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Abstract
Lengyel and Marques have determined vy (F, (k)), the 2-adic order of the generalized
Fibonacci number F,,(k), for k = 3 and 4 and partially for k¥ = 5. This paper gives
new recurrence relations and a means of obtaining explicit formulas for F, (k). It
also evaluates vo(F,(k)) for all k, except for a few cases where n = t(k+ 1). In the
k = 5 case, the paper confirms part of a conjecture of Lengyel and Marques and
shows that the rest of the conjecture fails.

1. Introduction

For a fixed integer k > 2, the generalized Fibonacci numbers are defined by
Fo(k)=0,Fi(k)=---=Fr_1(k) =1,

F,(k)=Fo_1(k)+ -+ F_x(k), for all n > k.

The p-adic order of an integer n is given by v,(n), which is the highest power of
a prime p that divides n.

The p-adic order of a Fibonacci number, v, (F),(2)), was completely characterized;
see [6, 8, 1, 2, 3]. For instance, from Lengyel [2] we have

0, ifn=1,2 (mod 3),

1, ifn=3 (mod 6),
0o (F(2)) = =5 mod©)

3, ifn=6 (mod 12),

va(n)+2, ifn=0 (mod 12).
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Lengyel and Marques, in [5] and [4], obtain a general formula for vs(F,(3)) and
v2(Fy,(4)) and a partial one for va(F,(5)):

0, ifn=1,2 (mod 4),
1, if n=3,11 (mod 16),
2, ifn=4,8 (mod 16),
va(Frn(3)) = < 3, ifn=7 (mod 16),
va(n) — 1, ifn=0 (mod 16),
ve(n+4)—1, ifn=12 (mod 16),
va(n+1)+ve(n+17) =3, ifn=15 (mod 16);
0, ifnz0 (modb5),
va(Fr(4)) =<1, ifn=5 (mod 10),
va(n)+2, ifn=0 (mod 10);
0, ifn=£0,5 (mod 6),
2, ifn=5 (mod 12),
va(Frn(5)) =<1, if n=11 (mod 12),
va(n), ifn=0 (mod 12),

va(n+2), ifn=6 (mod 12) and ve(n — 6) # 3.
Lengyel and Marques [4] made the following conjectured values of va(F,(5)).

Conjecture 1 (Lengyel-Marques). For any positive integer n,

va(n + 2), ifn=6 (mod 12) and va(n +2) < 8;

Fo(5)) =
v2(Fu(5)) {wm+4m%) ifn=6 (mod12)and va(n+2) > 8

For a general value of k, Lengyel and Marques [4] also made the following con-
jectured values of va(Fy,(k)) when n =0 (mod 2k + 2).

Conjecture 2 (Lengyel-Marques). If n =0 (mod 2k + 2), then

0a(Fy (k) = w2 + (k).
where
2, if k=2
2, if k=0 (mod 4),
1, if k=1 (mod 4),

(

(

c(k) =quv(k—2)+1, ifk=2 (
if k=3 (mod 8

ith=6 (

1, ifhk=7 (
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Conjecture 2 is correct for k = 2 and 3. Lengyel and Marques [4] proved it for
k=4 and 5.
Sobolewski [7] showed that for all even k > 4,

0, ifnz0 (modk+1),
va(Fr(k)) =<1, ifn=k+1 (mod2k+2),
va(n) +va(k—2)+1, ifn=0 (mod 2k+2),

and thus proved Conjecture 2 for all even k > 4.
Young [9] showed that for all odd k > 5,

0, ifn#0,k (modk+1),
va(k — 1), ifn=k (mod 2k+2),
va(k — 3), ifn=-1 (mod 2k + 2),
va(Fo () = va(n) —wva(k+1)+1, ifn=0 (mod 2k + 2),
va(n —k — 1), ifn=k+1 (mod 2k+2)and
va(n —k —1) < wa(k? — 1),
va(n —2)+1, ifn=k+1 (mod 2k+2)and
va(n —k —1) > va(k? — 1),

and thus confirmed part of Conjecture 2. Young [9] also showed that Conjecture 2
failed for n = 3102462 and n = 6248190.

This paper obtains, for any positive integer k, new recurrence relations for F,, (k),
using which, F,,(k) can be expressed as a simple formula for each value of n and
the 2-adic order vo(F,(k)) can be derived for all values of n except for some where
n=t(k+1).

