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Abstract

We obtain all solutions of the equation axn+2l+c
abt2xn+d = by2 with c, d 2 {±1, ±2, ±4}.

1. Introduction

Let N, Z denote the sets of all positive integers and all integers, respectively. In
this paper, we will prove the following theorem.

Theorem 1. All solutions (a, b, x, y, n, t, l, c, d) of the equation

axn+2l + c

abt2xn + d
= by2, a, x, y, n, t, l 2 N, b 2 Z, (1)

with c, d 2 {±1, ±2, ±4} and x > 1, are given in Table 1, where u denotes an
arbitrary positive integer.

Special cases of this general theorem are already known. The case (a, b, n, t, c, d)
= (1, 1, 1, 1, �1, �1) was considered by W. Ljunggren [5]. This was extended later
by Q. Sun and P. Yuan [7] to the case (a, b, n, t) = (a, 1, 1, 1) and c = d = ±1. For
further generalizations concerning the cases (a, b, n, t) = (a, b, 1, 1), c = d = ±1
and (a, b, n, t) = (a, 1, 1, 1), c = d = ±2 or ±4, see the work of Z. Cao [1] and
J. Luo [6], respectively. M. Filaseta, F. Luca, P. Stânicâ and R. Uuderwood [3]
dealt with the case (a, b, n, t) = (a, 1, n, 1), c = d = �1. J. Luo and P. Yuan [11]
extended this result, they proved the following theorem.
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(c, d) (a, b, x, y, n, t, l) Remarks
(d, d) (a, 1, u, 1, n, ul, l) d 2 {±1, ±2, ±4}

(d, �d) (a, �1, u, 1, n, ul, l) d 2 {±1, ±2, ±4}
(�2d, d) (a, �2, 2u, 1, n, 2l�1ul, l) d 2 {±1, ±2}
(4d, d) (a, 4, 2u, 1, n, 2l�2ul, l) d 2 {�1, 1} , l � 2
(4d, d) (a, 1, 2u, 2, n, 2l�1ul, l) d 2 {�1, 1}

(�4d, d) (a, �4, 2u, 1, n, 2l�2ul, l) d 2 {�1, 1} , l � 2
(�4d, d) (a, �1, 2u, 2, n, 2l�1ul, l) d 2 {�1, 1}
(�1, �1) ((32u�1 + 1)/4, 1, 3, 32u + 2, 1, 1, 2u)

(1, 1) ((32u�2 � 1)/4, 1, 3, 32u�1 � 2, 1, 1, 2u� 1)
(1, �1) ((32u�2 � 1)/4, �1, 3, 32u�1 � 2, 1, 1, 2u� 1)
(�1, 1) ((32u�1 + 1)/4, �1, 3, 32u + 2, 1, 1, 2u)

(�2, �2) ((32u�2 + 1)/2, 1, 3, 32u�1 + 2, 1, 1, 2u� 1)
(2, 2) ((32u�2 � 1)/2, 1, 3, 32u � 2, 1, 1, 2u)

(�2, 2) ((3u�1 + 1)/2, �1, 3, 3u + 2, 1, 1, u)
(2, �2) ((3u�1 � 1)/2, �1, 3, 3u � 2, 1, 1, u)
(�4, 4) (3u�1 + 1, �1, 3, 3u + 2, 1, 1, u)
(4, �4) (3u�1 � 1, �1, 3, 3u � 2, 1, 1, u)

(�2, ±4) (1, b, 2, t, 1, t, l) 2l = bt2 ± 1
(1, 4) (2 · 3u�1 � 1, 1, 3, 3u � 1, 1, 1, u)

(�1, 4) (2 · 3u�1 + 1, �1, 3, 3u + 1, 1, 1, u)
(1, �4) (2 · 3u�1 � 1, �1, 3, 3u � 1, 1, 1, u)
(1, 4) (1, 1, 3, 2, 1, 1, 1)

(�1, 4) (1, �1, 3, 4, 2, 1, 1)
(1, �4) (1, �1, 3, 2, 1, 1, 1)

(�1, �4) (1, 1, 3, 4, 2, 1, 1), (3, 1, 3, 4, 1, 1, 1)
(�1, 4) (3, �1, 3, 4, 1, 1, 1)
(4, ±1) (1, �d, 2, 6, 1, 1, 2)
(2, ⌥4) (3, ±1, 2, 7, 1, 1, 2)

