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Abstract
In this paper we solve the diophantine equation

(m
l

)
−

(n
k

)
= d (where m,n are

positive integer unknowns) when (k, l) = (6, 3), (3, 6) for various values of d and
when (k, l) = (8, 2) and d = 1. As a byproduct of our results we will obtain
that (k, l)−near collisions with difference 1 do not exist if (k, l) = (3, 6), (8, 2),
thus establishing a conjecture stated in the article published in 2017 by Blokhuis,
Brouwer and de Weger.

1. Introduction

The quadraple (n, k, l,m) is said to be a (binomial) near collision with difference
d if there exists a pair (m,n) of integers with 2 ≤ k ≤ n/2, 2 ≤ l ≤ m/2, such
that

(m
l

)
−
(n
k

)
= d and

(m
l

)
≥ d3. Note that the above restrictions on k, l are very

natural in view of the symmetries
(m
l

)
=

( m
m−l

)
and

(n
k

)
=

( n
n−k

)
.

If we consider k, l ≥ 2 and d ̸= 0 (not-necessarily positive) as given fixed integers
with k ̸= l, we obtain the Diophantine equation

(
m

l

)
−
(
n

k

)
= d, (1)

in the positive integer unknowns m,n, without any restriction on the size of
(
m
l

)

compared to d. In Section 2 we will solve (1) when (k, l) = (3, 6) and d = ± 1,
and in Section 3 we will solve (1) with (k, l) = (8, 2) and d = 1. Our main re-
sults, Theorems 2.2, 2.4, 3.1 respectively imply Corollaries 2.3, 2.5, 3.2. As a
consequence we have that (k, l)-near collisions with difference 1 do not exist if
(k, l) ∈ {(6, 3), (3, 6), (8, 2)}, thus establishing certain cases of Conjecture 2 in [1].

1This work is part of the author’s Doctoral Thesis at the Department of Mathematics and
Applied Mathematics, University of Crete.
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We now sketch the method for solving the equations mentioned above, which
we apply in Sections 2 and 3 . For each equation we work as follows. We reduce
its resolution to the problem of finding the points (u, v) with integral coordinates
on a certain elliptic curve C whose equation is not in Weierstrass form. We find a
Weierstrass model E and an explicit birational transformation

C ∋ (u, v) −→ (x, y) = (X (u, v),Y(u, v)) ∈ E

C ∋ (U(x, y),V(x, y)) = (u, v)←− (x, y) ∈ E

between C and E. This is accomplished by the maple implementation of van Hoeij’s
algorithm [6]. The typical point on C is denoted by PC and the corresponding point
on E via the above birational transformation by PE . We will also use the notation
(u(P ), v(P )) for the coordinates of the point P viewed as a point on C, hence
(u(P ), v(P )) = PC , and (x(P ), y(P )) for the coordinates of the point P viewed
as a point on E, hence (x(P ), y(P )) = PE . Thus, if PC = (u, v) = (u(P ), v(P ))
and PE = (x, y) = (x(P ), y(P )), then x = X (u, v), y = Y(u, v) and u = U(x, y),
v = V(x, y).

Our problem is reduced to the following:

To compute explicitly all points PE ∈ E(Q) such that PC ∈ C(Z).
We deal with this problem as follows. Using the routine MordellWeilBasis of
magma[2] based on the work of many contributors, like J. Cremona, S. Donelly,
T. Fisher, M. Stoll, to mention a few of them, we compute a Mordell-Weil basis
for E(Q) and let PE

1 , . . . , PE
r be generators of the free part of E(Q). In certain

cases, especially when the rank of the elliptic curve is ≥ 5, it is necessary to im-
prove the Mordell-Weil basis computed by magma, in the sense of the Remark at
the end of Section 2; see also the “Important computational issue” of [7]; we will
need to do this in both Sections 2 and 3. Let PC = (u, v) denote the typical un-
known point with integral coordinates. Its transformed point PE via the previously
mentioned birational transformation is a point with rational coordinates, therefore
PE = m1PE

1 + · · ·+mrPE
r + TE , where m1, . . . ,mr are unknown integers and TE

denotes the typical torsion point (only finitely many and, actually, very few options
for TE exist). To this we associate the linear form

L(P ) = (m0 +
s

t
)ω1 +m1l(P1) + · · ·+mrl(Pr) {± l(P0)}. (2)