Our work allows us to prove Conjecture 2 for all k£ > 3 in the following compact
form (see Theorem 9).

Theorem 1. For any k > 3, if n =0 (mod 2k + 2), then

o (Fy (k) = vQ(kLﬂ) gk —2)+1.

When k is even, we have the following theorem (see Theorems 6, 7, 9, 10 and
11).

Theorem 2. For k even,
0, ifnZ0 (modk+1),
1, ifn=k+1 (mod 2k +2),
wPu(k) = ! ( )

va(n) +va(k—2)+1, ifn=0 (mod?2k—+2) andk > 2,
va(n) + 2, ifn=0 (mod 2k+2) and k = 2.
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When £ is odd, we have the following theorem (see Theorems 6, 7, 8, 9 and 12).

Theorem 3. For k odd,

0, ifn#—-1,0 (modk+1),

va(k — 1), ifn=k (mod 2k + 2),

v (k — 3), ifn=-1 (mod 2k + 2) and k > 3,
va(Fa(k)) = va(n+ 1) +va(n+17) =3, ifn=-1 (mod2k+2) and k =3,

va(n) —va(k+ 1) + 1, ifn=0 (mod 2k + 2),

va((k—2n+k+1) ifn=k+1 (mod 2k +2) and

—vg(k+ 1)+ 1, va((k—2)n+k+1) <k +uvo(k+1).

We note that there are far fewer cases not dealt with in Young [9] (where n = k+1
(mod 2k + 2)) than not dealt with in Theorem 3. For example, when k = 5, the
cases not dealt with by Young have n = 30 (mod 48), while the cases not dealt with
in Theorem 3 have n = 126 (mod 192). However, Theorem 14 evaluates vy (Fy,(5))
for all values of n other than n = 5886 (mod 24576), thus verifying Conjecture 1
in all these cases. We notice that Conjecture 1 is not correct when n = 3102462;
in this particular case, the conjectured value is va(n + 43266) = 20 but the correct
value is v2(F,(5)) = 22. This fact was also previously observed by Young [9].

In our calculation of vy (F,(k)), we will make use of the binary digit sum function
s2(n) which is defined as follows.

Definition 1. Define s5(0) =0. If i > 1 and ny > ng > -+ > n; > 0, then
52(2 4272 4o 4 2M) =,

Lemma 1. We have
(i) va(n!) =n — sa(n).
(i) v2((")) = s2(n) + sa(m — n) — s2(m).
(iii) If 1 < n < 2920™) then sy(m — n) = sa(m) + va(m) — sa(n) — va(n).
(i) Forn >0, sa(n — 1) = sa2(n) + va(n) — 1.
(v) Forn >m, sy(n) —sa(m) =n—m—37" . vs(i).

Proof. (i) The result is derived from a well known formula

n — sp(n)

vp(nl) = p—1

where s,(n) is the digit sum of n in base p.
(ii) Using (i), we have va((')) = m—sa2(m) — (n—s2(n)) — (m—n—s2(m—n)) =
s2(n) + s2(m —n) — sa(m).
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(iii) As 1 < n < 2U20™) we have m = 2™1 4. .. 4+2™i and n = 2™ +- .. +2"% where
i = sa(m), m; = va(m), j = s2(n), nj =va(n) and my > -+ >m; >ng > -+ > n,.
Therefore,

m—mn=2M ... 9Mi-1 y gmi—l 4 gmi=2 4 on, +2M — (2™ 2,

so se(m—n)=(@G—1)+(m; —nj)+1—j=i+m; —n; —j = sa(m) + va(m) —
va(n) — s2(n).
(iv) If n is odd then it is obvious. If n is even, then let va(n) = v and write
n in binary form n = z1...2;100...02 with v trailing zeros. We have n — 1 =
1...2;011...13 80 sa(n — 1) = sa(n) — 1 +v.
(v) The result follows from (iv). O

2. Recurrence Relations and Formulas for F, (k)

Lemma 2. For any k > 2, we have
(i) Fp(k) =k — 1.
(i) If n > k+1,
Fn(k) = 2Fn—1(k) - Fn—k—l(k)'

(iii) If n >k +1,

n—k—1
Fo(k) = 2"7"( = Y 2R (k).
i=1

() If n > 2k + 1,

n—k—1
Fo(k) =212k = 3) —2" 21k —3) — > 2" FIF(k).
i=k+1

Proof. (i) Obvious.
(i) Ifn>kt1,

Fo(k) = Foy (k) + Fu_o(k) + - + Fap(k)
Fn—l(k) = Fn—2(k) +--+ Fn—k(k) + Fn—k—l(k)v

so F(k) = 2F,_1(k) — F_x—1(k).
(iii) From (ii), we have

27UV (k) =277 Fj(k) =29 Fj_j_1(k),Vj > k+ 1.
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If n > k+1, then

> @ OIE LK) -2 E (k) = Y 27y (k),
j=k+1 =il

n—k—1
2FFu(k) —2 " Ea(k) = Y 27N UE(R).