(�4, ±2) (1, ±1, 2, 1, 1, 1, 1)
(4, ±2) (3, ⌥1, 2, 5, 1, 1, 2), (1, ⌥3, 2, 1, 1, 1, 1)

(1, ±1, 2, 3, 1, 1, 2), (1, ⌥2, 2, 3, 1, 1, 2)
(�4, �4) (1, 1, 5, 11, 1, 1, 1)

(1, 1) (1, �1, 2, 3, 1, 1, 1)
(2, 2) (1, �1, 2, 3, 2, 1, 1)
(4, 4) (1, �1, 2, 3, 3, 1, 1), (1, �1, 2, 3, 1, 2, 2)

(2, �2) (1, 1, 2, 3, 2, 1, 1), (2, 1, 2, 3, 1, 1, 1)
(4, �4) (1, 1, 2, 3, 3, 1, 1), (2, 1, 2, 3, 2, 1, 1)

(4, 1, 2, 3, 1, 1, 1), (1, 1, 2, 3, 1, 2, 2)
(�4, 4) (1, �1, 5, 11, 1, 1, 1)

Table 1: Equations and their solutions
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Theorem 2. ([11]) The equation

axn+2l + c

abt2xn + c
= by2, c 2 {±1, ±2, ±4} , (a, c) = 1,

holds for some integers a, b, x, n, t and l with x > 1, n > 0, t > 0, a > 0 and l > 0
if and only if (a, b, x, y, n, t, l, c) is one of the following:

(a, 1, u, ±1, n, ul, l, c),

(
32u�1 + 1

4
, 1, 3, ±(32u + 2), 1, 1, 2u, �1),

(
32u�1 � 1

4
, 1, 3, ±(32u � 2), 1, 1, 2u� 1, 1),

(
32u�2 + 1

2
, 1, 3, ±(32u�1 + 2), 1, 1, 2u� 1, �2),

(
32u�1 � 1

2
, 1, 3, ±(32u � 2), 1, 1, 2u, 2),

(1, �1, 2, ±3, 1, 1, 1, 1), (1, �1, 2, ±3, 2, 1, 1, 2),

(1, �1, 2, ±3, 3, 1, 1, 4), (1, �1, 2, ±3, 1, 2, 2, 4),

(1, 1, 5, ±11, 1, 1, 1, �4),

where u denotes an arbitrary positive integer.

All known results above are restricted to the condition of c = d. The main
purpose of the paper is to consider the case c 6= d.

The arrangement is as follows. In Section 2, we give some necessary lemmas with
respect to Diophantine equations

kx2 � ly2 = C, C = 1, 2, 4, (2)

where k, l are coprime positive integers and kl is not a square. Recall that the
minimal positive solution of (2) is one of the positive integer solutions (x, y) of (2)
such that x

p
k + y

p
l is the smallest, which is equivalent to determining a positive

integer solution (x, y) such that x and y are the smallest. If k = C = 1 or l = C = 1,
then such a solution is also called the fundamental solution of (2). We present some
known results that will be used in the proof of our main theorem. In Section 3
we prove some necessary facts to make our proofs more concise. Finally, we prove
Theorem 1 in Section 4. Because the case c = d has been done as we can see in
Theorem 2, we only consider the case c 6= d.
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2. Lemmas

To prove our main Theorem 1, we need the Störmer theorem on the Pell equation
x2 �Dy2 = 1 and the related results for general quadratic equations kx2 � ly2 =
C,C 2 {1, 2, 4}. We have the following.

Lemma 1. (Störmer theorem [2]) Let D be a positive nonsquare integer and (x1, y1)
be a positive integer solution of the Pell equation

x2 �Dy2 = 1 (3)

or
x2 �Dy2 = �1. (4)

If every prime divisor of y1 divides D, then x1 + y1

p
D is the fundamental solution

of (3) or (4).

Let k, l be coprime positive integers such that k > 1 and kl is not a square. For
the Diophantine equation

kx2 � ly2 = 1, (5)

D. Walker [8] obtained the following analogue of the Störmer theorem. See also Q.
Sun and P. Yuan [7].

Lemma 2. ([7, 8, 11]) Let (x, y) be a positive integer solution of Equation (5).
(i) If every prime divisor of x divides k or x1, then either

x
p

k + y
p

l = "

or
x
p

k + y
p

l = "3, and x = 3sx1, 3 - x1, 3s + 3 = 4kx2
1, s 2 N,

where " = x1

p
k + y1

p
l is the minimal positive solution of Equation (5).

