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Abstract
We prove that the expansion of some classical infinite product is closely related to
the sequence of 2-densely divisible numbers.

1. Introduction

Motivated by a mechanical problem, C. G. J. Jacobi [6] wrote the expression!

S (1) pgi - 3(=1) 7 g3 (2t — YY)
S (—q)m*a?m - 3 (—q) Yy ’

where p and v run through the positive odd integers, whereas m and n run by the
integers.

Let z = 2y, ¢ = "™ and z = €™, Using complex integration techniques, L.

Kronecker [11] found several identities related to Jacobi’s expression, e.g.,

V'(0) (€ + 1)
£+3)9(n+3)

2mizy\/qF (¢, x,y) = i

where

v—1 1

9(C) = —id (-1)7F ¢i (2" =27,
Flg,z,y) = qu%’w (aty” —xHy™").

IWe omit the range of summation of y, v, m and n in order to preserve the notation from our
main historical reference [11]. Throughout this introduction, we will keep this convention.
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C. Jordan [7] made some substitutions in Kronecker’s identities in order to obtain
the expansion of the multiplicative inverse of some -functions?, e.g.,

1 1 nm  m—n—1
—_ = — "¢ 2w 2 1
o et X U , 1)
n,m >0
n#m (mod 2)
where 0(w) is associated to the formal powers series given by the initial condition
6(0) = 1 and the functional equations

blgw) = —wl6(w),
Bw™) = —wlh(w).

Using a powerful tool from algebraic geometry known as Gttsche’s formula, T.
Hausel, E. Letellier and F. Rodriguez-Villegas [5] studied a polynomial C,,(¢q) which
contains important topological information® about a rather mysterious space named
the Hilbert scheme® of n points on the algebraic torus (C\{0}) x (C\{0}). This
polynomial, named the E-polynomial of the space, is given by the infinite product

i (1_tm)2 _ > Cn(q) n
oo =t

m=1

which is equivalent to Jordan’s identity (1) after a change of variables.

C. Kassel and C. Reutenauer [8, 9, 10] studied some number theoretical properties
of Cp(q) and of the polynomial P,(q) € Z[q| satisfying Cy,(q) = (¢ — 1)?Pn(q). J.
M. R. Caballero [1, 2, 3] referred to P,(q) as the Kassel-Reutenauer q-analog of the
sum of divisors because P, (1) is the sum of divisors of n, as it was shown by C.
Kassel and C. Reutenauer [8].

In virtue of (1), we can explicitly express P,(q) as

1 1(2n 1(2n
Pn(q) = Z (qn+5(277d71) — qnfi(%fdJrl)) . (2)
dln
d=1 (mod 2)

It easily follows from (2) that the coefficients of P,(¢) are non-negative. Moti-
vated by this fact, the author wrote the code

R.<@> = PolynomialRing(ZZ)

2Jordan never wrote this formula in [7], he only explained how to derive it from Kronecker’s
identities. Nevertheless, this identity can be found in [5].

3The information is about the so-called Hodge structure of the space.

4 An informal way to visualize this space is to think that it is the set of all possible configurations
of n sugar grains on the surface of a doughnut: each configuration is a point. The technical
definition, due to A. Grothendieck, is based on the so-called functor of points.
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def P(n):
return R(1/(q-1)*sum([q"(n + ZZ( ( 2%n/d - d - 1 )/2 ))
- q°(@m-ZZ( ( 2*n/d - d + 1 )/2 ))
for d in n.divisors() if d%2 == 1]1))

print [n for n in [1..256] if len(P(n).coefficients()) == 2*n-1]

in SageMath in order to find the list of n > 1 for which all the coefficients of P, (q)
are non-zero. Surprisingly, this integer sequence already exists: it is A174973 in
[12], i.e., the sequence of 2-densely divisible numbers. T. Tao [14] defined these
numbers in a more general way as follows.

Definition 1. If y > 1 and n is a natural number, we say that n is y-densely
divisible if, for every 1 < R < n, one can find a factor of n in the interval [y_lR, R].

The y-densely divisible numbers were used by the Polymath8 project [13], led by
T. Tao, in order to improve the Zhang’s bounded gaps between primes [15].

The aim of this paper is to prove the above-mentioned empirical connection
between P, (q) and the sequence of 2-densely divisible numbers.

Theorem 2. For any integer n > 1, all the coefficients of P,(q) are non-zero if
and only if n is 2-densely divisible.