Therefore,

n—k—1 n—k—1
Fu(k) =2""FFu(k) = > 2" IRE) =20 k- 1) - > 2R (k).
=0 i=1

(iv) If n > 2k + 1, using (iii), we have

k—1 n—k—1
Fn(k) _ 2n7k(k _ 1) _ 2n72k71Fk(k_) _ Z 2n7i7k71Fi(k_) _ Z QniiikilFi(k)
=1 i=k+1
k—1 , n—k—1 4
_ 2n—k(k _ 1) _ 2n—2k—1(k, _ 1) _ gn—i—k—1 _ Z 2n_l_k_1Fi(k3)
i=1 i=k+1
n—k—1 )
_ Qnik(k - 1) N 2n72k71(k o 1) o (2n7k71 o 2n72k) o Z 2n7z7k71Fi(k)
i=k+1
n—k—1 )
_ 2n—k—1(2k_ _ 3) _ 2n—2k—l(k_ _ 3) _ Z Qn_k_l_zFi(k')-
i=k+1
O

The following theorem gives an explicit formula for F, (k).

Theorem 4. Letn > k+1 andt = L%J Then

Fo(k) =1+ 2" * Ay (n, k) + 2" 720D Ay (n, k) + - + 20 D 4y (n, k), (1)
where Ay(n, k), As(n, k), As(n, k), ..., Ay(n, k) are integers defined as

o 2B ifs=1,
S(TL, ) - {(_1) ((Qk 3)<n ‘;k) (n—ssk2—1)> ’ zfs >1

(n—sk—1)! ((2k —3)n — s(2k? — 3k +1) + 1) @)
(s—Dl(n—sk—s+1)!

= (-



INTEGERS: 20 (2020) 7

Proof. When k41 <n < 2(k+1)— 1, using Lemma 2(iii),
Fo(k)y=2"""%k—-1) - on—i=k=1p (k)

=2"""(k—1) - 2rmithTl = 14 2nm (U (9 — 3),
1

K2

When n > 2(k 4+ 1) — 1, the result can be proved by induction on n by using
Lemma 2(ii) and by considering the two separate cases: n = t(k + 1) — 1 and
tk+1)—1<n<(@+1)(k+1) -1 O

Using Theorem 4, we can calculate all the values of F,,(k). Below are some

examples.

Lemma 3. We have
(i) If k+1 <n <2k,

(i) If 2k +1 < n < 3k + 1,
F(k) = 2"~ 2k — 3) — 27241 (2% — 3)n — 4k? + 6k — 1) + 1.
(ii) If 3k +2 < n < 4k + 2,
F, (k) =2n~ (k0 (o) — 3) — 2n =206+ D) (2 — 3)p, — 4k% 4 6k — 1)

1
+ 2"—3<’<+1>§(n — 3k — 1)((2k — 3)n — 6k + 9k — 2) + 1.

(i) If 4k + 3 <n < 5k + 3,
Fo(k) = 2n= k4D (9f — 3) — 277241 (2 — 3)n — 4k? + 6k — 1)
1
+ 2”*3<k+1>§(n — 3k —1)((2k — 3)n — 6k + 9k — 2)

— 2”*4“?“)%(71 — 4k —1)(n — 4k — 2)((2k — 3)n — 8k? + 12k — 3) + 1.

3. The 2-adic Order of F, (k)

Our method of finding v (F,(k)), for n > k + 1, is mainly based on formula (1) of
Theorem 4. Throughout this paper, we will write ¢ = |45 | and n = t(k + 1) +r

where —1 <7 < k—1. In formula (1), all indices in the power of 2 are greater than
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or equal to —1. The lowest index n — t(k + 1) is negative only in exactly one case,
n=t(k+ 1) — 1. In this case,

2n7t(k+1)At(n, k) _ (71)t71(k o 2)
is an integer and we have the following theorem.