Some explanations are in place here. Firstly, l denotes the map l : E(R)→ R/Zω1,
closely related to the elliptic-logarithm function, which is defined and discussed in
detail in Chapter 3 of [14], especially, Theorem 3.5.2. Next, ω1 is the minimal
positive real period of E, m0 is an extra integer whose size depends explicitly
on M := max1≤i≤r |mi|, and s, t are relatively prime integers as follows: t ≥ 1
divides the lcm of the orders of the non-zero torsion points of E and s is such that
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−1/2 < s/t ≤ 1/2. 2 Last, the indication {} in the summand ± l(P0) means that
this is present only in Section 2, where P0 is a certain explicitly known point. The
Elliptic Logarithm Method exploits the fact that u, v are integers in order to find an
upper bound for |L(P )| in terms of M (see (17)) and, on the other hand, applies a
deep result of S. David [3] in order to obtain a lower bound for |L(P )| in terms of
M . Comparing the two bounds of |L(P )| we obtain the relation

ρM2 ≤ c11c13
2θ

(log(αM+β)+c14)(log log(αM+β)+c15)
r+3+γ+

c11
2θ

log
c9

1 + θ
+ 1

2c10,

(3)
where all constants involved in it are explicit; see relation (9.8), Theorem 9.1.3
of [14]. It is clear that, if M is larger than an explicit bound B, then the left-
hand side is larger than the right-hand side and this contradiction certainly implies
that M ≤ B. Since B is explicit, this allows us to compute all integer points
PC = (u, v) as follows: for each (m1, . . . ,mr) in the range |mi| ≤ M (i = 1, . . . , r)
we compute each point PE = m1PE

1 + · · ·+mrPE
r +TE with TE a torsion point and

then we compute its transformed point PC via the previously mentioned birational
transformation; if PC has integer coordinates, then we have gotten an integer point
PC = (u, v).

In principle, this procedure allows to pick-up all integer points (u, v) and, indeed,
this is so if the bound B is small, say around 30. But the bound obtained from
(3) is huge and we must reduce it to a manageable size. This is accomplished with
de Weger’s [15] technique, the basic tool of which is the LLL-algorithn of Lenstra-
Lenstra-Lovász [5]. The reduction process appropriate for our purpose is described
in Chapter 10 of [14].

2. Equation (1) with (k, l) = (3, 6) and d = ±1

Replacing in (1) d by −d, we obtain the equation

(
n

3

)
=

(
m

6

)
+ d , (4)

which we study in this section. Putting u := n− 1 and v := (m− 2)(m− 3)/2, we
have (

n

3

)
=

1

6
((u + 1)u(u− 1)) ,

(
m

6

)
=

(v − 3)(v − 1)v

6 · 5 · 3 ,

so that equation (4) implies

15(u3 − u− 6d) = v3 − 4v2 + 3v. (5)

2Note that, by a famous theorem of B. Mazur, 11 ̸= t ≤ 12; see [8], [9], or Theorem 7.5 of [11].
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We rewrite equation (5) as g(u, v) = 0, where

g(u, v) = 15u3 − v3 + 4v2 − 90d− 15u− 3v. (6)

In case that d = (N3 − N)/6, where N is an explicitly known non-zero integer,
it is shown in [7] how the method of Chapter 8 of [14] can be applied in order to
compute –at least in principle– all integer solutions of (6). A rough description
of the above mentioned method is as follows: The curve C : g(u, v) = 0, being a
non-singular cubic, has genus one. Moreover, (u, v) = (n, 1) is a rational point of
C, so that C is a model of an elliptic curve over Q. The maple implementation
of van Hoeij’s algorithm [6] gives the birational transformation between C and the
Weierstrass model

E : y2 = x3 − 1575x+A(N) (7)

A(N) := 33750N3 − 33750N − 1366875

4
N6 +

1366875

2
N4 − 1366875

4
N2 + 52650.

The birational transformation between C to E mentioned in page 2, as well as all
other “technical” information is exposed in detail in [7]. As a result, the following
theorem is the specialization of (3) in our present situation.

Theorem 2.1. If |u(P )| ≥ 3|N |, then either M ≤ c12 or

ρM2 ≤ c13(log(αM +β)+ c14)(log log(αM +β)+ c15)
r+3+ γ+ log 0.085+ 1

2 log(200|N |3),

where r is the rank of the elliptic curve (7), ρ (> 0) is the least eigenvalue of the
(positive-definite) height-pairing matrix of the Mordell-Weil basis which we have
computed for that elliptic curve, and all other constants involved in the above relation
depend on N , are positive and can be explicitly calculated.

