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Abstract

Let f(x) ∈ Z[x] and consider the index divisibility set D = {n ∈ N : n | fn(0)}. We
present a number of properties of D in the case that (fn(0))∞n=1 is a rigid divisibility
sequence, generalizing a number of results of Chen, Stange, and the first author.
We then study the polynomial xd + xe + c ∈ Z[x], where d > e ≥ 2 and determine
all cases where this map has a finite index divisibility set.

1. Introduction

Let f(x) ∈ Z[x], and consider the orbit of 0 under iteration by this function:

(fn(0)) = (fn(0))∞n=1 = (f(0), f2(0), f3(0), . . .).

Here fn(x) denotes the n-fold composition of f with itself, and we also set f0(x) =

x. If this sequence is unbounded, then 0 is a wandering point. Otherwise 0 is

preperiodic, and there exist integers m ≥ 1 and n ≥ 0 such that fm+n(0) = fn(0).

If n = 0, then 0 is periodic, and the smallest positive integer m for which fm(0) = 0

is the exact period of 0.

In this dynamical setting, the orbit of 0 is a divisibility sequence. That is, fm(0) |
fn(0) whenever m | n. If f(x) has no linear term (i.e. its linear coefficient is

0) and 0 is a wandering point, then (fn(0)) is a superrigid divisibility sequence

[15, Proposition 3.2]. However, in this paper, we will only make use of the weaker

condition that (fn(0)) is a rigid divisibility sequence. A divisibility sequence (an)

is a rigid divisibility sequence if it satisfies the following properties.

1. If vp(an) ≥ 1, then vp(ank) = vp(an) for all k ≥ 1.
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2. If vp(an) ≥ 1 and vp(am) ≥ 1, then vp(an) = vp(am) = vp(agcd(n,m)).

Here, vp(n) denotes the p-adic valuation of n.

Given any sequence, it is natural to ask if the position of a value in the sequence

reveals any information about the value itself. In our case, we focus on the terms

that are multiples of their indices. These terms are captured by the index divisibility

set

D = D(f) = {n ∈ N : n | fn(0)},

where N is the set of positive integers.

Historically, index divisibility has been studied in a variety of contexts. For

example, if f(x) = a(x + a) − a, then fn(0) = an − a, and the question of index

divisibility is analogous to the Fermat primality test. Namely, if n - fn(0), then

n is composite. Otherwise if n is relatively prime to a and n | fn(0), then either

n is prime, or n is a pseudoprime to base a. As another example, if one takes

f(x) = (x − 1)2 + 1, then fn(a + 1) = a2
n

+ 1 is a generalized Fermat number,

with a = 2 being the original case studied by Fermat. The literature on index

divisibility in Fibonacci and Lucas numbers (which are divisibility sequences) is

extensive—see [2,8,11,16,20,21] as a sampling—and for general linear recurrences,

see [1]. Silverman and Stange [19] and Gottschlich [6] have studied this question

for elliptic divisibility sequences, and Kim [12] considers the case where the n-th

term in an elliptic divisibility sequence shares a fixed gcd with n. In the dynamical

setting, the index divisibility set for the polynomial xd + c ∈ Z[x] was analyzed by

Chen, Stange, and the first author [3].

In [3], the authors describe a graph whose vertex set is exactly the divisibility

set for f(x) = xd + c. This index divisibility graph G is constructed iteratively

as follows. Start with 1 as a vertex in G. Then build out the rest of the graph

by continuously looping through the vertices of G and applying the rule: for each

vertex n in G and each prime p, extend the graph by adding the vertex np and the

directed edge (n, np) if either

1. vp(n) < vp(f
n(0)) (in which case (n, np) is a type 1 edge), or

2. vp(n) = 0 and p ∈ D (and (n, np) is a type 2 edge).

We note that given any function f , such a graph may be constructed, and that

leads us to the following generalization of [3, Theorem 1.5].

Theorem 1. Let f(x) ∈ Z[x] and suppose (fn(0)) is a rigid divisibility sequence.

Let D be its divisibility set and GV be the vertex set of its index divisibility graph.

Then GV = D.

