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Abstract
We provide a proof of the infinitude of primes based on the idea that successive
denominators of continued fraction convergents are relatively prime.

1. The Result

Euclid’s theorem on the infinitude of primes is one of the most reproved theorems in
mathematics. Romeo Meštrović [4] catalogued 183 di↵erent proofs as of 2017. The
first chapter of Paul Pollack’s book [6] contains a thorough exposition of several
notable proofs.

In this short note, we will provide a new proof of the infinitude of primes based
on the theory of continued fractions.

Two other proofs of the infinitude of primes have involved continued fractions.
Harris [3] gave an infinite sequence A0, A1, A2, . . . of pairwise coprime positive in-
tegers that arise naturally as the denominators of the convergents of a particular
continued fraction. Barnes [2] used the connection between periodic continued frac-
tions, quadratic irrationals, and solutions to Pell’s equation to give another proof.

We make use of the following basic facts about continued fractions, which can
be found in many elementary texts on number theory (see, for example, [5]).

1. Every rational number in (0, 1) can be written as a finite continued fraction
expansion:

[a1, a2, . . . , ak] :=
1

a1 +
1

a2 + · · · +
1
ak

,

with a1, . . . , ak 2 N. In particular, there are always two such expansions, one
with k even and one with k odd. This is due to the fact that if ak > 1, then
[a1, . . . , ak�1, ak] = [a1, . . . , ak�1, ak � 1, 1].
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2. Consider a finite continued fraction expansion x = [a1, a2, . . . , ak]. Then for
any j, with 1  j  k, we define the jth convergent to x by

Aj

Bj
= [a1, a2, . . . , aj ]

with Aj , Bj relatively prime to one another and positive. Successive conver-
gents obey the following relation: Aj�1Bj �AjBj�1 = (�1)j for 2  j  k.

We are now ready to begin our proof.

Proof of the infinitude of primes. Suppose, by way of contradiction, that there are
only n odd primes, p1, p2, . . . , pn. (We will assume that 7 is a known prime.) Let
P = p1p2 . . . pn be the product of these primes. Consider the fraction 2/P , which
we note is in lowest terms. This fraction can be written as a finite continued fraction
expansion [a1, a2, . . . , ak] with k even.

Consider the convergents Ak�1/Bk�1 = [a1, . . . , ak�1] and Ak/Bk = [a1, . . . , ak] =
2/P . Since 2/P is in lowest terms, we have that Ak = 2 and Bk = P .

Recall that Ak�1Bk � AkBk�1 = (�1)k, i.e., that Ak�1P � 2Bk�1 = 1. From
this relation we can read o↵ three facts very quickly:

1. The GCD of P and Bk�1 must divide 1 and so must be 1;

2. Since 7  P and 1  Ak�1, we have that Bk�1 � 3; and,

3. Since 7 divides P and since �(2`) ⌘ 1 (mod 7) has no solutions, we cannot
have that Bk�1 is a power of 2.

As a consequence of these three facts, we have that Bk�1 must be divisible by
some prime that is at least 3, but must be relatively prime to P . This produces a
contradiction and so there are infinitely many primes.

We note a few things on this proof.
First, this proof contains a di↵erent proof in disguise. We can calculate Bk�1

exactly. In particular, we have

2
P

=
1

�
P

2

⌫
+

1
2

.

Thus, the even-length continued fraction expansion of 2/P is just [bP
2 c, 2], so that

Ak�1 = 1 and Bk�1 = bP/2c. By the nature of the floor function, we can easily show
that 2Bk�1+1 = P . Clearly Bk�1 and P are relatively prime as a consequence, and
by the same reasoning as above, Bk�1 cannot be a power of 2. However, the proof
above could be applied to other fractions. Namely, if j is a positive integer such
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that 2j  P , then we could apply the proof to the fraction 2j/P with no changes.
In this case we could show that one obtains 2jBk�1 + 1 = xP , where x 2 [1, 2j � 1]
is the unique integer such that xP ⌘ 1 (mod 2j).

Second, in an earlier draft of this proof, we used 1
2 + 1

P instead of 2/P , until we
realized that in order to check that this was in lowest terms, we would already have
to prove that P + 2 and 2P were relatively prime, which would essentially reduce
to Stieltjes’s proof of the infinitude of primes.

Third, we could alternatively look at a number like

x =
1

2P
+

1
3(2P )2

.

Legendre’s theorem states that if there exists a fraction a/b in lowest terms such
that |x � a/b| < 1/2b2, then a/b must be a convergent to x [1]. Thus 1/2P must
be a convergent to x. Moreover, it cannot be the last convergent, since it does not
equal x. So one could show that the denominator of the next convergent must be
relatively prime to 2P .
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