Remark. According to the end of Section 1, Theorem 2.1 implies an explicit
bound of M . Moreover, it is not difficult to see that the resulting upper bound is a
decreasing function of ρ. In Section 2 and more importantly in Section 3, the value
of ρ plays a crucial role when we apply the reduction process described in Chapter
10 of [14]. More specifically, the reduced upper bound given by the relation (10.5) in
that reference, heavily depends on a parameter κ4 which is a positive multiple of ρ:
the larger ρ (hence also κ4) is, the smaller is the reduced upper bound. Therefore,
if the value of ρ resulting from a certain Mordell-Weil basis B2 is larger than the
value of ρ resulting from another basis B1, we consider B2 as a better basis than B1

for the application of the Elliptic Logarithm Method. The method which we apply
in this paper in order to obtain a better Mordell-Weil basis starting from a given
one, is exposed in [12]; see also [4] for another interesting approach to computing
better (in the above sense) Mordell-Weil bases.

Of special interest are the cases N =∓2 for which d = (N3−N)/6 =∓1, so that
equation (4) becomes, respectively, a (3, 6) and (6, 3) near-collision with difference
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1; these are two of the three unsolved collision problems in [1] which we manage to
solve here; see Corollaries 2.3 and 2.5.

The case d = −1 is the most difficult one, and therefore we discuss it in some
detail. Now our elliptic curve C becomes (cf. (6))

C : g(u, v) = 0, where g(u, v) = 15u3 − v3 + 4v2 − 15u− 3v + 90 (8)

and its birationally equivalent Weierstrass model (7) is

E : y2 = x3 − 1575x− 12451725 =: f(x). (9)

The Mordell-Weil group E(Q) of rational points of the elliptic curve curve E has
rank 5 (in the notation of Theorem 2.1, r = 5) and trivial torsion subgroup (in
subsequent notation r0 = 1). The free part of E(Q) is generated by the points

PE
1 = (235, 395) , PE

2 = (615, 14805) , PE
3 = (3055, 168805) ,

PE
4 = (1350, 49455) , PE

5 =

(
1185

4
,−28935

8

)
.

Actually, the Mordell-Weil basis formed by the above five points is an improvement
of the Mordell-Weil basis furnished by magma, in the sense of the above Remark;
see also the Remark immediately after Corollary 2.3.

The birational transformation between the models C and E is:

X (u, v) =
3(40u2 + 55uv + v2 − 60u+ 106v − 277)

(u+ 2)2

Y(u, v) =
3(2505u3+90u2v+220uv2+5595u2−685uv+437v2−6360u−1718v−15069)

(u+ 2)3
,

and

U(x, y) =
2x3 − 60x2 + 3xy − 49455x+ 26865y+ 68298525

−x3 + 360x2 − 20925x+ 66442950
(10)

V(x, y) =
15(18x2 + 11xy + 80325x− 1311y+ 8004285)

−x3 + 360x2 − 20925x+ 66442950

The linear form (2) is now

L(P ) =
(
m0 +

s

t

)
ω1 +m1l(P1) +m2l(P2) +m3l(P3) +m4l(P4) +m5l(P5) ± l(P0),

where
PE
0 = (3ζ2 + 165ζ + 120, 660ζ2 + 270ζ + 7515),

and ζ is the cubic root of 15.
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Since f(X) has only one real root, namely e1 ≈ 234.0452973361, we have E(R) =
E0(R) (= the unbounded component of E/R) and therefore l(Pi) coincides with the
elliptic logarithm of PE

i for i = 1, . . . , 5 (see Chapter 3 of [14], especially Theorem
3.5.2). On the other hand, PE

0 has irrational coordinates. As magma does not
possess a routine for calculating elliptic logarithms of non-rational points, we wrote
our own routine in maple for computing l-values of points with algebraic coordi-
nates. The six points PE

i , i = 0, 1, . . . , 5, are Z-linearly independent because their
regulator is non-zero (see Theorem 8.1 in [10]). Therefore our linear form L(P )
falls under the scope of the second “bullet” on page 99 of [14] and we have r0 = 1,
s/t = s0/t0 = 0/1 = 0, d = 1, r = 5, ni = mi for i = 1, . . . , 4, n5 = ± 1, n0 = m0,
k = r + 1 = 6, η = 1 and N = max0≤i≤5 |ni| ≤ r0 max{M, 12rM + 1} + 1

2ηr0 =
5
2M + 3

2 , so that, in the relation (9.6) of [14] we can take

α = 5/2, β = 3/2. (11)

We compute the canonical heights of PE
1 , PE

2 , PE
3 , PE

4 , PE
5 using magma.3 The

corresponding height-pairing matrix H has minimum eigenvalue

ρ ≈ 0.7722274789. (12)

Next we apply Proposition 2.6.3 of [14] in order to compute a positive constant γ
with the property that ĥ(PE)− 1

2h(x(P )) ≤ γ for every point PE = (x(P ), y(P )) ∈
E(Q), where h denotes Weil height; 4 it turns out that

γ ≈ 4.6451703657. (13)