Theorem 5. Letn>k+1 andt = L%J and

Fo(k) =2~ DA (n k) + 202D Ag (n, k) + - + (20D A, (n k) + 1),
:ftfl(nvk)"i_fth(n?k)+"'+f0(n7k)a (3)

where fo(n, k) = 2" t*+HD A (n, k) +1 and fi(n, k) = 27~ C=DED A, i(n, k). Then
(i) all the values f;(n,k) are integers;
(i) for any 57 >0, if t > j+ 1 and for all j +1 <i <t —1, we have

va(fi(n, k) > v2(f(n, k) + fi-1(n, k) + - - + fo(n, k), (4)

then
v2(Fn (k) = v2(fi(n, k) + fi—1(n, k) + -+ fo(n, k)).

Proof. (i) In formula (3), all indices in the power of 2 are greater than or equal to
—1. The lowest index n—t(k+1) is negative only in exactly one case, n = t(k+1)—1.
In this case,

2n Tt Ay (ny k) = (1) (k- 2)

is an integer, and therefore, all f;(n, k) are integers.
(ii) The result follows from (i). O

Asn=tk+1)+7r v(fi(n, k) =i(k+1)+r+v2(As—i(n, k) > i(k+1)+7r,
the following result is a direct corollary of Theorem 5(ii).

Corollary 1. Letn > k+1, t = L%J and n = t(k+1)+r. For any j > 0, if

t>j+1and (j+1)(k+1)+7r>ve(fj(n k) + fj—1(n, k) + -+ fo(n, k)), then
v2(F (k) = va(fi(n, k) + fi—1(n, k) + - + fo(n, k)).

Using formula (2) for As(n,k), and the formulas for ve(n!) and sa(n) — sa(m)
from Lemma 1, we can calculate fy(n, k) and ve(f;(n,k)).

Lemma 4. Letn>k+1,t= L%‘H andn=1t(k+1)+r. Then

(=) (B —2) +1, if r=—1,
foln, k) =3 (=) 1 (t2k —4) + 1) + 1, if r =0,
2" Ay(n, k) + 1, ifl1<r<k-—1,
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and for 1 <i<t—1and -1<r<k-1,

va(fi(n, k) =va (26(k = 2) + i(2k% — 3k + 1) + 1+ (2% - 3))
t+ik+r—1
tsp(ik+itl4r) =1+ Y wa(0)

{=t—1

We will use Theorem 5 to determine vy (F, (k)) for n > k+1. With n = t(k+1)+r
where —1 < r < k — 1, there are different formulas for vo(F,,(k)) depending on the
value of r. When r # 0, that is, n Z 0 (mod k 4 1), it is quite easy to determine
va(F(k)). The case n =0 (mod k + 1) requires more work. Theorem 6 deals with
the case 1 <r < k —1, that is, n # —1,0 (mod k + 1). Theorem 7 deals with the
case n = —1 (mod k+1). Finally, Theorems 9 and 11 deal with the remaining case
n=0 (mod k +1).

3.1. The Case n Z 0 (mod k + 1)
Theorem 6. Ifn % —1,0 (mod k + 1), then va(F,(k)) = 0.

Proof. Tt is obvious for the case n < k. Whenn > k+1and n # —1,0 (mod k+1),
we have n = t(k + 1) + r where 1 < r < k — 1. In this case, by Lemma 4,
fo(n, k) is an odd integer and vy (fo(n,k)) = 0. By Corollary 1 with j = 0 we have

Ug(Fn(k‘)) = Ug(fo(n, k)) =0. O
Theorem 7. If n = —1 (mod k + 1), then

vo(k —3), ifn=-1 (mod 2k +2) and k # 3,
va(k—1), ifn=k (mod 2k+2).

Proof. 1t is obvious for the case n =k as F(k) =k —1. If n>k+1land n= -1
(mod k + 1), we have n = ¢(k + 1) — 1 with ¢ > 2. The case ¢ is even corresponds
ton = —1 (mod 2k + 2) and ¢ is odd corresponds to n = k (mod 2k + 2). By
Lemma 4,

—(k—3), iftis even,

k) =
foln. k) {k—l, if ¢ is odd.

When ¢ is odd, va(k — 1) < k, so by Corollary 1 with j = 0 we have vs(F,(k)) =
va(fo(n, k)) = va(k = 1).