(ii) If every prime divisor of y divides l or y1, then

x
p

k + y
p

l = "

or
x
p

k + y
p

l = "3, and y = 3sy1, 3 - y1, 3s � 3 = 4ly2
1 , s 2 N.

Using the same techniques as in the work of [7], J. Luo proved the following
results.

Lemma 3. ([6, 11]) Let k, l be odd integers and (x, y) be a positive integer solution
of the Diophantine equation

kx2 � ly2 = 2. (6)
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(i) If every prime divisor of x divides k or x1, then

x
p

k + y
p

l = "

or

x
p

k + y
p

lp
2

=
✓

"p
2

◆3

, and x = 3sx1, 3 - x1, 3s + 3 = 2kx2
1, s 2 N,

where " = x1

p
k + y1

p
l is the minimal positive solution of Equation (6).

(ii) If every prime divisor of y divides l or y1, then

x
p

k + y
p

l = "

or

x
p

k + y
p

lp
2

=
✓

"p
2

◆3

, and y = 3sy1, 3 - y1, 3s � 3 = 2ly2
1 , s 2 N.

Lemma 4. ([6]) Let k, l be odd integers and (x, y) be a positive integer solution of
the equation

kx2 � ly2 = 4, k > 1. (7)

(i) If every prime divisor of x divides k, then x
p

k + y
p

l = " is the minimal
positive solution of Equation (7) except for (k, l, x, y) = (5, 1, 5, 11).

(ii) If every prime divisor of y divides l, then x
p

k + y
p

l = " is the minimal
positive solution of Equation (7).

Lemma 5. ([10]) If Equation (7) has solutions, so does Equation (5). Let "1, "2

and "3 be the minimal positive solutions of equations (3), (5) and (7), respectively.
Then "1 = ("2)2 and "2 = ("3/2)3.

Lemma 6. ([9, 11]) Let D be a given positive nonsquare integer.
(i) If 8|D, then at most one of the Diophantine equations kx2 � ly2 = 1 has

integer solutions, where (k, l) ranges over all pairs (k, l) such that k > 1, kl = D.
(ii) If 2|D and 8 - D, then only one of the Diophantine equations kx2�ly2 = 1 has

integer solutions, where (k, l) ranges over all pairs (k, l) such that k > 1, kl = D.
(iii) If 2 - D, then only one of the Diophantine equations kx2 � ly2 = 1, kx2 �

ly2 = 2 has integer solutions, where (k, l) of the former equation ranges over all
pairs (k, l) such that k > 1, kl = D, while the latter ranges over all pairs (k, l) such
that k > 0, kl = D.

(iv) If 2 - D and the Diophantine equation x2 � Dy2 = 4 has solutions in odd
integers x and y, then only one of the Diophantine equations kx2 � ly2 = 4 has
integer solutions, where (k, l) ranges over all pairs (k, l) such that k > 1, kl = D.
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Lemma 7. ([11]) (i) Let D be a positive nonsquare integer with 2 - D. Let (x, y)
be a positive integer solution of the Pell equation (3) with y = 2ny0, n 2 N. If every
prime divisor of y0 divides D, then x+ y

p
D = " or "2 or "3, where " = x1 + y1

p
D

is the fundamental solution of Equation (3).
(ii) If (2n, y) is a positive integer solution of Equation (3), then (2n, y) is the

fundamental solution of it.
(iii) Let (x, y) be a positive integer solution of Equation (5) with x = 2nx0,

n 2 N. If every prime divisor of x0 divides k, then x
p

k + y
p

l = " or "3, where
" = x1

p
k + y1

p
l is the minimal positive solution of Equation (5).

(iv) Let (x, y) be a positive integer solution of Equation (5) with y = 2ny0, n 2 N.
If every prime divisor of y0 divides l, then x

p
k + y

p
l = " or "3, where " = x1

p
k +

y1

p
l is the minimal positive solution of Equation (5).

Remark. In Lemma 7 (iii), if x
p

k + y
p

l = "3, then we have x = 3sx1, 3 - x1,
3s +3 = 4kx2

1, s 2 N. And if x
p

k + y
p

l = "3 in (iv), then we have y = 3sy1, 3 - y1,
3s � 3 = 4ly2

1 , s 2 N.