A proof of this theorem is given in Section 2 along with generalizations of other

statements from [3].
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Remark. The index divisibility graph is a rooted directed graph with the vertex 1

as its root. We expect that the graph is infinite in most cases. The edge types in the

index divisibility graph are not mutually exclusive. That is to say that there may

be edges which are both type 1 and type 2. The outdegree of each vertex depends

on the number of primes in D and hence may be finite or infinite.

In Section 3, we study the trinomial f(x) = xd + xe + c ∈ Z[x], where d > e ≥ 2,

and its divisibility set Dd,e,c. In particular, we determine all cases where this set is

finite.

Theorem 2. The divisibility set Dd,e,c is finite if and only if c ∈ {1,−1}. Moreover,

Dd,e,±1 = {1}.

Given a sequence (an), a prime p is a primitive prime divisor of an if p | an and

p - ak for all 1 ≤ k < n. The terms in the sequence that do not have primitive

prime divisors form the Zsigmondy set of (an):

Z((an)) = {n ∈ N : an has no primitive prime divisors}.

In the construction of a divisibility graph, the main sources of edges emanating from

a vertex n are the primitive prime divisors of fn(0). Hence part of our strategy

for proving Theorem 2 is to show that the divisibility set Dd,e,c is contained in

the Zsigmondy set of (fn(0)) as this significantly restricts the potential for the

divisibility set to be large. We compute the Zsigmondy set of f(x) = xd + xe + c

explicitly in Proposition 6. Our proof is modeled after the argument of Doerksen

and Haensch [4], who computed the Zsigmondy set for xd+c. It was already known

to Rice that the Zsigmondy set for xd + xe + c would be finite [15, Theorem 1.2],

and since then the finiteness of Zsigmondy sets has been established in more general

contexts [7, 10,18].

In the final section of the paper, we consider the primes in Dd,e,c. For a prime

p to be in the divisibility set, it must be that 0 is periodic modulo p, and that the

period of 0 is a divisor of p. That is, either 0 is fixed, in which case p | c, or the

period of 0 is p, in which case f(x) is a cyclic permutation of Z/pZ. Therefore the

primes of most interest are those for which f is a permutation polynomial with a

prescribed cycle type. For a survey of results on permutation polynomials, see Hou

[9], and see [5, 13,17] for more on cycle structures of polynomials over finite fields.

In general it is difficult to guarantee the existence of specific primes in the index

divisibility set. For the map xd + xe + c, we find that if either d or e is even, then

the only primes in Dd,e,c are those dividing c (Proposition 4). When both d and

e are odd, it is not uncommon for Dd,e,c to contain other primes. In this case, we

give conditions that would prevent primes from being in the divisibility set.
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2. Properties of the Divisibility Set

In this section we identify properties of the index divisibility set for the polynomial

f(x) ∈ Z[x]. We then prove Theorem 1, showing that the divisibility graph defined

in [3] yields the divisibility set for any f(x) ∈ Z[x] where (fn(0)) is a rigid divisibility

sequence. A number of these statements are more general versions of statements

found in [3], and for the most part, few changes are needed to adapt the arguments

for our purposes. We finish this section with a discussion on the divisibility graph

in the case that (fn(0)) is not a rigid divisibility sequence.

Proposition 1. Suppose f(x) ∈ Z[x], and let D be its index divisibility set.

1. If n | f(0), then n ∈ D.

2. If f(x) is an even function, then the only primes in D are the primes dividing

f(0).

3. If n ∈ D and vp(n) < vp(f
n(0)), then np ∈ D.

4. If m,n ∈ D and gcd(m,n) = 1, then mn ∈ D.

5. Suppose m,n ∈ D and m | n. Let p be the smallest prime divisor of n/m.

If p - m, then mp ∈ D. In particular, if n ∈ D and p is the smallest prime

divisor of n, then p ∈ D.

Proof. (1) Suppose that n | f(0). Since (fn(0)) is a divisibility sequence, it follows

that f(0) | fn(0), and thus n | fn(0).