Our method of proof will be rather atypical in number theory, because of the use
of well-matched parentheses following our previous approach [4]. Despite the use
of some terminology borrowed from the theory of formal languages®, our proof will
be completely elementary and no advanced knowledge from language theory will be
required to follow the argument step by step.

2. A Language-theoretic Approach

Let L be a finite set of real numbers. Consider the set®

T(Lit) = [0 +1], (3)

LeL

endowed with the topology inherited from R, where t > 0 is an arbitrary real
number. It is natural to associate any integer n > 1 with the topological space

Ta(n) =T (L;t),

5We use commutative diagrams in a trivial, set-theoretic, way. No knowledge of category theory
is required.

6 As usual, we use the notation [a, b], ]a, b], [a, b[ and ]a, b[ for the sets of real numbers z satisfying
a<zx<ba<z<b a<xz<banda<x <Dbrespectively.
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where L := {Ind : d|n} and ¢t := In A. It follows that an integer n > 1 is A-densely
divisible if and only if 7y (n) is connected (see Proposition 3).

We will show a relationship between the number of connected components of
T (L;t) and the factorization of the Dyck word ((S))» introduced in [4], provided
that L = {lns : s € S} and ¢t = In\. From this general result, we will derive a
characterization of A-densely divisible numbers in terms of the Dyck word {(n)),
also introduced in [4]. We recall the definitions of {(S)x and (n)x given in [4].

Definition 3. Consider a real number A > 1 and a 2-letter alphabet ¥ = {a,b}.
(i) Given a finite set of positive real numbers S, the A-class of S is the word
{(SHa 1= wowy wa ... wE_1 € X7, (4)

such that each letter is given by

_Joa ifp €S,
i '—{ b if i € XS, (5)
for all 0 <1i < k—1, where ug, g1, ..., px—1 are the elements of the symmetric

difference SAN S written in increasing order, i.e.,

AS = {As:seS},
SANS = {,U() < pr <. < Mk—l}- (6)

(if) If S is the set of divisors of n, then we will write (n)) := {(S)r. The word
{(n)x will be called the A-class of n.

The proof that ((n))x and ((S)n are Dyck words was given in [4]. Also, the
height of the Dyck path associated to ((n))x coincides with the generalized Hooley’s
A -function

Ax(n) = IE‘;L%(# {dn: de|X\"'R,R]},

where R runs over the positive real numbers (see [4]).
The main language-theoretic will be the following theorem.

Theorem 4. Let A > 1 be a real number.

(i) For any integer n > 1, the number of connected components of Tx(n) is pre-
cisely Q ({(n) ).

(i) An integer n > 1 is A-densely divisible if and only if {(n)x is an irreducible
Dyck word.
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The function Q(w), formally defined using diagram (7), is just the number of
irreducible Dyck words needed to obtain the Dyck word w as a concatenation of
them”. We will derive Theorem 4 taking S to be the set of divisors of n in the
following more general result.

Proposition 1. Let A > 1 be a real number. Consider a finite set of positive real
numbers S. Define L := {lns: s € S} and ¢t := In\. The number of connected
components of T (L;t) is Q({SHr).

3. Preliminaries

Consider a 2-letter alphabet ¥ = {a,b}. The bicyclic semigroup® B is the monoid
given by the presentation

B:={(a,blab=¢),

where ¢ is the empty word.
Let 7 : ¥* — B be the canonical projection. The Dyck language D is the kernel
of m, i.e.,
D:=71"t(n(g)).

Interpreting the letters a and b as the displacements 1 ++/—1 and 1 — v/—1 in
the complex plane C, we can represent each word w € H by means of a Dyck path,
i.e., a lattice path from 0 to |w|, using only the above-mentioned steps and always
keeping the imaginary part on the upper half-plane {z € C : Im z > 0}. For an
example of a Dyck path, see Fig 1. It is easy to check that D can be described as
the language corresponding to all possible Dyck paths.

The language of reducible Dyck words is the submonoid

D:={e}U{uv: u,v € D\{c}}
of D. The elements of the complement of D in D, denoted
P :=D\D,

are called irreducible Dyck words.
It is well-known that D is freely generated by P, i.e., every word in D may be
formed in a unique way by concatenating a sequence of words from P. So, there is a

"We use the notation Q(w) in analogy to the arithmetical function €(n) which is equal to the
number of prime factors of n counting their multiplicities.