When t is even and k # 3, va(k — 3) < k, so again by Corollary 1 with j = 0 we
have UQ(Fn(k)) :UQ(fO(na k)) :UQ(kig)' O

Theorem 7 does not cover the case k = 3 and n = —1 (mod 8) so we will look
at this exceptional case now.

Theorem 8. Ifn=—1 (mod 8), then va(F,(3)) = va(n + 1) + v2(n + 17) — 3.
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Proof. Write n = 4t — 1 with ¢ even. By Lemma 4, fy(n,3) = 0, va(f1(n,3)) =
1+ va(t) + va(t +4), and for any i > 2,

t4+3i—2
Ug(fl(’fl,3)) = 02(275 + 107 — 2) + 82(42) -1+ Z UQ(E)
b=t—i
t+3i—2
>1+4 Y va(l) > 14 va(t) + va(t +4).
o=t—i

By Theorem 5(ii) with j = 1 we obtain v2(F,(3)) = v2(f1(n,3)) = 1 + va(t) +
v(t+4) =1+ va(2) + o(ZH +4) = va(n + 1) + va(n + 17) — 3. O

3.2. The Case n = t(k + 1)

In this section we consider the case n > k+1and n =0 (mod k+1). Son = t(k+1).
We consider two separate cases: t even and t odd. Theorem 9 deals with the case t
is even where we prove Conjecture 2 of Lengyel and Marques.

3.2.1. t is Even

The case t is even corresponds to n = 0 (mod 2k + 2). We will prove Conjecture 2
of Lengyel and Marques for all £ > 3 in the following simpler form.

Theorem 9. For any k > 3, if n =t(k+ 1) and t is even, then
Vo (Fn(k)) = v2(2t(k — 2)) = v2(n) —va(k 4+ 1) + va(k — 2) + 1.
Proof. When t is even, by Lemma 4, we have
fo(n, k) = =2i(k - 2),

and forall 1 <i<t—1,

t+ik—1
va(fi(n,k)) = va (2t(k—2) +i(2K> = 3k+1)+1) +sa(ik+i+1)—1+ D> (). (5)

L=t—i

When k is odd, va(f;(n,k)) > 14 5510y (0) > 14 va(t) = va(fo(n, k).

When £k is even, we consider two cases: ¢ odd and i even.

If i is even, then va(f;(n,k)) > 1+ Zzgf:f v2(€). There are “LE even numbers
¢ in the interval ¢t — i < ¢ < t+ ik — 1 and one of those is t. So va(fi(n,k)) >
T4oa(t) + B — 1> 14 v(t) + k> 1+ vo(t) + va(k — 2) = v2(fo(n, k).

If i is odd, then vo(fi(n, k)) > 1 —1—22216_;1 v2(€). There are #£=1 even numbers
£ in the interval t —i < £ < ¢t + ¢k — 1 and one of those is t. So vao(f;(n,k)) >
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1+ vp(t) + HE=L — 1 > 1+ wa(t) + va(k — 2) = v2(fo(n, k) for all i > 3, ori =1
and k > 6. The remaining case is ¢ = 1 and k = 4 or 6.

If i = 1 and k = 4 equation (5) gives va(f;(n,k)) = va(4t + 22) + s2(6) — 1 +
Ug(t) + ’Ug(t + 2) > UQ(t) +2= ’Ug(f()(n, k))

If i =1 and k = 6 equation (5) gives va(fi(n,k)) = va(8t + 56) + s2(8) — 1 +
Ug(t) + 'UQ(t + 2) + ”Ug(t + 4) > ’l)Q(t) +3= ’UQ(fo(TL k))

In every case, we have shown that va(f;(n, k)) > va(fo(n, k)) forall 1 <i <t—1,
and by Theorem 5(ii) with j = 0, we have v2(F,(k)) = v2(fo(n, k)) = va(2t(k —
2)). O

Theorem 9 does not cover the case k = 2 so we will look at this exceptional case
now.

Theorem 10. Ifn =0 (mod 6), then vo(F,(2)) = va(n) + 2.

