

$$v_2(F_n(k)) = v_2(f_0(n,k)) = v_2(2(t(k-2)+1)) = v_2((k-2)n+k+1) - v_2(k+1) + 1.$$

The remaining case is when $v_2\left(t-\frac{(k-1)^m-1}{k-2}\right)=mv_2(k-1)$. Write

$$t - \frac{(k-1)^m - 1}{k-2} = 2^{mv_2(k-1)}(2Z+1).$$

Then

$$n = (k+1)\left(\frac{(k-1)^m - 1}{k-2} + 2^{mv_2(k-1)}\right) + (k+1)2^{mv_2(k-1) + 1}Z,$$

which contradicts the assumption and the lemma is proved.

Lemma 6. If k is odd, k > 3, $n \equiv k + 1 \pmod{2k + 2}$, and

$$n \not\equiv (k+1) \left(\frac{(k-3)^{2\lfloor \frac{k-1}{2v_2(k-3)} \rfloor} - 1}{k-2} + 2^{2\lfloor \frac{k-1}{2v_2(k-3)} \rfloor v_2(k-3)} \right)$$

$$\pmod{(k+1)} 2^{2\lfloor \frac{k-1}{2v_2(k-3)} \rfloor v_2(k-3) + 1}, \tag{7}$$

then

$$v_2(F_n(k)) = v_2((k-2)n + k + 1) - v_2(k+1) + 1.$$

Proof. Let $m = 2 \left\lfloor \frac{k-1}{2v_2(k-3)} \right\rfloor$. Then m is even and $mv_2(k-3) < k$, and by Lemma 4,

$$f_0(n,k) = 2(t(k-2)+1) = 2\left(\left(t - \frac{(k-3)^m - 1}{k-2}\right)(k-2) + (k-3)^m\right).$$

If $t - \frac{(k-3)^m - 1}{k-2} = 0$ or, if $t - \frac{(k-3)^m - 1}{k-2} \neq 0$ and $v_2 \left(t - \frac{(k-3)^m - 1}{k-2} \right) \neq mv_2(k-3)$, then $v_2(f_0(n,k)) \leq 1 + mv_2(k-3) < k+1$. In this case,

$$v_2(F_n(k)) = v_2(f_0(n,k)) = v_2(2(t(k-2)+1)) = v_2((k-2)n+k+1) - v_2(k+1) + 1.$$

The remaining case is when $v_2\left(t-\frac{(k-3)^m-1}{k-2}\right)=mv_2(k-3)$. Write

$$t - \frac{(k-3)^m - 1}{k-2} = 2^{mv_2(k-3)}(2Z+1).$$

Then

$$n = (k+1)\left(\frac{(k-3)^m - 1}{k-2} + 2^{mv_2(k-3)}\right) + (k+1)2^{mv_2(k-3) + 1}Z,$$

which contradicts the assumption and the lemma is proved.

Theorem 12. If k is odd, $n \equiv k+1 \pmod{2k+2}$, and

$$v_2((k-2)n + k + 1) < k + v_2(k+1),$$

then

$$v_2(F_n(k)) = v_2((k-2)n + k + 1) - v_2(k+1) + 1.$$

Proof. When $k \equiv 1 \pmod{4}$ and $n \equiv k+1 \pmod{2k+2}$, let n = (k+1)(2T+1) and k = 1+4K. Then the condition (7) of Lemma 6 is equivalent to

$$n \not\equiv (k+1) \left(\frac{(k-3)^{k-1} - 1}{k-2} + 2^{k-1} \right) \pmod{(k+1)2^k}$$

$$\Leftrightarrow 2T + 1 \not\equiv \frac{(k-3)^{k-1} - 1}{k-2} + 2^{k-1} \pmod{2^k}$$

$$\Leftrightarrow (2T+1)(k-2) \not\equiv (k-3)^{k-1} - 1 + 2^{k-1}(k-2) \pmod{2^k}$$

$$\Leftrightarrow (2T+1)(k-2) \not\equiv 2^{k-1}(2K-1)^{4K} - 1 + 2^{k-1}(4K-1) \pmod{2^k}$$

$$\Leftrightarrow (2T+1)(k-2) \not\equiv -1 \pmod{2^k}$$

$$\Leftrightarrow n(k-2) + k + 1 \not\equiv 0 \pmod{(k+1)2^k}$$

$$\Leftrightarrow v_2(n(k-2) + k + 1) < k + v_2(k+1).$$

Therefore, the case $k \equiv 1 \pmod{4}$ follows from Lemma 6.