3. Some Preparations

To make the proof of Theorem 1 more concise, we present some simple results.

Theorem 3. (i) The Diophantine equation

2xl = at3xn + 3t, x > 1, a, n, t, l 2 N, 2 - xt (8)

has only the integer solutions (a, n, t, l, x) = (1, 1, 1, 1, 3) and (a, n, t, l, x) =
(2⇥ 3u�1 � 1, 1, 1, u, 3), u 2 N.

(ii) The Diophantine equation

2xl = at3xn � 3t, x > 1, a, n, t, l 2 N, 2 - xt (9)

has only the integer solutions (a, n, t, l, x) = (3, 1, 1, 1, 3), (a, n, t, l, x) =
(1, 2, 1, 1, 3) and (a, n, t, l, x) = (2⇥ 3u�1 + 1, 1, 1, u, 3), u 2 N.

Proof. (i) For the case l = 1, Equation (8) becomes

2x = at3xn + 3t, x > 1, a, n, t 2 N, 2 - xt,

so a = t = n = 1 and x = 3. Hence Equation (8) has only the integer solution
(a, n, t, l, x) = (1, 1, 1, 1, 3) with l = 1. Next we consider the case where l > 1.
It is easy to see that x|3t and t|x from (8). Thus x = t or x = 3t. If x = t, by (8),
we get

2tl�1 = atn+2 + 3, l > 1, (10)
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so t = 3 and l = 2, which is impossible since 6 < a3n+2 + 3. If x = 3t, then, by (8),
we obtain

2(3t)l�1 = at3xn�1 + 1, (11)

so t = 1, x = 3 and n = 1. It follows that a = 2⇥ 3l�1 � 1. Therefore Equation (8)
has only the integer solutions (a, n, t, l, x) = (2⇥ 3u�1 � 1, 1, 1, u, 3), u 2 N with
l > 1.

(ii) We also divide the proof into two cases according to l = 1 and l > 1. For
l = 1, Equation (8) becomes

2x = at3xn � 3t, x > 1, a, n, t 2 N, 2 - xt,

so t = 1 and x = 3. It follows that 2 = a ⇥ 3n � 1, so (a, n) = (3, 1) and (1, 2).
Hence Equation (11) has only the integer solutions (a, n, t, l, x) = (3, 1, 1, 1, 3)
and (1, 2, 1, 1, 3) with l = 1. The case l > 1 can be solved by a similar argument
as in (i). This completes the proof.

Theorem 4. (i) Each of the Diophantine equations

X2 � b(bt2 + 1)Y 2 = 1, X2 � b

2
(2bt2 + 1)Y 2 = 1, 2|b, X2 � 2b(2bt2 + 1)Y 2 = 1,

X2 � b

2
(2bt2 � 1)Y 2 = 1, 2|b, X2 � b

4
(4bt2 + 1)Y 2 = 1, 4 | b,

X2 � b(4bt2 + 1)Y 2 = 1 and X2 � b

4
(4bt2 � 1)Y 2 = 1, 4 | b

has no integer solutions (X, Y ) with X = 2↵, ↵ 2 N.
(ii) The Diophantine equation 2X2 � Y 2 = 1 has no integer solutions (X, Y )

with Y = 2↵, ↵ 2 N.
(iii) If b > 0, then (X, Y ) = (bt2 + 1, t) and (X, Y ) = (bt2 � 1, t) are the

fundamental solutions of the equations X2�b(bt2+2)Y 2 = 1 and X2�b(bt2�2)Y 2 =
1, respectively. If b < 0, then (X, Y ) = (�bt2 � 1, t) and (X, Y ) = (�bt2 + 1, t)
are the fundamental solutions of X2� b(bt2 +2)Y 2 = 1 and X2� b(bt2� 2)Y 2 = 1,
respectively .

Proof. For b > 0, let (X, Y ) = (u, v) be the fundamental solution of the Pell
equation X2 � b(bt2 + 1)Y 2 = 1. It is easy to see that (X, Y ) = (1, t) is the
minimal solution of the equation (bt2 + 1)X2 � bY 2 = 1. By Lemma 5, we obtain
u+ v

p
b(bt2 + 1) = (

p
bt2 + 1 + t

p
b)

2
, from which u = 2bt2 +1 and v = 2t if b > 0.