(2) Suppose f(x) is even and p ∈ D. Necessarily, 0 is periodic modulo p, and its

period divides p. If the period of 0 is 1, then f(0) = c ≡ 0 (mod p), and hence p | c.
Otherwise, if the period of 0 is p, then f(fp−1(0)) ≡ 0 (mod p), where fp−1(0) 6≡

0 (mod p). However, since f is even, it is also the case that f(−fp−1(0)) ≡ 0

(mod p). Therefore 0 has at least two preimages modulo p, and so the period of 0

is strictly less than p (a contradiction).

(3) Suppose that n ∈ D and vp(n) < vp(f
n(0)). Then np | fn(0). Since (fn(0))

is a divisibility sequence, fn(0) | fnp(0), and hence np | fnp(0). Therefore, np ∈ D.

(4) Suppose m,n ∈ D and gcd(m,n) = 1. Further assume fmn(0) is nonzero as

otherwise the statement is trivial. Since (fn(0)) is a divisibility sequence, we have

that fm(0) | fmn(0) and fn(0) | fmn(0). Therefore, m | fmn(0) and n | fmn(0).

Since gcd(m,n) = 1 it follows that mn ∈ D.

(5) Suppose m,n ∈ D and m | n. Let p be the smallest prime divisor of n/m, and

suppose p - m. Since p | n and n | fn(0), we have that 0 is periodic modulo p. Let

b denote the period of 0 modulo p. Note that gcd(b, n/m) | p since gcd(b, n/m) is a

divisor of n/m that is less than or equal to p. Therefore, b is either a divisor of m

or a divisor of p. In the former case, p | fm(0). Therefore vp(m) = 0 < vp(f
m(0)),
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and mp ∈ D by part (3). In the latter case, it follows that p | fp(0), and hence

p ∈ D. Thus mp ∈ D by part (4) since gcd(m, p) = 1.

We now prove Theorem 1. For the benefit of the reader, we recall that the edges

in the divisibility graph are all of the form (n, np), where p is prime. The edge is

type 1 if vp(n) < vp(f
n(0)), and it is type 2 if p ∈ D and vp(n) = 0.

Proof of Theorem 1. We begin by showing that GV ⊆ D. Certainly 1 ∈ D, and it

suffices to show that if n ∈ D and (n, np) is an edge in the divisibility graph, then

np ∈ D.

Suppose that n ∈ D and (n, np) is an edge in the divisibility graph. If (n, np)

is type 1, then vp(f
n(0)) > vp(n). Hence np ∈ D by Proposition 1.(3). Otherwise

(n, np) is type 2, so p ∈ D and p - n. By Proposition 1.(4), np ∈ D.

To show D ⊆ GV , it suffices to show that for each n ∈ D, the divisibility graph

contains a path from 1 to n. Write n =
∏k
i=1 p

βi

i for the prime factorization of n,

and order the primes so that p1 < p2 < · · · < pk.

Consider mj =
∏j−1
i=1 p

βi

i for each 1 ≤ j ≤ k, where we take m1 = 1. If mj ∈ D,

then following the proof of Proposition 1.(5), either pj | fmj (0) or pj ∈ D. If

mj ∈ GV and pj | fmj (0), then (mj ,mjpj) is a type 1 edge. Otherwise if mj ∈ GV
and pj ∈ D, then (mj ,mjpj) is a type 2 edge.

Moreover, if mj ∈ GV , then (mjp
t
j ,mjp

t+1
j ) is a type 1 edge for 1 ≤ t < βj since

vp(f
mjp

t
j (0)) = vp(f

n(0)) ≥ βj > t = vp(mjp
t
j).

Thus if mj ∈ GV , then mj+1 ∈ GV . Since m1 ∈ GV , the divisibility graph contains

a path from 1 to n.

Consequently, we may expand our list of properties for the divisibility set in the

case of rigid divisibility sequences.

Proposition 2. Suppose f ∈ Z[x] and (fn(0)) is a rigid divisibility sequence. Let

D be its index divisibility set.

1. If m,n ∈ D, m | n, and p is the smallest prime divisor of n/m, then mp ∈ D.

2. If n ∈ D and p is the largest prime divisor of n, then n/p ∈ D.

Proof. Part (1) differs from Proposition 1.(5) in that we allow for p to divide m.