Proof. Write n = 3t with ¢t even. By Lemma 4, fo(n,2) =0, va(f1(n,2)) = 24vs(t),
and for any 7 > 2,

t4+2i—1
va(fi(n,2)) = v2(3i+ 1) +52(Bi+1) =1+ > va(l) > 2+ va(t).
l=t—1

By Theorem 5(ii) with j = 1 we obtain va(F,(2)) = va(f1(n,2)) = 2 + va(t) =
2+ va(n). O
3.2.2. t is Odd

In this section we consider the case n = t(k + 1) and ¢ is odd, that is, n = k + 1
(mod 2k + 2). By Lemma 4,

fo(n, k) =2(t(k —2) + 1).
Theorem 11. If k is even and n =k + 1 (mod 2k + 2), then vo(F,(k)) = 1.

Proof. Write n = t(k + 1) where ¢ is odd. By Lemma 4, fo(n,k) = 2(t(k —2) + 1)
and as k is even, we have vy(fo(n,k)) = 1. By Corollary 1 with 5 = 0 we have
UQ(Fn(k‘)) = Ug(fo(n7k)) =1. O]

From here on, we consider the case k is odd.

Lemma 5. Ifk is odd, n =k + 1 (mod 2k + 2), and

Lt
nZ(k+1) ((k:—l)kz(k2 -1 4 ol valk— 1))

(mod (k + 1)2lmte ] va(b=D+1y (6)
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then
va(Frn(k)) =va((k —2)n+k+1) —va(k+ 1)+ 1.

Proof. Let m = valzk*ll)J' Then muvy(k — 1) < k and by Lemma 4,

foln,k) = 2(¢(k —2) +1) = 2 ((t— %)(k—@ + (k- 1)m> .

Ift—% =0 or, ift—%#Oandm(t—%) #muy(k —1),
then va(fo(n,k)) <1+ muwg(k —1) < k+ 1. In this case,
va(Fn(k)) = va(fo(n, k) = va(2(t(k —2) +1)) = v2((k=2)n+k+1) —va(k+1) + 1.

The remaining case is when v (t - %) = mus(k — 1). Write

(k—1)m—1

= gmv2(k=1) (o7 4 1),
R (2Z+1)

t —
Then

(k — 1)m -1 (k—1) mua(k—1)+1

which contradicts the assumption and the lemma is proved. O

Lemma 6. Ifk is odd, k >3, n=k+ 1 (mod 2k + 2), and

k—1
kE—3 2 moy] _ 1 e -
’I’Lﬁé(k‘—‘rl) <( ) k-j2 +22L2u2k(k173)JU2(k 3)

(mod (k + 1)22lzmtea ] v2(k=3)+1) (7)

then
va(Fr(k)) =va((k —2)n+k+1) —wvo(k+ 1)+ L.

Proof. Let m = 2 {21;2]6(;1—3)J . Then m is even and muvs(k—3) < k, and by Lemma 4,

foln, k) = 2(t(k —2) +1) =2 <(t— %)(k—?) +(k—3)m) .

Ift—%:()or, ift—%#Oandvg(t—%) £ muq(k — 3),

then va(fo(n,k)) <14 mua(k —3) < k+ 1. In this case,

va(Fp(k)) = va(fo(n, k) = va(2(t(k —2) +1)) = va((k — 2)n+k +1) —va(k+1) + 1.
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The remaining case is when v (t - w) = muy(k — 3). Write

k—2
(k=3 -1 (k—3)
t_7:27m}2 2Z 1
F—2 (22 +1)
Then
k—3)m—1
n = (k + 1) ((kS)Q + Qmuz(k3)> + (k 4 1)2771’[12(]973)“1’127
which contradicts the assumption and the lemma is proved. O

Theorem 12. If k is odd, n =k + 1 (mod 2k + 2), and
vo((k—=2)n+k+1) <k+wv(k+1),

then
va(Fr(k)) =va((k —2)n+k+1) —vo(k+ 1)+ L.

Proof. When k=1 (mod4) andn=k+1 (mod 2k +2),let n=(k+1)(2T + 1)
and k =14 4K. Then the condition (7) of Lemma 6 is equivalent to

n#(k+1) ((k_]:’)_k_;_l + 2H> (mod (k +1)2%)

& 2T+1¢%+2’H (mod 2%)

& T+1)k-2)#E-3)"1—14+2"(k—2) (mod 2%)
& QT+ 1D)(k-2)#£212K —1)*¥ —14+ 214K —1) (mod 2¥)
& 2T+ 1)(k—2)# -1 (mod 2%)

& nk—2)+k+12£0 (mod (k+1)2F)

& wvnk—2)+k+1) <k+uve(k+1).