Note that the constants in (11), (12) and (13) appear in the inequality of The-
orem 2.1. Further, we have to specify the constants c12, c13, c14, c15 defined in
Theorem 9.1.2 of [14]. This is a rather straightforward task if one follows the de-
tailed instructions of “Preparatory to Theorem 9.1.2” [14], which can be carried
out even with a pocket calculator, except for the computation of various canonical
heights. At this point we need to compute also the canonical height of the point
PE
0 . Since this point has irrational coordinates we confine ourselves to the upper

bound ĥ(PE
0 ) ≤ 7.300572483 proved in [7]. Carrying out all these computations is

quite a boring job; fortunately, it can be performed almost automatically with a
maple program. In this way we compute

c12 ≈ 1.210103 · 1027, c13 ≈ 1.342820 · 10281, c14 ≈ 2.09861, c15 ≈ 25.03975.
(14)

3For the definition of the canonical height we follow J.H. Silverman; as a consequence the
values displayed here for the canonical heights are the halves of those computed by magma and
the least eigenvalue ρ of the height-pairing matrix H below, is half of that computed by magma;
cf. “Warning” at bottom of p. 106 in [14].

4In the notation of that Proposition, as a curve D we take the minimal model of E, which is
E itself.
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Now, in view of Theorem 2.1 and (11), (12), (13), (14), we conclude that, if |u(P )| ≥
6, then either M ≤ c12 or

0.77222 ·M2 ≤ 1.34 · 10281×(log(2.5M + 1.5) + 2.0986)

×(log(0.4342 log(2.5M + 1.5)) + 25.0397)5 + 5.4159.

But for all M ≥ 6.86 · 10147, we check that the left-hand side is strictly larger than
the right-hand side, which implies that M < 6.86 · 10147. Therefore,

|u(P )| ≥ 6 implies M ≤ max{c12, 6.86 · 10147} = 6.86 · 10147. (15)

An easy straightforward computation shows that all integer points PC with |u(P )| ≤
5 (equivalently, all integer solutions (u, v) of (8) with |u| ≤ 5) are the following:

PC = (−2, 0), (−2, 1), (−2, 3), (−1, 6), (0, 6), (1, 6). (16)

In order to find explicitly all points PC with |u(P )| ≥ 6 it is necessary to reduce the
huge upper bound (15) to an upper bound of manageable size. This is accomplished
in [7] using standard LLL-reduction; as a result it is shown that M ≤ 27. Therefore,
we have to check which points

PE = m1P
E
1 +m2P

E
2 +m3P

E
3 +m4P

E
4 +m5P

E
5 , with max1≤i≤5 |mi| ≤ 27,

have the property that PE = (x, y) maps via the transformation (10) to a point
PC = (u, v) ∈ C with integer coordinates. We remark here that every point PC

with u(P ) integer and |u(P )| ≥ 6 is obtained in this way, but the converse is not
necessarily true, i.e. if max1≤i≤5 |mi| ≤ 27 and the above PE maps to PC with
integer coordinates, it is not necessarily true that |u(P )| ≥ 6.
If we were going to check all 5-tuples (m1,m2,m3,m4,m5) in the range −27 ≤
mi ≤ 27 by “brute force” this would take more than 15 days of computation.
Therefore, we apply a simple but very effective trick to speed up this final search.
This trick, called in [12] inequality trick, is based on the observation that, for every
5-tuple (m1,m2,m3,m4,m5) corresponding to a point PE = m1PE

1 + m2PE
2 +

m3PE
3 +m4PE

4 +m5PE
5 , the upper bound of |L(P )| mentioned just above (3), more

specifically,
|L(P )| ≤ k1 exp(k2 − k4M

2) (17)

must be satisfied for the six-tuple (m0,m1, . . . ,m5), where m0 is the extra pa-
rameter appearing in (2) with |m0| ≤ 27. The heuristic observation is that the
above inequality is very unlikely to be satisfied by points PE with at least one
large coefficient mi. The reason is that the elliptic logarithms l(Pi) are more or
less randomly distributed (at least there is no reason to assume otherwise) so that
the linear L(P ) is rarely very small. Checking whether the L(P ), coming from a
certain 6-tuple (m0,m1,m2.m3,m4,m5) in the range −27 ≤ mi ≤ 27, satisfies the
above displayed inequality requires real number computations which are consider-
ably faster than those required for computing symbolically PE = m1PE

1 +m2PE
2 +

m3PE
3 + m4PE

4 + m5PE
5 and then checking whether the corresponding point PC

is integral. Actually, this reduces the computation to a few hours and furnishes us
with the points figuring in Table 1.
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m1 m2 m3 m4 m5 PE = (x, y) PC = (u, v)

−1 0 0 −1 1 (27075,−4455045) (−2, 1)
−1 0 0 0 0 (235,−395) (1, 6)
0 0 −1 −1 0 (495,−10395) (−1, 6)
0 0 −1 0 −1 (555, 12555) (−138,−339)
0 0 −1 0 0 (3055,−168805) (−2, 3)
0 0 0 0 1 (1185/4,−28935/8) (0, 6)

Table 1: All points PE = ΣimiPE
i with PC = (u, v) ∈ Z×Z.