If p | m, then by rigid divisibility, vp(f
m(0)) = vp(f

n(0)) ≥ vp(n) > vp(m). Thus

mp ∈ D by Proposition 1.(3). We note that if (fn(0)) is only a divisibility sequence,

then it may be that vp(f
m(0)) = vp(f

mp(0)), in which case mp - fmp(0).

Part (2) comes directly from the construction of the path from 1 to n in the proof

of Theorem 1. Namely, if p is the largest prime divisor of n, the edge (n/p, n) is the

last edge in the path.
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We also note that one may recover a divisibility graph directly from a divisibility

set.

Proposition 3. If D is the divisibility set for a rigid divisibility sequence, then the

associated divisibility graph has vertex set GV = D and edge set

GE = {(m,n) : m,n ∈ D and n/m is prime}.

Proof. Certainly GV = D and GE ⊆ {(m,n) : m,n ∈ D and n/m is prime}. For

the reverse inclusion, the argument is identical to the final paragraphs in the proof

of Theorem 1. Briefly, suppose m,n ∈ D, and let p = n/m be prime. If p - m,

then (m,mp) is an edge of type 1 or type 2 depending on whether the period of 0

modulo p divides m or divides p. If p | m, then (m,mp) is type 1.

To conclude this section, we consider possibilities for the divisibility graph of

f(x) ∈ Z[x] in the case that (fn(0)) is not a rigid divisibility sequence. We point

out that at a glance, the definition of the divisibility graph presented above seems

inadequate for divisibility sequences. For instance, if one uses the definition above to

construct the divisibility graph for the sequence of natural numbers (1, 2, 3, . . .), then

one quickly finds that there are no type 1 edges and that the graph contains infinitely

many components. If one uses Proposition 3 to define the divisibility graph, then

the graph for the sequence of natural numbers will be connected. However, this too

has its shortcomings. For one, what independence the graph had from D, it now

loses. Nor does the statement in Proposition 3 guarantee that the graph is rooted,

much less connected. That is, even if the graph is comprised of a single component,

it may not be possible to reach every vertex in the graph from 1 via a sequence of

directed edges.

Experimentally, however, the current definition of the divisibility graph appears

to be robust. As a small survey, we computed

{n ∈ N : n | fn(0) and n ≤ 5000}

for the maps x3 + x + c and x4 + x + c, where c ∈ {1, 2, 3, . . . , 100}. We then

constructed their divisibility graphs and verified that every edge in these graphs

were either type 1 or type 2. This begs the following question.

Question 3. Does Theorem 1 apply to all f(x) ∈ Z[x]? Otherwise, is there an

f(x) ∈ Z[x] whose index divisibility set contains values n and np, but (n, np) is

neither type 1 nor type 2?

Recalling Rice [15, Proposition 3.2], if f : Z → Z and (fn(0)) is not a rigid

divisibility sequence, then the coefficient of its linear term is nonzero. Writing

f(x) = x2g(x) + bx+ c where g(x) ∈ Z[x], it is straightforward to verify that

fn(0) = c2h(c) + c

n−1∑
i=0

bi
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for some h(x) ∈ Z[x]. Note that for all primes p,

p−1∑
i=0

bi ≡

{
0 if b ≡ 1 (mod p)

1 otherwise.

Thus for the primes dividing c, either b 6≡ 1 (mod p) and vp(f
n(0)) = vp(c) for all

n ∈ N, or b ≡ 1 (mod p) and vp(f
np(0)) > vp(np) for all n ∈ N. Therefore all the

edges in the divisibility graph that result from primes dividing c are type 1. The

question is still open for primes that do not divide c.

3. The Polynomial xd + xe + c

In this section, we restrict our attention to the polynomial f(x) = xd+xe+c ∈ Z[x],

where d > e ≥ 2. We begin with a pair of propositions regarding primes in the index

divisibility set for f(x). We then turn to the topic of primitive primes divisors, and

in Proposition 6, show that the Zsigmondy set for f(x) is a subset of {1}. Following

that, we determine all cases where the index divisibility set of f(x) is finite, proving

Theorem 2.