When $k \equiv 3 \pmod{4}$ and $n \equiv k+1 \pmod{2k+2}$, let n=(k+1)(2T+1) and k=3+4K. Then the condition (6) of Lemma 5 is equivalent to

$$n \not\equiv (k+1) \left(\frac{(k-1)^{k-1} - 1}{k-2} + 2^{k-1} \right) \pmod{(k+1)2^k}$$

$$\Leftrightarrow 2T + 1 \not\equiv \frac{(k-1)^{k-1} - 1}{k-2} + 2^{k-1} \pmod{2^k}$$

$$\Leftrightarrow (2T+1)(k-2) \not\equiv (k-1)^{k-1} - 1 + 2^{k-1}(k-2) \pmod{2^k}$$

$$\Leftrightarrow (2T+1)(k-2) \not\equiv 2^{k-1}(2K+1)^{4K+2} - 1 + 2^{k-1}(4K+1) \pmod{2^k}$$

$$\Leftrightarrow (2T+1)(k-2) \not\equiv -1 \pmod{2^k}$$

$$\Leftrightarrow n(k-2) + k + 1 \not\equiv 0 \pmod{(k+1)2^k}$$

$$\Leftrightarrow v_2(n(k-2) + k + 1) < k + v_2(k+1).$$

Therefore, the case $k \equiv 3 \pmod{4}$ follows from Lemma 5.

Using Theorem 12, we can now prove Young [9] result.

Corollary 2. If k is odd and $n \equiv k+1 \pmod{2k+2}$, then

$$v_2(F_n(k)) = \begin{cases} v_2(n-k-1), & \text{if } v_2(n-k-1) < v_2(k^2-1), \\ v_2(n-2) + 1, & \text{if } v_2(n-k-1) > v_2(k^2-1). \end{cases}$$

Proof. Since

$$(k-2)n + k + 1 = (k-2)(n-k-1) + k^2 - 1,$$

and k is odd, we have

$$v_2((k-2)n+k+1) = \begin{cases} v_2(n-k-1), & \text{if } v_2(n-k-1) < v_2(k^2-1), \\ v_2(k^2-1), & \text{if } v_2(n-k-1) > v_2(k^2-1). \end{cases}$$

Let n = (k+1)(2T+1) and consider two separate cases.

Case 1: $v_2(k^2-1) > v_2(n-k-1)$. It follows that $v_2(k-1) > v_2(\frac{n}{k+1}-1) = v_2(2T)$ and so $k \equiv 1 \pmod{4}$. We have

$$v_2((k-2)n + k + 1) = v_2(n - k - 1)$$

$$< v_2(k^2 - 1) = v_2(k - 1) + v_2(k + 1)$$

$$< k + v_2(k + 1),$$

therefore, by Theorem 12,

$$v_2(F_n(k)) = v_2((k-2)n + k + 1) - v_2(k+1) + 1$$

= $v_2(n-k-1) - 1 + 1$
= $v_2(n-k-1)$.

Case 2: $v_2(n-k-1) > v_2(k^2-1)$. It follows that $v_2(k-1) < v_2(\frac{n}{k+1}-1) = v_2(2T) < v_2(4T)$, and

$$v_2(n-2) = v_2((k-1)(2T+1) + 4T) = v_2(k-1).$$

We have

$$v_2((k-2)n + k + 1) = v_2(k^2 - 1) = v_2(k-1) + v_2(k+1)$$

 $< k + v_2(k+1).$

therefore, by Theorem 12,

$$v_2(F_n(k)) = v_2((k-2)n + k + 1) - v_2(k+1) + 1$$

$$= v_2(k^2 - 1) - v_2(k+1) + 1$$

$$= v_2(k-1) + 1$$

$$= v_2(n-2) + 1.$$

3.3. The k=3 and k=5 Cases

Theorem 13. For any positive integer n, we have

$$v_2(F_n(3)) = \begin{cases} 0, & \text{if } n \equiv 1, 2 \pmod{4}, \\ 1, & \text{if } n \equiv 3 \pmod{8}, \\ v_2(n+1) + v_2(n+17) - 3, & \text{if } n \equiv 7 \pmod{8}, \\ v_2(n) - 1, & \text{if } n \equiv 0 \pmod{8}, \\ v_2(n+4) - 1, & \text{if } n \equiv 4 \pmod{8}. \end{cases}$$

Proof. The case $n \equiv 1, 2 \pmod 4$ is by Theorem 6. The case $n \equiv 3 \pmod 8$ is by Theorem 7. The case $n \equiv 7 \pmod 8$ is by Theorem 8. The case $n \equiv 0 \pmod 8$ is by Theorem 9.