Applying Lemma 7 (ii), we get 2bt2 + 1 = 2↵, which is impossible.
As in the proof above, by Lemmas 5 and 7, the key step is to find the minimal

solutions of the related equations. Since the proofs are similar for other equations,
we just list their minimal solutions in the following table.
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Equation Condition Minimal solution

X2 � b(bt2 + 1)Y 2 = 1
b > 0 (2bt2 + 1, 2t)
b < 0 (�2bt2 � 1, 2t)

X2 � b
2 (2bt2 + 1)Y 2 = 1 (2|b) b > 0 (4bt2 + 1, 4t)

b < 0 (�4bt2 � 1, 4t)

X2 � 2b(2bt2 + 1)Y 2 = 1
b > 0 (4bt2 + 1, 2t)
b < 0 (�4bt2 � 1, 2t)

X2 � b
2 (2bt2 � 1)Y 2 = 1 (2|b) b > 0 (4bt2 � 1, 4t)

b < 0 (�4bt2 + 1, 4t)

X2 � b
4 (4bt2 + 1)Y 2 = 1 (4 | b)

b > 0 (8bt2 + 1, 8t)
b < 0 (�8bt2 � 1, 8t)

X2 � b(4bt2 + 1)Y 2 = 1
b > 0 (8bt2 + 1, 4t)
b < 0 (�8bt2 � 1, 4t)

X2 � b
4 (4bt2 � 1)Y 2 = 1 (4 | b)

b > 0 (8bt2 � 1, 4t)
b < 0 (�8bt2 + 1, 4t)

2X2 � Y 2 = 1 (1, 1)

X2 � b(bt2 + 2)Y 2 = 1
b > 0 (bt2 + 1, t)
b < 0 (�bt2 � 1, t)

X2 � b(bt2 � 2)Y 2 = 1
b > 0 (bt2 � 1, t)
b < 0 (�bt2 + 1, t)

Table 2: Some equations and their minimal solutions

Theorem 5. (1) The simultaneous Diophantine equations

xl = 3st and 3s � 3 = 4axnt2, a, n, t, l, x 2 N,

have only the integer solutions (a, n, t, l, x) = (3s�1�1
4 , 1, 1, s, 3), 2 - s, with 3 - t.

(2) The simultaneous Diophantine equations

xl = 3st and 3s + 3 = 4axnt2, a, n, t, l, x 2 N,

have only the integer solutions (a, n, t, l, x) = (3s�1+1
4 , 1, 1, s, 3), 2|s, with 3 - t.

(3) The simultaneous Diophantine equations

xl = 3st and 3s + 3 = 2axnt2, a, n, t, l, x 2 N,

have only the integer solutions (a, n, t, l, x) = (3s�1+1
2 , 1, 1, s, 3), s 2 N, with 3 - t.

(4) The simultaneous Diophantine equations

xl = 3st and 3s � 3 = 2axnt2, a, n, t, l, x 2 N,

have only the integer solutions (a, n, t, l, x) = (3s�1�1
2 , 1, 1, s, 3), s > 1, with 3 - t.

(5) The simultaneous Diophantine equations

xl = 3st and 3s + 3 = axnt2, a, n, t, l, x 2 N,
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have only the integer solutions (a, n, t, l, x) = (3s�1 + 1, 1, 1, s, 3), s 2 N, with
3 - t.

(6) The simultaneous Diophantine equations

xl = 3st and 3s � 3 = axnt2, a, n, t, l, x 2 N,

have only the integer solutions (a, n, t, l, x) = (3s�1 � 1, 1, 1, s, 3), s > 1, with
3 - t.

(7) The simultaneous Diophantine equations

xl = 2 · 3st and 3s ± 3 = 8axnt2, a, n, t, l, x 2 N,

have no integer solutions (a, n, t, l, x), with 3 - t and 2|ax.
(8) The simultaneous Diophantine equations

xl = 2 · 3st and 3s ± 3 = 4axnt2, a, n, t, l, x 2 N,

have no integer solutions (a, n, t, l, x), with 3 - t and 2|x.
(9) The simultaneous Diophantine equations

xl = 4 · 3st and 3s ± 3 = 16axnt2, a, n, t, l, x 2 N,

have no integer solutions (a, n, t, l, x), with 3 - t and 4|axn.
(10) The simultaneous Diophantine equations

xl = 2 · 3st and 3s ± 3 = 4axnt2, a, n, t, l, x 2 N,

have no integer solutions (a, n, t, l, x), with 3 - t and 4|axn.
(11) The simultaneous Diophantine equations

xl = 2 · 3st and 3s ± 3 = 16axnt2, a, n, t, l, x 2 N,

have no integer solutions (a, n, t, l, x), with 3 - t and 4|axn.