Throughout this section, we let Dd,e,c denote the index divisibility set for f(x) =

xd + xe + c, and for convenience, we set Od,e,c = (fn(0)) and O+
d,e,c = (|fn(0)|).

Proposition 4. If d or e is even and p ∈ Dd,e,c, then p | c.

Proof. If d and e are both even, then f(x) is an even function and Proposition 1.(2)

applies.

In the case that exactly one of d or e is even, we have f(−1) = f(0) = c.

Therefore, c has two preimages in Z/pZ for every prime p. Hence, 0 can not have

period p modulo p. Thus p ∈ Dd,e,c only if 0 is fixed modulo p, i.e. p | c.

Corollary 1. If d or e is even, then every edge in the index divisibility graph

associated to f(x) = xd + xe + c is type 1.

Proof. Suppose (n, np) is a type 2 edge in the index divisibility graph for f(x).

Then p ∈ Dd,e,c and vp(n) = 0. If d or e is even, then by Proposition 4, p | c. Since

Od,e,c is a divisibility sequence, p | fn(0). Therefore vp(f
n(0)) > vp(n), and we

have that (n, np) is a type 1 edge.

Proposition 5. If p ∈ Dd,e,c, then p ∈ Dd+k1(p−1),e+k2(p−1),c for all k1, k2 ∈ Z,

where d+ k1(p− 1) ≥ 3, and e+ k2(p− 1) ≥ 2.
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Proof. Let p ∈ Dd,e,c and consider the polynomial g(x) = xd+k1(p−1)+xe+k2(p−1)+c.

Then

g(x) = xd+k1(p−1) + xe+k2(p−1) + c

= xd · xk1(p−1) + xexk2(p−1) + c

≡ xd + xe + c (mod p).

So gp(0) ≡ fp(0) ≡ 0 (mod p). Thus, p ∈ Dd+k1(p−1),e+k2(p−1),c.

We now give several technical lemmas, which will be useful for determining the

Zsigmondy set of Od,e,c.

Lemma 1. Let f(x) = xd + xe + c such that d > e ≥ 2 and |c| > 1. Then, O+
d,e,c

is a strictly increasing sequence.

Proof. Suppose |c| > 1 and d > e ≥ 2. We proceed by induction. For the base

case, we have |f2(0)| = |cd + ce + c| > |c| since cd−1 + ce−1 + 1 is an integer outside

{−1, 0, 1}.
Now assume |fn(0)| > |c| for some n. We have

|fn+1(0)| = |(fn(0))d + (fn(0))e + c|
≥ |fn(0)|e(|fn(0)|d−e − 1)− |c|
> |fn(0)|e

> |fn(0)|

since |fn(0)| > |c| and |fn(0)| ≥ 3.

Lemma 2. If f(x) = xd + xe + c where d > e ≥ 2, then either

1. 0 is a wandering point and O+
d,e,c is a strictly increasing sequence, or

2. 0 is a preperiodic point, which occurs exactly when

(a) c = 0, or

(b) c = −1 and either d or e is even.

Proof. The case where |c| > 1 is precisely Lemma 1. In the case that c = 1, simple

induction can be used to show that Od,e,1 is an increasing sequence, and a similar

argument applies in the case where d and e are both odd and c = −1. In fact,

O+
d,e,−1 = Od,e,1.

In the case that c = 0, it can easily be seen that f(0) = 0. Otherwise, let c = −1.

If exactly one of d and e is even, then f2(0) = −1 = f(0). In the case when d and

e are both even we find that f3(0) = 1 = f2(0).
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Recall that if an is a term in the sequence (an), the primitive prime divisors of

an are the primes that do not divide ai for 1 ≤ i < n. Thus we may distinguish

between the primitive and non-primitive primes of an and write an = PnNn, where

Pn is the primitive part of an and Nn is the non-primitive part of an. That is, Pn
is a product of powers of primitive primes of an, and Nn is a product of powers of

non-primitive primes.