Only the point PC which corresponds to (m1,m2,m3,m4,m5) = (0, 0,−1, 0,−1)
has |u(P )| ≥ 6. The remaining five points PC = (u, v) satisfy |u| < 6 and therefore
they are contained in the already found list of points (16). This list contains one
more point, namely (u, v) = (−2, 0), which is not among the points of the above
table, because it does not correspond to a point PE via the (affine) birational
transformation of page 5. We have thus proved the following.

Theorem 2.2. The integer solutions of the equation (8) are

(u, v) = (−138,−339), (−2, 0), (−2, 1), (−2, 3), (−1, 6), (0, 6), (1, 6).

Corollary 2.3. No (3, 6) near-collision with difference 1 exists.

Proof. Assume that (n, 3,m, 6) is a near collision with difference 1. Then
(m
6

)
−(n

3

)
= 1, which is equation (4) with d = −1. At the beginning of Section 2 we saw

that, if we put u = n−1 and v = (m−2)(m−3)/2, then (u, v) is an integer solution
of the equation (5) with d = −1, i.e. (u, v) is an integral point on the curve (8). By
the restrictions on the definition of collision, n ≥ 6, so u ≥ 7 and by Theorem 2.2,
no solution (u, v) to (8) exists with u ≥ 7.

Remark. As mentioned below (9), the online magma calculator (V2.24-3) returns
a different Mordell-Weil basis for the elliptic curve (9). The value of ρ corresponding
to that basis is ρ ≈ 0.410937. As a consequence, the initial upper bound for M
(cf. (15)) is M < 6.86 · 10147 and after four reduction steps, the final reduced upper
bound is 34. Therefore the final check for all 6-tuples (m0,m1, . . . ,m5) in the range
−34 ≤ mi ≤ 34 needs at least four times (4 ≈ (34/27)6) more computation time;
actually, according to our experiments, it needs much more.

The case d = 1 is treated in a way completely analogous to that of case d =
−1. 5 Now our curve is C : 15u3 − v3 + 4v2 − 15u − 3v − 90 = 0 and the
birationally equivalent Weierstrass model E is, by (7), E : y2 = x3 − 1575x −
12046725. All computations are much simpler because E has rank r = 2, and
P1 = (26745/4,−4373685/8), P2 = (2995, 163855) is a Mordell-Weil basis. As a
result we have the following.

5More details in [7].
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Theorem 2.4. The only integer solution of the equation 15u3 − v3 + 4v2 − 15u−
3v − 90 = 0 is (u, v) = (2, 3).

Corollary 2.5. No (6, 3) near-collision with difference 1 exists.

Proof. Assume that (n, 6,m, 3) is a near collision with difference 1. Then
(
m
3

)
−(

n
6

)
= 1 and, on interchangingm,n, we are led to equation (4) with d = 1. According

to Section 2, if in (4) we put u = n − 1 and v = (m − 2)(m − 3)/2, then (u, v) is
an integer solution of the equation (5) with d = 1. Moreover, by the restrictions
on the definition of collision, n ≥ 6, so u ≥ 7. According to Theorem 2.4, the only
solution is (u, v) = (2, 3), and this concludes the proof.

3. Equation (1) with (k, l) = (8, 2) and d = 1

We write our equation as follows:
(
n2 − 7n

) (
n2 − 7n+ 6

) (
n2 − 7n+ 10

) (
n2 − 7n+ 12

)

3 · 4 · 5 · 6 · 7 · 8 + 2 = (m2 −m).

Putting

u =
1

2
n2 − 7

2
n+ 6, v = 210m− 105, (18)

we are led to
v2 = 35u4 − 350u3 + 945u2 − 630u+ 3152, (19)

hence, it suffices to explicitly solve equation (19). The most straightforward thing
for doing this, would be to turn to magma’s routine IntegralQuarticPoints,
which is based on [13] and was firstly developed in 1999 by Emmanuel Herrmann
and further improved in the years 2006-2013 by Stephen Donnelly and other people
of magma group. Indeed, we ran the above routine for (19) on a computer Intel
i5-7200U @ 2.50GHz, but after five days, magma gave up without results, with
the message “Killed”. Consequently we had to solve (19) “non-automatically”,
following the method of [13], as exposed in Chapter 6 of [14]. For the successful
accomplishment of this, crucial role play:

1. Our Mordell-Weil basis, which is an improvement of the one computed by
magma, as explained in the Remark at the end of this section.