Proof. (1) Since xl = 3st and 3 - t, we obtain 3|x. As 3s � 3 = 4axnt2, we have
3||4axnt2 and hence 3||x. Thus l = s and t = t1s, where t1 is a positive integer with
3kt1. Therefore x = 3t1, which implies 3s� 3 = 4a · 3nt2s+1

1 , and n = 1 as 3||3s� 3.
If t1 > 1, then t2s+1

1 � 22s+1 > 3s�1�1, which is impossible. So we get that t1 = 1,
x = 3 and a = 3s�1�1

4 , 2 - s.
Using arguments similar to those above, we get the results for the related simul-

taneous Diophantine equations in (2)-(6).
(7) Since xl = 2 · 3st, we obtain 3|x. It follows from 3s + 3 = 8axnt2 that s > 1

and 3||8axnt2. Hence 3||x and n = 1. Therefore l = s and t = 2s�1t1s, where t1 is
a positive integer with 3 - t1. Hence x = 6t1, so 3s + 3 = 8a · 6t1 · 22s�2t2s

1 , which
implies t1 = 1 and a = 3s�1+1

22s+2 , which is impossible as 22s+2 > 3s�1 + 1.
Using arguments similar to those in (7) show that the related simultaneous

Diophantine equations in (8)-(11) have no integer solutions. This completes the
proof.
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4. Proof of Theorem 1

We will divide the proof into 30 cases according to the di↵erent values of c and d.
For simplicity, we only give a complete proof of the case c = �4 and d = �1.
The case c = �4, d = �1. From (1) we have

axn+2l � b(abt2xn � 1)y2 = 4. (12)

We divide the proof into four subcases according to axn = 4, 4 | axn and axn > 4,
2||axn, and 2 - axn.

Subcase 1. axn = 4. Then 2 - abt2xn � 1, so 4 | by2. As x > 1, we get (a, x, n) =
(1, 2, 2) or (1, 4, 1) or (2, 2, 1).

If 4 | b, by (12) we get 22l � b
4 (4bt2 � 1)y2 = 4 or 42l � b

4 (4bt2 � 1)y2 = 4, a
contradiction to Theorem 4 (i). Similarly, if 4 - b, then 2 | y, from (12) we have
22l � b(4bt2 � 1)(y

2 )2 = 1 or 42l � b(4bt2 � 1)(y
2 )2 = 1, a contradiction to Theorem

4 (i).

Subcase 2. If 4 | axn and axn > 4. Then 2 - abt2xn + 1, so 4 | by2.
(i) If 4 | b, from (12) we have axn

4 (xl)2� b(abt2xn�1)
4 y2 = 1, which implies (X, Y ) =

(xl, y) is a solution of

axn

4
X2 � b(abt2xn � 1)

4
Y 2 = 1.

If b > 0, then (X, Y ) = (4t, 1) is the minimal positive solution of

abxn

16
X2 � (abt2xn � 1)Y 2 = 1.

Since axn

4 = 1(b > 4), by Lemma 6 we must get abxn

16 = 1 or axn

4 = abxn

16 . The former
gives (a, b, x, n) = (1, 4, 2, 2) or (1, 4, 4, 1) or (2, 4, 2, 1). Thus X2�(4t2�1)Y 2 =
1 has a solution (X, Y ) = (2l, y) or (4l, y). Moreover (X, Y ) = (2t, 1) is the
fundamental solution of X2 � (4t2 � 1)Y 2 = 1. Thus we have 2l = 2t, y = 1 or
4l = 2t, y = 1 by Lemma 7 (ii). The latter yields b = 4. Again by Lemma 2 (i)
we obtain xl = 4t, y = 1 or xl = 3s4t, 3 - 4t, 3s + 3 = 4axn

4 (4t)2. The latter is
impossible by Theorem 5 (9).

If b < 0, then (X, Y ) = (1, 4t) is the minimal positive solution of

(�abt2xn + 1)X2 � �abxn

16
Y 2 = 1.

Since axn

4 > 1, �abt2xn + 1 > 1 and axn

4 6= �abt2xn + 1, by Lemma 6 (12) has no
solutions.