8In this paper, the bicyclic semigroup is not just a semigroup, but also a monoid. We preserved
the word “semigroup” in the name for historical reasons.
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unique morphism of monoids® Q : D — N, where N is the monoid of non-negative
integers endowed with the ordinary addition, such that the diagram

D —— P*

ol ™

Q
N
commutes, where D — P* is the identification of D with the free monoid P* and
P* — N is just the length of a word in P* considering each element of the set P
as a single letter (of length 1). In other words, Q(w), with w € D, is the number of
irreducible Dyck words that we need to obtain w as a concatenation of them.
We will use the following result proved in [4].

Proposition 2. Let S be a finite set of positive real numbers. For any real number
A > 1 we have that {(S)x € D, i.e., {(S)x is a Dyck word.

4. Generic Case

Given a finite set of positive real numbers S, we says that a real number A > 1 is
regular (with respect to S) if S and A S are disjoint. Otherwise, we say that A > 1
is singular (with respect to S). This notion was already introduced in [4].

It is easy to check that the number of singular values (corresponding to a finite
set S) is finite. In this section we will prove Proposition 1 under the additional
hypothesis that A is regular. The proof that this proposition also holds true for
singular values of \ will be deduced from the case for regular values in next section.

Lemma 1. Let A > 1 be a real number. Consider a finite set of positive real
numbers S. Suppose that X is regular. Define L := {Ins : s € S} and t := In\.
The space T (L;t) is disconnected if and only if (S)a is a reducible Dyck word.

Proof. Define L+t :={¢+t: ¢ € L}. Wehave LU(L+1t)={lny; : 0<i<k—1}
because A is regular. Here po, p1, ..., pr—1 are the numbers appearing in (6).
Consider the word ((S)x = wo wy ... wg—1 as defined in (4).

Suppose that T (L;t) is disconnected. In virtue of (3), for some 0 < j < k — 1,
we have Inp; +t < Inpjyq, ie, Ay < pjyr. Indeed, if for any 0 < j < k — 1,
we have In pj11 <Inpj + ¢, then the space 7 (L;t) = [In po, In (ur—1) +t] will be a
connected.

So, the list po, g1, ..., ptj contains as many elements from S as elements from A S.
It follows from (5) that u := wo ws ... w; satisfies |ul, = |ulp. So, u is Dyck word.
Therefore, ((S) is a reducible Dyck word, because its nonempty proper prefix u is
a Dyck word.

9 A morphism of free monoids is just a fancy name for substitution.
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By Proposition 2, ((S))x is a Dyck word. Suppose that ((S))» is reducible. For
some 0 < j < k — 1 we have that the nonempty proper prefix u := wgwy ... w; of
{(S)x is a Dyck word. The relation |ul, = |ulp and (5) imply that the list po, g1,
..., [t; contains as many elements from S as elements from AS. So, Ap; < pj41,
ie,Inpu; +t <Inpjri. Using (3) we conclude that 7 (L;¢t) is disconnected. O

Lemma 2. Let A\ > 1 be a real number. Consider a finite set of positive real
numbers S. Suppose that X is reqular. Define L := {lns : s € S} and t := In\.
The number of connected components of T (L;t) is Q ({(S)r).

Proof. Let po, p1, ..., tik—1 be the numbers appearing in (6). Consider the word
{(SHr = wows ... wx—1 as defined in (4). By Proposition 2, {(S)) is a Dyck word.
We proceed by induction on the number ¢ > 1 of connected components of 7 (L; t).

Consider the case ¢ = 1. Suppose that T (L;t) is connected. By Lemma 1, {(S))x
is irreducible. Then ¢ = Q ({(S)r) = 1.

Suppose that the number of connected components of T (L;t) is Q ({S)x), pro-
vided that 7 (L;t) has at most ¢ — 1 connected components for some ¢ > 1. Assume
that 7 (L;t) has precisely ¢ connected components. By Lemma 1, ((S)) is reducible.
Let p1, pa, ..., pn be irreducible Dyck words satisfying {(S)x = p1p2 ... Pa.

For some 0 < j < k — 1 we have p; = wowy ... w;. Notice that A p; < py; < pjpq
for all 0 <4 < j such that p; € S. Indeed, this follows from the fact that both p;
and po ... pp are Dyck words.

Setting R = {po, 11, ..., 4 }, it follows that {(S\R)x = p2 ps ... Pn-

The space T (L\In(R);t), where In(R) := {lns : s € R}, has precisely ¢ — 1
connected components, because Inpy; + InA < Inp;yi. Applying the induction
hypothesis, ¢ — 1 = Q ({S\R)») = h — 1. Hence, ¢ = Q({S)HA) = h.