Lemma 3. If (an) is a rigid divisibility sequence, then

Nn =
∏

d|n,d6=n

Pd.

Proof. See [4, Lemma 6].

The following result determines the Zsigmondy set for f(x).

Proposition 6. Let f(x) = xd + xe + c, where d > e ≥ 2. If 0 is a wandering

point, then

1. if c = ±1, fn(0) has a primitive prime divisor for all n ≥ 2, and

2. if c 6= ±1, fn(0) has a primitive prime divisor for all n ≥ 1.

Proof. Assume 0 is a wandering point. By Lemma 2, we can eliminate cases where

c = −1 and where c = 0 when either d or e is even. In all other cases, 0 is a

wandering point.

Note that if c = ±1, then f(0) = ±1, in which case f(0) does not have a primitive

prime divisor. If c 6= ±1, then f(0) = c has at least one primitive prime factor,

namely any prime factor of c.

For n = 2 and |c| ≥ 1, we have that

f2(0) = c(cd−1 + ce−1 + 1).

From the proof of Lemma 2, the sequence O+
d,e,c is increasing, hence |cd−1 + ce−1 +

1| > 1. Therefore f2(0) has primitive prime divisors, namely any prime divisor of

cd−1 + ce−1 + 1.

Now we proceed to show that fn(0) has a primitive prime divisor for all n ≥ 3.

Since O+
d,e,c is increasing, we have |fn(0)| ≥ |f2(0)| ≥ 3 when n ≥ 2. We show that

n−1∏
k=1

|fk(0)| < |fn(0)|

for n ≥ 2 by induction. The case n = 2 is immediate. Assume the inequality holds

for some N ≥ 2. Then

|fN+1(0)| = |(fN (0))d + (fN (0))e + c| > 1

3
|fN (0)|d ≥

N∏
k=1

|fk(0)|
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since d ≥ 3, |fN (0)| ≥ 3, and the induction hypothesis.

Setting |fn(0)| = Pn ·Nn in accordance with Lemma 3, we see that

Nn =
∏

d|n,d6=n

Pd ≤
n−1∏
k=1

Pk ≤
n−1∏
k=1

|fk(0)| < |fn(0)|.

Hence we see that that Pn > 1, and thus fn(0) has a primitive prime divisor.

We now prove that Dd,e,c is finite if and only if c = ±1.

Proof of Theorem 2. In the forward direction we proceed by contradiction. Assume

that Dd,e,c is finite and c /∈ {1,−1}. Let M = maxDd,e,c. By Proposition 6, we

know that every term in Od,e,c has a primitive prime divisor. Suppose that p is a

primitive prime divisor of fM (0). Since p | fM (0), it follows that the period of 0

modulo p is M , and thus M ≤ p. If M < p, then vp(f
M (0)) > vp(M), and hence

Mp ∈ Dd,e,c by Proposition 1.(3). This is a contradiction to the maximality of M .

Now consider the case p = M . Since p | fp(0), write fp(0) = mp where m ∈ Z.

As a consequence of Lemma 1, m > 1, so there is some prime q such that q | m.

This means that pq | fp(0). Since Od,e,c is a divisibility sequence, p | pq implies

fp(0) | fpq(0). Therefore pq | fpq(0). So pq ∈ Dd,e,c, which is a contradiction.

In the reverse direction we show that if c ∈ {1,−1}, then Dd,e,±1 is finite. Our

approach is to show that Dd,e,±1 does not contain any primes. By Proposition 1.(5),

this is sufficient to show that Dd,e,±1 = {1} .

If d or e is even, then by Proposition 4 there are no primes in Dd,e,c except the

divisors of c. Since c = ±1, there are no primes in Dd,e,±1.

When d and e are both odd and c = 1, then f(−1) = −1. Since −1 is a fixed

point, 0 can not have period p modulo any prime p. Therefore Dd,e,1 contains no

primes.

When d and e are both odd and c = −1, a similar argument can be made. In

this case 1 is a fixed point, and once again Dd,e,c contains no primes.