2. The application of an inequality trick completely analogous to that which we
start discussing a few lines above (17).

We will deal with the elliptic curve

C : v2 = Q(u) := 35u4 − 350u3 + 945u2 − 630u+ 3152.

We use the notation, results etc of Chapter 6 of [14]; thus we have a = 35, b = −350,
c = 945, d = −630, e = 315. By relation (6.3) in [14] the Weierstrass model which
is birationally equivalent to the curve C is

E : y2 = f(x) := x3 +Ax+B, (20)
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where A = −13968675 and B = 3410363250, and the birational functions

C ∋ (u, v) ,→ (X (u, v) ,Y(u, v)) = (x, y) ∈ E

E ∋ (x, y) ,→ (U(x, y) ,V(x, y)) = (u, v) ∈ C

are

X (u, v) =
315(u2 − 2u− 2v + 630)

u2

(21)

Y(u, v) = −630(175u3− 945u2 − uv + 945u+ 630v − 198450)

u3

(relation (6.4) in [14]) and

U(x, y) = − 630(x+ y + 109935)

x2 − 630x− 13792275
(22)

V(x, y) = −315(x4 + 630x3 + 2x2y − 529200x2 + 439740xy+ 22441718250x

−110933550y− 196956864680625) : (x2 − 630x− 13792275)2

(relations (6.5) and (6.6) in [14]).
We have to calculate the three real roots e1 > e2 > e3 of f(x) and a fundamental

pair of periods ω1 ∈ R, ω2 ∈ iR for the Weierstrass ℘ function which parametrizes
E. Now we refer to Section 1, the notations of which we adopt here. The rank of
E is 5 and the torsion subgroup Etors(Q) is trivial. The following points form a
Mordell-Weil basis for E(Q):6

PE
1 = (−1799, 150724), PE

2 = (105,−44100), PE
3 = (−315,−88200),

PE
4 = (8985, 776700), PE

5 = (3885, 88200).

We note that, for i = 1, 2, 3, the points PE
i belong to E1(R), the bounded component

(“egg”) of E(R) and therefore by “Conclusions and remarks” (1) in page 51 of [14],
l(Pi) is the elliptic logarithm of the point PE

i + QE
2 , where QE

2 = (e2, 0). Now
PE
i +QE

2 belongs to the unbounded component E0(R) of E(R), but its coordinates
are non-rational, belonging to the cubic extension of Q(e2)/Q. Therefore, for i =
1, 2, 3, l(Pi) is equal to the elliptic logarithm of PE

i +QE
2 , which we compute using

our maple routine, mentioned a few lines above (11). The points PE
4 and PE

5 belong
to E0(R) and therefore, for i = 3, 4, l(Pi) is equal to the elliptic logarithm of PE

i .
Next we need to calculate approximate values of the canonical heights (cf. footnote
3), the height-pairing matrix H and its minimum eigenvalue (cf. footnote 6)

ρ ≈ 0.5764009469.

We compute a positive number γ such that ĥ(PE) − 1
2h(x(P )) ≤ γ, where h de-

notes Weil height, by applying Proposition 2.6.3 of [14]. In the notation of that

6See the Remark at the end of this section.
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proposition, as a curve D we take the minimal model of E, which is E itself, and
following the simple instructions therein, we compute γ = 6.4974558131. Finally, in
order to compute the constants involved in Theorem 9.1.2 of [14] that are necessary
for the application of Theorem 9.1.3 of [14], we replace the pair of fundamental
periods ω1,ω2, for which τ := ω1/ω2 does not belong to the fundamental region
of the complex upper half-plane, by the pair (ϖ1,ϖ2) = (ω2,−ω1); for this pair,
τ̃ := ϖ1/ϖ2 satisfies |τ̃ | ≥ 1, ℑτ̃ > 0 and |ℜτ̃ | < 1/2, hence it belongs to the
fundamental region.

In order to obtain a relation of the form (3), we will apply Theorem 9.1.3 of
[14]. That theorem applies to points PC = (u(P ), v(P )) with |u(P )| sufficiently
large. Table 6.1 in Chapter 6 of [14] indicates a procedure for computing how
large |u(P )| should be; actually, we must have |u(P )| ≥ max{u∗∗, u∗∗} and u∗∗, u∗∗

are calculated as explained in that table. The existence of two columns in Table
6.1 of Chapter 6 of [14] and in its specialization to our case, which is Table 2
below, is explained as follows: At this stage it is convenient, instead of searching
for solutions of Q(u) = v2 with v ≥ 0 and u of whatever sign, to look for solutions
of both equations Q(u) = v2 and Q(u) := Q(−u) = v2 with u, v ≥ 0. Thus, a “bar”
over a constant refers to the second equation. The constant max{c7, c7}(= 13 in
our case) is used in the application of Theorem 9.1.3 of [14].