In the case $n \equiv 4 \pmod{8}$, write n = 4t where t is odd. By Lemma 4, $f_0(n,3) = 2(t+1)$ and for any $i \geq 1$,

$$v_2(f_i(n,3)) = s_2(4i+1) - 1 + \sum_{\ell=t-i}^{t+3i-1} v_2(\ell).$$

Hence $v_2(f_i(n,3)) > v_2(t+1) + 1 = v_2(f_0(n,3))$, and therefore, $v_2(F_n(3)) = v_2(f_0(n,3)) = v_2(t+1) + 1 = v_2(n+4) - 1$.

Theorem 14. For any positive integer n, we have

$$v_2(F_n(5)) = \begin{cases} 0, & if \not\equiv 0, 5 \pmod{6}, \\ 1, & if \ n \equiv 11 \pmod{12}, \\ 2, & if \ n \equiv 5 \pmod{12}, \\ v_2(n), & if \ n \equiv 0 \pmod{12}, \\ v_2(n+2), & if \ n \equiv 6 \pmod{12} \ and \ n \not\equiv 126 \pmod{192}, \\ 6, & if \ n \equiv 318 \pmod{384}, \\ 7, & if \ n \equiv 126 \pmod{768}, \\ 8, & if \ n \equiv 510 \pmod{768}, \\ 8, & if \ n \equiv 510 \pmod{1536}, \\ 9, & if \ n \equiv 1278 \pmod{3072}, \\ 10, & if \ n \equiv 2814 \pmod{6144}, \\ 11, & if \ n \equiv 12030 \pmod{12288}, \\ 12, & if \ n \equiv 18174 \pmod{24576}. \end{cases}$$

Proof. The case $n \not\equiv -1, 0 \pmod{6}$ is by Theorem 6. The case $n \equiv -1, 5 \pmod{12}$ is by Theorem 7. The case $n \equiv 0 \pmod{12}$ is by Theorem 9. The case $n \equiv 6 \pmod{12}$, $n \not\equiv 126 \pmod{192}$, is by Theorem 12.

The remaining case is $n \equiv 126 \pmod{192}$. Write n = 6t where $t \equiv 21 \pmod{32}$, that is, $t \equiv 10101_2 \pmod{2^5}$. By Lemma 4, $f_0(n,5) = 2(3t+1)$ and for any $i \geq 1$,

$$v_2(f_i(n,5)) = s_2(6i+1) - 1 + \sum_{\ell=t-i}^{t+5i-1} v_2(\ell).$$

Particularly, we have $v_2(f_1(n,5)) = 2 + v_2(t-1) + v_2(t+1) + v_2(t+3) = 2 + 2 + 1 + 3 = 8$ and $v_2(f_2(n,5)) = 2 + v_2(t-1) + v_2(t+1) + v_2(t+3) + v_2(t+5) + v_2(t+7) + v_2(t+9) = 2 + 2 + 1 + 3 + 1 + 2 + 1 = 12.$

If $t \equiv 110101_2 \pmod{2^6}$, that is, $n \equiv 318 \pmod{384}$, then $v_2(3t+1) = 5$ and $v_2(f_0(n,5)) = 6$. In this case, $v_2(F_n(5)) = 6$.

Now consider the case $t \equiv 010101_2 \pmod{2^6}$. If $t \equiv 0010101_2 \pmod{2^7}$, that is, $n \equiv 126 \pmod{768}$, then $v_2(3t+1) = 6$ and $v_2(f_0(n,5)) = 7$. In this case, $v_2(F_n(5)) = 7$.

Now consider the case $t \equiv 1010101_2 \pmod{2^7}$. If $t \equiv 01010101_2 \pmod{2^8}$, that is, $n \equiv 510 \pmod{1536}$, then $v_2(3t+1) \ge 8$ and $v_2(f_0(n,5)) \ge 9$. As $v_2(f_1(n,5)) = 8$, we have $v_2(f_0(n,5) + f_1(n,5)) = 8$ and $v_2(F_n(5)) = v_2(f_0(n,5) + f_1(n,5)) = 8$.