Therefore, the case k =1 (mod 4) follows from Lemma 6.
When k=3 (mod 4) and n =k +1 (mod 2k +2),let n = (k+1)(2T + 1) and
k =3+ 4K. Then the condition (6) of Lemma 5 is equivalent to

n#(k+1) ((k—;)f;‘l +2’<1> (mod (k +1)2%)
(k—1F1-1 k—1 k

s T+ 1)(k—-2)Z (k-1 =142k —-2) (mod 2%)
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& QT+ 1)(k—-2)#2"12K + )2 _ 1 4+ 28" 14K + 1) (mod 2F)
& 2T+ 1)(k—2)# -1 (mod 2%)
& nk—-2)+k+1#0 (mod (k4 1)2F)
< vn(k—2)+k+1) <k+wv(k+1).
Therefore, the case k =3 (mod 4) follows from Lemma 5. O
Using Theorem 12, we can now prove Young [9] result.
Corollary 2. If k is odd and n =k + 1 (mod 2k + 2), then

vo(n —k—1), ifve(n—k—1) <wvy(k?—1),
va(n —2)+1, ifve(n—k—1)>vg(k?—1).

va(Fn(k)) = {
Proof. Since
(k—2m+k+1=(k—-2)(n—k—1)+k* -1,
and k is odd, we have

vo(n —k —1), ifve(n—Fk—1) <wg(k?—1),

vk =2+ k1) = {vm S1), e k- 1) > 0a(k? - 1),

Let n = (k+1)(2T + 1) and consider two separate cases.
Case 1: va(k*—1) > va(n—k—1). Tt follows that va(k—1) > va (75 —1) = v2(27)
and so k =1 (mod 4). We have
va((k—=2n+k+1)=va(n—k—1)
< Ug(k)Z - 1) = ’Ug(k‘ — 1) + ’Ug(k‘ + 1)
<k+uv(k+1),
therefore, by Theorem 12,

V2 (Fn(k))

va((k=2n+k+1)—va(k+1)+1
vp(n—k—1)—1+1
va(n —k —1).

Case 2: va(n — k — 1) > va(k* — 1). Tt follows that va(k — 1) < va(shy — 1) =
v2(2T) < v2(4T), and

ve(n —2) =va((k —1)(2T + 1) + 4T) = va(k — 1).
We have

va((k—2n+k+1) =vo(k* = 1) = vo(k — 1) + v (k + 1)
<k+uva(k+1),
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therefore, by Theorem 12,
va(Fr(k)) =v2((k—2n+k+1)—wva(k+1)+1
:’Ug(k’Q 1)—02(1{5+1)+1
=va(k —1)+
=wvs(n—2)+
3.3. The k = 3 and k& = 5 Cases

Theorem 13. For any positive integer n, we have

0, ifn=1,2 (mod4),
1, ifn=3 (mod 8),
va(Fn(3)) = vg(n+1)+vg(n+l7) -3, ifn=7 (mod8),
va(n) — 1, ifn=0 (mod 8),
va(n+4) -1, ifn=4 (mod 8).
Proof. The case n = 1,2 (mod 4) is by Theorem 6. The case n = 3 (mod 8) is by

Theorem 7. The case n = 7 (mod 8) is by Theorem 8. The case n =0 (mod 8) is
by Theorem 9.

In the case n =4 (mod 8), write n = 4¢ where ¢ is odd. By Lemma 4, fo(n,3) =
2(t+ 1) and for any i > 1,

t+3i—1

Ug(fi(n,?))) = 82(4@' + 1) -1+ Z UQ(Z)

f=t—i
Hence va(fi(n,3)) > wva(t + 1) + 1 = wva(fo(n,3)), and therefore, vo(F,(3)) =
)=

Ug(fo(?’l,?b) Ug(t+1)+1—112(n+4)—1 O
Theorem 14. For any positive integer n, we have

0, if 20,5 (mod 6),

1, ifn=11 (mod 12),

2, ifn=5 (mod 12),

va(n), ifn=0 (mod 12),

va(n+2), ifn=6 (mod12) andn # 126 (mod 192),
6, if n =318 (mod 384),

7, if n =126 (mod 768),

8, if n =510 (mod 1536),

9, if n =1278 (mod 3072),

10, ifn=2814 (mod 6144),

11, ifn=12030 (mod 12288),

12, ifn=18174 (mod 24576).
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Proof. The case n Z —1,0 (mod 6) is by Theorem 6. The case n = —1,5 (mod 12)
is by Theorem 7. The case n = 0 (mod 12) is by Theorem 9. The case n = 6
(mod 12), n # 126 (mod 192), is by Theorem 12.