Q(u) = Q(u) =
35u4 − 350u3 + 945u2 − 630u+ 99225 35u4 + 350u3 + 945u2 + 630u+ 99225

σ = 1 σ = −1

x(u) = 315
u2 − 2u+ 630 + 2(Q(u))1/2

u2
x̄(u) = 315

u2 + 2u+ 630 + 2(Q(u))1/2

u2

u∗∗ = 3 and c7 = 13 u∗∗ = 80 and c7 = 13

PE
0 = P

E
0 =

(630
√
35 + 315, 110250+ 630

√
35) (630

√
35 + 315,−110250− 630

√
35)

l(P0) l(P 0) = −l(P0)

L(P ) = l(P )− l(P0) L(P ) = l(P ) + l(P0)

Table 2: Parameters and auxiliary functions for the solution of the quartic elliptic
equation according to the Table 6.1 in [14]

From Table 2 it follows that the conditions of Theorem 6.8 in [14], which are also
necessary for the application of Theorem 9.1.3 in [14], are fulfilled for all points
PC ∈ C(Z) with v(P ) > 0 and |u(P )| ≥ 80. A quick computer search shows
that the only points in PC(Z) with |u(P )| < 80 are those points (u, v) listed in
Table 3 with |u| < 80. From Table 2 it follows also that, on applying Theorem
9.1.3 of [14], we must take c7 = 13 and L(P ) = l(P ) ± l(P0). We have already
computed approximations of the coefficients ω1 and ℓi (i = 1, . . . , 5) of the linear
form l(P ), and using our aforementioned maple routine we also compute ℓ0 :=
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l(P0) ≈ −0.179410143.
Using the routine IsLinearlyIndependent of magma, we see that the points PE

i

(i = 0, . . . , 5) are Z-linearly independent, so that we are in the situation described
in the second “bullet”, page 99 in [14]. Therefore, the parameters in the linear form
(9.2) of [14] are

k = r + 1 = 6, d = 1, r0 = 1, (n1, n2, n3, n4, n5) = (m1,m2,m3,m4,m5),

n6 = ± 1, ℓ6 = ℓ0.

In the notation of relation (9.3) in [14] we have N0 = 5
2M + 3

2 , hence (α,β) =
(5/2, 3/2).

In order to compute various constants involved in the upper bound for M fur-
nished by Theorem 9.1.3 of [14], we also need to compute ĥ(PE

0 ). Since P0 is not
a rational point we confine ourselves to the reasonably good upper bound of its
canonical height obtained from Proposition 2.6.4 of [14]. In the notation of that
proposition we take as curve D our curve E and obtain the bound ĥ(PE

0 ) ≤ 14.72.
We see that the degree of the number field generated by the coordinates of all

points Pi (i = 0, . . . , 5) is 6, hence, in the notation of “Preparatory to Theorem
9.1.2” of [14], D = 6. Following the instructions therein and Theorem 9.1.2 we
compute

c12 = 6.76211752 · 1030, c13 = 3.6856633 · 10286, c14 = 2.79176, c15 = 28.91

and, in the notation of Theorem 9.1.3 in [14], c16 = 0.68, c17 = 1.832, c18 = 1.
By that theorem, which in our case is Theorem 2.1, either M ≤ c12, or B(M) > 0,
where B(M) = c18c13(log(αM+β)+c14)(log log(αM+β)+c15)k+2+γ+c18 log c16+
c17 − ρ · M2. Note that all parameters in B(M) have already been computed and
are displayed in this and the previous pages. Now it is straightforward to check
that, for M ≥ 6.28 · 10150, we have B(M) < 0, hence

M ≤ max{c12, 6.28 · 10150} = 6.28 · 10150.

We are now in a situation completely similar to that after relation (16). This time
the process for the reduction of the above upper bound ofM is repeated three times,
giving successively the upper bounds 170, 30 and 28; the last upper bound cannot
be further reduced. Next, we check which points PE = m1PE

1 + · · · + m5PE
5 in

the range max1≤i≤m |mi| ≤ 28 correspond to a point PC with integral coordinates,
using the inequality trick, as explained in the last paragraph above Table 1. The
computation on a computer Intel i5-7200U @ 2.50GHz took a little more than 70
hours of computation and the results are comprised in Table 3. In particular, we
have the following.