Now consider the case $t \equiv 11010101_2 \pmod{2^8}$. We have

$$f_0(n,5) + f_1(n,5) = -2^6 \frac{(t+4)(t+3)(t+2)(t+1)t(t-1)(6t+37)}{7!} + 2(3t+1).$$

Let $s_1(n,5) = 315(f_0(n,5) + f_1(n,5))$. Then $v_2(f_0(n,5) + f_1(n,5)) = v_2(s_1(n,5))$. We have

$$s_1(n,5) = -2^2(t+4)(t+3)(t+2)(t+1)t(t-1)(6t+37) + 630(3t+1).$$

Write $t = 11010101_2 + 2^8 A$. Then $s_1(n,5) \equiv 2^9 (A+1) \pmod{2^{10}}$.

If A is even, that is, $t \equiv 11010101_2 \pmod{2^9}$ and $n \equiv 1278 \pmod{3072}$, then $v_2(s_1(n,5)) = 9$ and $v_2(F_n(5)) = 9$.

Consider the case A is odd, that is, $t \equiv 111010101_2 \pmod{2^9}$. Write $t = 111010101_2 + 2^9B$. Then $s_1(n,5) \equiv 2^{10}(B+1) \pmod{2^{11}}$.

If B is even, that is, $t \equiv 1110101012 \pmod{2^{10}}$ and $n \equiv 2814 \pmod{6144}$, then $v_2(s_1(n,5)) = 10$ and $v_2(F_n(5)) = 10$.

Consider the case B is odd, that is, $t \equiv 1111010101_2 \pmod{2^{10}}$. Write $t = 1111010101_2 + 2^{10}C$. Then $s_1(n, 5) \equiv 2^{11}C \pmod{2^{12}}$.

If C is odd, that is, $t \equiv 11111010101_2 \pmod{2^{11}}$ and $n \equiv 12030 \pmod{12288}$, then $v_2(s_1(n,5)) = 11$ and $v_2(F_n(5)) = 11$.

Consider the case C is even, that is, $t \equiv 01111010101_2 \pmod{2^{11}}$. Write $t = 01111010101_2 + 2^{11}D$. Then $s_1(n,5) \equiv 2^{12}(D+1) \pmod{2^{13}}$.

If D is odd, that is, $t \equiv 101111010101_2 \pmod{2^{12}}$ and $n \equiv 18174 \pmod{24576}$, then $v_2(s_1(n,5)) \geq 13$. Since $v_2(f_2(n,5)) = 12$, we have $v_2(f_0(n,5) + f_1(n,5) + f_2(n,5)) = 12$ and $v_2(F_n(5)) = v_2(f_0(n,5) + f_1(n,5) + f_2(n,5)) = 12$.

17

In the above proof of Theorem 14, when D is even, $t \equiv 001111010101_2 \pmod{2^{12}}$ and $n \equiv 5886 \pmod{24576}$. This remaining case is not covered by Theorem 14. In this case, Conjecture 1 of Lengyel and Marques does not hold. For instance, when n = 3102462, we have $v_2(n+2) = 8$, the conjectured value is $v_2(n+43266) = 20$ but our calculation shows $v_2(F_n(5)) = 22$.

Acknowledgement. The authors wish to thank the anonymous reviewers for many helpful comments and suggestions that helped us to improve our paper.

References

- J. H. Halton, On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1966), 217-240.
- [2] T. Lengyel, The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), 234-239.
- [3] T. Lengyel, Divisibility properties by multisection, Fibonacci Quart. 41 (2003), 72-79.
- [4] T. Lengyel and D. Marques, The 2-adic order of some generalized Fibonacci numbers, *Integers* 17(2017), #A5.
- [5] D. Marques and T. Lengyel, The 2-adic order of the Tribonacci numbers and the equation $T_n = m!$, J. Integer Seq. 17(2014), Article 14.10.1.
- D. W. Robinson, The Fibonacci matrix modulo m, Fibonacci Quart. 1 (1963), 29-36.
- [7] B. Sobolewski, The 2-adic valuation of generalized Fibonacci sequences with an application to certain Diophantine equations, *J. Number Theory* **180** (2017), 730-742.
- [8] J. Vinson, The relation of the period modulo m to the rank of apparition of m in the Fibonacci sequence, *Fibonacci Quart.* **1** (1963), 37-45.
- [9] P. T. Young, 2-adic valuations of generalized Fibonacci numbers of odd order, *Integers* 18 (2018), #A1.