The remaining case is n = 126 (mod 192). Write n = 6¢ where ¢ = 21 (mod 32),
that is, t = 101013 (mod 2°). By Lemma 4, fo(n,5) = 2(3t + 1) and for any i > 1,

t+5i—1

va(fi(n,5)) = s2(6i+1) =1+ > va(0).

l=t—1

Particularly, we have va(f1(n,5)) = 2 4+ va(t — 1) + vo(t + 1) + vo(t + 3) =
242+1+3=8and ’Ug(fz(n,5)) = 2—|—’l)2(t— 1)—|—’Ug<t+ 1)+U2(t+3)+@2(f+
B+ vt +7)+va(t+9) =2+2+143+1+2+1=12.

If t = 1101015 (mod 2°), that is, n = 318 (mod 384), then vo(3t + 1) = 5 and
v2(fo(n,5)) = 6. In this case, va(F,(5)) = 6.

Now consider the case t = 0101015 (mod 25). If t = 00101012 (mod 27), that
is, n = 126 (mod 768), then v2(3t + 1) = 6 and v2(fo(n,5)) = 7. In this case,
va(Fn(5)) = 7.

Now consider the case t = 10101015 (mod 27). If t = 010101015 (mod 2%), that
is, n = 510 (mod 1536), then vy(3t+1) > 8 and va(fo(n,5)) > 9. As va(f1(n,5)) =
8, we have v2(fo(n,5) + f1(n,5)) = 8 and va(F,(5)) = va(fo(n,5) + f1(n,5)) = 8.

Now consider the case ¢t = 110101015 (mod 2%). We have

o (E+A)(t+3)(t+ 2)(t + D)E(t — 1)(6t + 37)
7l

Let s1(n,5) = 315(fo(n,5) + f1(n,5)). Then va(fo(n,5) + fi(n,5)) = va(s1(n,5)).
We have

fo(n,5) + fi(n,5) = =2

+2(3t+1).

s1(n,5) = —2%(t + 4)(t + 3)(t + 2)(t + 1)¢(t — 1)(6t + 37) + 630(3t + 1).

Write ¢ = 110101015 + 28A. Then s1(n,5) = 2°(A + 1) (mod 20).

If A is even, that is, t = 110101012 (mod 2°) and n = 1278 (mod 3072), then
va(s1(n,5)) = 9 and v (F,,(5)) = 9.

Consider the case A is odd, that is, + = 1110101015 (mod 2°). Write t =
1110101015 + 2°B. Then s;(n,5) = 219(B + 1) (mod 2'1).

If B is even, that is, t = 1110101015 (mod 2'%) and n = 2814 (mod 6144), then
v2(s1(n,5)) = 10 and va(F,(5)) = 10.

Consider the case B is odd, that is, + = 11110101013 (mod 2'°). Write ¢t =
11110101015 + 21°C.. Then s1(n,5) = 2''C' (mod 212).

If C is odd, that is, t = 111110101013 (mod 2'!) and n = 12030 (mod 12288),
then va(s1(n,5)) = 11 and va(F,(5)) = 11.

Consider the case C is even, that is, ¢ = 011110101015 (mod 2'*). Write t =
011110101015 + 2" D. Then s;(n,5) = 2'2(D + 1) (mod 23).
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If D is odd, that is, t = 1011110101012 (mod 2!?) and n = 18174 (mod 24576),
then va(s1(n,5)) > 13. Since va(fa2(n,5)) = 12, we have va(fo(n,5) + f1(n,5) +
f2(n,5)) = 12 and v3(F(5)) = v2(fo(n,5) + f1(n,5) + f2(n,5)) = 12. O

In the above proof of Theorem 14, when D is even, t = 0011110101012 (mod 2'2)
and n = 5886 (mod 24576). This remaining case is not covered by Theorem 14. In
this case, Conjecture 1 of Lengyel and Marques does not hold. For instance, when
n = 3102462, we have vy(n + 2) = 8, the conjectured value is va(n + 43266) = 20
but our calculation shows va(F,(5)) = 22.

Acknowledgement. The authors wish to thank the anonymous reviewers for many
helpful comments and suggestions that helped us to improve our paper.
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