Theorem 3.1. All integer solutions of the equation (19) are those listed in the
seventh column of Table 3.

Remark. The online magma calculator (V2.24-3) returns the following Mordell-
Weil basis for the elliptic curve (20): (19705/81, 3758300/729), (14665/4,−307475/8),
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(8985,−776700), (693805,−577896200), (28035,−4652550). Using this basis and
the method of [12], we obtained the considerably better basis (in the sense of the
“Remark” immediately after Theorem 2.1) displayed a few lines below (22). Indeed,
as we have already seen, the value of ρ for the improved basis is ≈ 0.5764, while the
approximate value of ρ for the above displayed basis is 0.1284705. As a consequence,
the initial upper bound for M is M < 1.34 · 10151. This is not essentially worse
than the upper bound for M displayed a few lines above Theorem 3.1. However,
after four reduction steps – and here ρ plays its important role – the reduced upper
bound is 62 and cannot be further reduced (remember that the final reduced bound
with the better basis is 28). Therefore, had we used the above Mordell-Weil basis,
the final check for all 6-tuples (m0,m1, . . . ,m5) in the range −62 ≤ mi ≤ 62 would
require at least (62/28)6 times more computation time, which amounts to at least
one year of computation time!

m1 m2 m3 m4 m5 PE = (x, y) PC = (u, v)

0 0 0 0 1 (3885, 88200) (111,−69615)
1 1 1 1 −1 (−4427535/1369, 6153669900/50653) (111, 69615)
0 0 0 1 −1 (5355, 286650) (−22,−3535)
1 1 1 0 1 (−465570/121, 18522000/1331) (−22, 3535)
0 0 1 0 −1 (−3570, 88200) (−102, 64575)
1 1 0 1 1 (1228395/289, 709061850/4913) (−102,−64575)
0 0 1 0 0 (−315,−88200) (1, 315)
1 1 0 1 0 (396585,−249738300) (1,−315)
0 1 −1 1 −1 (4110, 124200) (−294,−520065)
1 0 2 0 1 (−170085/49, 34428150/343) (−294, 520065)
0 1 0 0 0 (105,−44100) (3, 315)
1 0 1 1 0 (44205,−9261000) (3,−315)
0 1 0 0 1 (−2765, 144550) (36, 6615)
1 0 1 1 −1 (14665/4, 307475/8) (36,−6615)
0 1 0 1 −1 (−1491, 144648) (15, 945)
1 0 1 0 1 (3801,−72324) (15,−945)
0 1 0 1 0 (−9135/4,−1223775/8) (−4, 385)
1 0 1 0 0 (28035, 4652550) (−4,−385)
0 1 1 0 −1 (4761, 211716) (−35,−8295)
1 0 0 1 1 (−3771, 49608) (−35, 8295)
0 1 1 0 0 (11235,−1124550) (6,−315)
1 0 0 1 0 (210, 22050) (6, 315)
0 0 1 0 1 (12105, 1268100) (−7,−595)
1 0 0 1 −1 (−3195,−124200) (−7, 595)
1 1 1 1 0 (−629,−109306) (0, 315)
0 0 0 0 0 O (0,−315)

Table 3: All points PE = ΣimiPE
i with PC = (u, v) ∈ Z×Z.

We must also check the points (x, y) ∈ E(Q) that are zeros of the polynomial
q(x) = x2−630x−13792275 that appears in the denominator of U(x, y) and V(x, y).
But the zeros of q(x) are irrational, so we do not have any new solutions.
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Finally, we come back to the collision equation
(m
2

)
=

(n
8

)
+ 1 from which we

started. We have m = (v + 105)/210, hence 105|v, and 2u = n2 − 7n + 12. The
only solutions (u, v) with v divisible by 105 are those listed in Table 4, where also
the corresponding values of (m,n) ∈ N2 are listed.

(u, v) (m,n) ∈ N2

(1, 315) (2, 5), (2, 2)

(3, 315) (2, 6), (2, 1)

(36, 6615) (32, 12)

(15, 945) (5, 9)

(6, 315) (2, 0), (2, 7)

(0, 315) (2, 4), (2, 3)

Table 4: Positive integer solutions of the collision equation
(m
2

)
=

(n
8

)
+ 1

Note that no pair (m,n) in the above table satisfies the conditionm ≥ 4 and n ≥ 16,
therefore we have proved the following.

Corollary 3.2. There is no (8, 2) near-collision with difference 1.

Acknowledgment. The author thanks the anonymous referee for his/her careful
reading and the well-aimed comments, which greatly helped him to clarify the
meaning of “good” Mordell-Weil basis in the context of this paper.
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