4. Restriction of Primes from the Divisibility Set

In this section, we provide conditions that would prevent primes from appearing

in the index divisibility set of f(x) = xd + xe + c. By Proposition 4, we know

that when d and e are both odd, the divisibility set Dd,e,c may contain primes that

do not divide c. Indeed, we find examples of this: 31 ∈ D13,3,5, 157 ∈ D107,3,60,

223 ∈ D77,3,74, among many others.

As stated several times previously, for a prime p to be in the index divisibility

set, either p | c or 0 has period p modulo p. In the latter case, the map f(x) is

a cyclic permutation of Z/pZ. The conditions that restrict primes from appearing
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in a divisibility set result from showing that f is not a cyclic permutation, either

because it is not a permutation or because its permutation type is not a p-cycle.

All the computations in this section are local and thus apply to any map that is

congruent to f(x) modulo p.

We also note that if d ≡ e (mod p− 1), then xd + xe + c ≡ 2xd + c (mod p). We

treat this as a separate case later in the section.

4.1. The Case d 6≡ e (mod p− 1)

Let D denote the index divisibility set for f(x) ∈ Z[x], and let ordp(a) denote the

multiplicative order a in (Z/pZ)∗.

Proposition 7. Suppose f(x) ≡ xd + xe + c (mod p), where 0 < e < d < p and

p - c. Then p /∈ D if any of the following is true:

1. d or e is even;

2. (p− 1)/ gcd(d− e, p− 1) is even;

3. ordp(2) - gcd(d− e, p− 1);

4. gcd(d− e, p− 1) < log2(p).

Proof. The first statement is effectively a restatement of Proposition 4.

For the next two cases, we recall that if p - c, then p ∈ D if and only if 0

is p-periodic modulo p (that is, fp(0) ≡ 0 (mod p), and fk(0) 6≡ 0 (mod p) for

1 ≤ k < p). In particular, if f(x) is not injective, then p /∈ D.

Since f(x) is regarded as a map from Z/pZ to itself, injectivity of f is equivalent

to surjectivity. By definition, this means f(x) − a has a root in Z/pZ for every

a ∈ Z/pZ. Since a is arbitrary, this means xd + x+ a has a root in Z/pZ for every

a ∈ Z/pZ. The case a = 0 is immediate, hence injectivity of f is equivalent to

Res(xd + xe + a, xp−1 − 1) ≡ 0 (mod p) for every a ∈ (Z/pZ)∗. By [14]Proposition

8.3, let ζ be a (p− 1)-st primitive root of unity, the last equation is equivalent to:

p−1∏
n=1

(ζnd + ζne + a) ≡ 0 (mod p)

for every a ∈ (Z/pZ)∗. Since the left side of this equation is a monic polynomial in

Z[a] of degree p− 1, it has to be a congruent to ap−1 − 1 modulo p. Consequently,

if the constant term of the expression on the left is not −1, then f is not injective
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modulo p. This constant term is

p−1∏
n=1

ζdn + ζen =

p−1∏
n=1

ζen
p−1∏
n=1

(ζ(d−e)n + 1)

=

(
p−1∏
n=1

ζn

)e(p−1)/k∏
n=1

(ζ(d−e)n + 1)

k

,

where k = gcd(d− e, p− 1). Note that the first product is the product of the roots

of xp−1− 1, while the second is the product of the roots of (x− 1)(p−1)/k− 1, hence

p−1∏
n=1

ζn = −1 and

(p−1)/k∏
n=1

(ζ(d−e)n + 1) =

{
0 if (p− 1)/k is even

−2 if (p− 1)/k is odd.

Since e is odd, and k is even when (p− 1)/k is odd, we have

(
p−1∏
n=1

ζn

)e(p−1)/k∏
n=1

(ζ(d−e)n + 1)

k

=

{
0 if (p− 1)/k is even

−2k if (p− 1)/k is odd.
(1)

Note that −2k ≡ −1 (mod p− 1) if and only if ordp(2) | k. Thus if (p− 1)/k is

even or ordp(2) - k, then Res(f(x), xp−1 − 1) 6≡ cp−1 − 1 (mod p). Therefore f(x)

is not injective and p /∈ D.