(ii) If 4 - b, then 2 | y, from (12) we have axn

4 (xl)2� b(abt2xn�1)(y
2 )2 = 1, which

implies (X, Y ) = (xl, y
2 ) is a solution of

axn

4
X2 � b(abt2xn � 1)Y 2 = 1.
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If b > 0, then (X, Y ) = (2t, 1) is the minimal positive solution of

abxn

4
X2 � (abt2xn � 1)Y 2 = 1.

Since axn

4 > 1, by Lemma 6 we must get abxn

4 = 1 or axn

4 = abxn

4 . The equation
abxn

4 = 1 yields (a, b, x, n) = (1, 1, 2, 2) or (1, 1, 4, 1) or (2, 1, 2, 1). Thus the
equation X2 � (4t2 � 1)Y 2 = 1 has a solution (X, Y ) = (2l, y

2 ) or (4l, y
2 ). Note

that (X, Y ) = (2t, 1) is the fundamental solution of X2 � (4t2 � 1)Y 2 = 1. Thus
by Lemma 7 (ii) we have 2l = 2t, y

2 = 1 and 4l = 2t, y
2 = 1.

The equation axn

4 = abxn

4 implies b = 1. Again by Lemma 2 we obtain that
xl = 2t, y

2 = 1 or xl = 3s2t, 3 - 2t, 3s + 3 = 4axn

4 (2t)2. The latter is impossible by
Theorem 5 (10).

If b < 0, then (X, Y ) = (1, 2t) is the minimal positive solution of

(�abt2xn + 1)X2 � �abxn

4
Y 2 = 1.

Since axn

4 > 1, �abt2xn + 1 > 1 and axn

4 6= �abt2xn + 1, by Lemma 6 (12) has no
solutions.

Subcase 3. 2 k axn. Then 2||b(abt2xn � 1)y2, so 2||b and abxn

4 (abt2xn � 1) is odd.
From (12) we have axn

2 (xl)2 � b
2 (abt2xn � 1)y2 = 2, which implies (X, Y ) = (xl, y)

is a solution of
axn

2
X2 � b

2
(abt2xn � 1)Y 2 = 2.

If b > 0, then (X, Y ) = (2t, 1) is a solution of

abxn

4
X2 � (abt2xn � 1)Y 2 = 1.

Since axn

2 > 0 and abxn

4 > 1, by Lemma 6 (iii) the equation (12) has no solutions.
If b < 0, then (1, 2t) is a solution of

(�abt2xn + 1)X2 � �abxn

4
Y 2 = 1.

Since axn

2 > 0 and �abt2xn + 1 > 1, by Lemma 6 (iii) the equation (12) has no
solutions.

Subcase 4. If axn is odd, then abxn(abt2xn�1) is odd. From (12) (X, Y ) = (xl, y)
is a solution of

axnX2 � b(abt2xn � 1)Y 2 = 4.

If b > 0, then (X, Y ) = (t, 1) is the minimal positive solution of

abxnX2 � (abt2xn � 1)Y 2 = 1.
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Since axn > 1, by Lemma 5 the equation axnX2 � b(abt2xn � 1)Y 2 = 1 has an
integer solution (X, Y ). Because axn > 1 and abxn > 1, by Lemma 6 we have
axn = abxn, which implies b = 1. Let (X, Y ) = (u, v) be the minimal solution of
axnX2�b(abt2xn�1)Y 2 = 4. Thus by Lemma 5 we obtain t

p
axn+

p
at2xn � 1) =

1
8 (u

p
axn + v

p
at2xn � 1)3, from which 1

8 (v3l + 3u2vk) = 1, which is impossible as
k = axn � 3 and l = at2xn � 1 � 2.

If b < 0, then (X, Y ) = (1, t) is the minimal positive solution of

(�abt2xn + 1)X2 � (�abxn)Y 2 = 1.

Since axn > 1, by Lemma 5 the equation axnX2�b(abt2xn�1)Y 2 = 1 has solution.
Because axn > 1, �abt2xn + 1 > 1 and axn 6= �abt2xn + 1, by Lemma 6 (12) has
no solutions. This proves the case of c = �4 and d = �1.

The proofs of the other 29 cases are similar and perhaps we need other lemmas
and theorems in Sections 2 and 3 to complete the proof of the main theorem, and
we omit the details. This completes the proof of Theorem 1. 2
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