Finally, we note that log2(p) < ordp(2) ≤ p − 1 and 2 ≤ k < p − 1. Hence

if k < log2(p), then ordp(2) - k, and so p /∈ D. While this statement only takes

advantage of the trivial bounds for ord2(p) and k, it does not require the exact

value of ord2(p).

4.2. The Case d ≡ e (mod p− 1)

In the case that d ≡ e (mod p − 1), we have xd + xe + c ≡ 2xd + c (mod p). We

obtain a very simple condition in the case d ≡ 1 (mod p− 1).

Proposition 8. If f(x) ∈ Z[x] and f(x) ≡ ax + c (mod p), then p ∈ D only if

a ≡ 1 (mod p) or c ≡ 0 (mod p).

Proof. A simple induction shows that

fp(x) = apx+ c

(
p−1∑
i=0

ai

)
≡

{
ax if a ≡ 1 (mod p)

ax+ c if a 6≡ 1 (mod p).

The result follows immediately.
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Returning to the map 2xd + c, we note that τ(x) = x + 1 and σ(x) = 2x are

permutations of Z/pZ, and the map xd is a permutation of Z/pZ if and only if

gcd(d, p − 1) = 1. Therefore f(x) = τ c ◦ σ ◦ π(x) is a permutation of Z/pZ if and

only if gcd(d, p− 1) = 1. Moreover, cyclic permutations of Z/pZ are even. Hence if

f(x) is an odd permutation of Z/pZ, then p is not in the divisibility set of f(x).

Lemma 4. If p ≡ 1 (mod 4), then xd is an odd permutation of Z/pZ if and only

if d ≡ 3 (mod 4).

Proof. See the proof of [3]Theorem 1.3.

Proposition 9. Suppose f(x) ∈ Z[x] and f(x) ≡ axd + c (mod p), where p ≡ 1

(mod 4), d ≡ 3 (mod 4), and ordp(a) is odd. Then p /∈ D.

Proof. The translation map τ(x) = x + 1 is a cyclic permutation of Z/pZ and is

even. Since ordp(a) is odd, the cycle (a, a2, a3, . . . , aordp(a)) is an even permutation,

hence the scaling map σ(x) = ax is an even permutation. Finally, π(x) = xd is an

odd permutation by Lemma 4. Thus f(x) is an odd permutation of Z/pZ.

For our polynomial 2xd + c, the conditions p ≡ 1 (mod 4) and ordp(2) is odd in

Proposition 9, when taken together, are equivalent to p ≡ 1 (mod 8). The reason

for this is that 2 is not a quadratic residue if p ≡ 5 (mod 8), and therefore the

order of 2 is even. In particular, in order for ordp(2) to be odd, it must be that 2

is a 2v-th power in Z/pZ, where v = v2(p − 1). There are (p − 1)/2v values which

are 2v-th powers modulo p, so if p ≡ 1 (mod 8) and we assume the heuristic that

all values are equally likely to generate (Z/pZ)∗ (c.f. Artin’s conjecture), then the

probability that 2 is a 2v-th power given that it is already a square is

(p− 1)/2v

1/2
=

1

2v−1
.

The primes that are congruent to 1 modulo 8 may be partitioned into sets of the

form p ≡ 2k−1 + 1 (mod 2k) for k ≥ 4. As primes are distributed equally across

equivalence classes, the proportion of primes satisfying p ≡ 2k−1 + 1 (mod 2k) is

1/2k−1. Thus we expect that the proportion of all primes where p ≡ 1 (mod 8) and

ordp(2) is odd to be

∞∑
k=4

1

2k−1
· 1

2k−2
=

1

24
,

and therefore Proposition 9 is only sufficient to remove 1/24-th of all primes from

consideration.

Given a sequence (an), the rank of apparition function t(x) gives the minimum

value n such that x | an. This function plays a key role in the study of Lucas
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sequences [12] and elliptic divisibility sequences [16]. In our case, the rank of ap-

parition is the period of 0 modulo x. It would be interesting to see if the methods

of Sanna and Kim can be translated to the dynamical setting to give more concrete

results regarding primes in index divisibility sets.
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