By induction, we conclude that the number of connected components of T (L;t)

is Q({(Shx)- u

5. General Case

Consider a 3-letter alphabet I' = {a,b,c}. We define the Hooley monoid C to be
the monoid given by the presentation

C :={a,b,clab=¢,acb=ab,cc=c).

Let ¢ : ' — C be the canonical projection. The Hooley-Dyck language H is
the kernel of ¢, i.e.,

Hi=p" (p(e).
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Associating the letters a, b and ¢ to the displacements 1 + v/—1, 1 — /=1 and
1, respectively, in the complex plane C, it follows that each word w € H can be
represented by Schroder path, i.e., a lattice path from 0 to |w|, using only the
above-mentioned steps and always keeping the imaginary part on the upper half-
plane {z € C: Im z > 0}. For an example of Schroder path, see Fig 2.

Notice that the language H corresponds to all possible Schréder paths having all
the horizontal displacements (corresponding to ¢) strictly above the real axis.

The language of reducible Hooley-Dyck words is the submonoid

H:={e}U{uv: u,v e H\{c}}
of H. The elements of the complement of H in H, denoted

Q:=H\H

are called irreducible Hooley-Dyck words.

It is easy to check that Q freely generates H. So, there is a unique morphism
of monoids © : H — N, where N is the monoid of non-negative integers endowed
with the ordinary addition, such that the diagram

H —— OF

(8)
>
N
commutes, where H — Q™ is the identification of @ with the free monoid Q* and

Q* — N is just the length of a word in Q* considering each element of the set Q
as a single letter (of length 1).

Lemma 3. Let v : ' — X* be the morphism of monoids given by a — a, b — b
and c — €. We have that v(H) C D.

Proof. Notice that the diagram

- —25c
VJ( wi (9)
> T4 B
commutes, where ¢ is the morphism of monoids given by ¥(C) := ~(C), for each
equivalence class C' € C.

Take w € 7 (kerp). By definition, w = 7(v) for some v € kery. Using the
equalities
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m(w) = m(y(v))
¥ ((v))
¥ ((€))
= m(e),
we obtain that w € ker . Hence, v (ker ) C kerm, i.e., v(H) C D. O

Lemma 4. The morphism ~y defined in Lemma 3 satisfies v(Q) C P.

Proof. Take ¢ € Q. By Lemma 3, we have v(q) € D. Also, we have v(q) # ¢,
because ¢* and Q are disjoint, where ¢* := {e, ¢, cc, cee, ... }.

Suppose that v(q) = uv, for some u,v € D\{e}. It follows that ¢ = 4 ¢ for some
@, 0 € I'* satisfying v (¢) = v and ~ (0) = v. Using the commutative diagram 9, the
fact that v is an isomorphism and the equalities,

Hm (v(@)))
(m (w))
(m(e))
(€,

we obtain that o € ker p = H. Similarly, © € ker o = H. Hence, g € Q, contrary to
our hypothesis. By reductio ad absurdum, v (Q) C P. O

p(a) =

[

-1

(4
(4
(4
¥

Lemma 5. Given w € H, we have © (w) = Q(y(w)), where v is the morphism
defined in Lemma 3, © is given by diagram (8) and § is given by diagram (7).

Proof. Notice that the diagram

H—— OF

|

D—— P

commutes, where D — P* is the identification of D with the free monoid P*,
H — Q* is the identification of H with the free monoid Q*, Q* — P* is the
morphism of monoids given by w — ~y(w) for all w € Q (this function is well-defined
in virtue of Lemma 4) and H — D is given by w — y(w) (this function is well-
defined in virtue of Lemma 3). It follows that © (w) = Q (vy(w)) holds for each
w e H. O

Lemma 6. Let o : ' — X* be the morphism of monoids given by a +— a, b +— b
and ¢ — ab. We have that a(H) C D.
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Proof. Notice that the diagram

¢
J 10)
> T4 B
commutes, where x is the morphism of monoids given by x(C) := «(C), for each
equivalence class C' € C.

Take w € a(kery). By definition, w = a(v) for some v € kerp. Using the
equalities

m(w) = m(a(v))
X (#(v))
x (#(€))
we obtain that w € kerw. Hence, « (ker¢) C kerm, i.e., a(H) C D. O

Lemma 7. The morphism « defined in Lemma 6 satisfies o (Q) C P.

Proof. Take ¢ € Q. By Lemma 6, we have a(q) € D. Using the fact that o does
not decrease length, we have that «(q) # €, because € € Q.

Suppose that a(q) = uv for some u,v € D\{e}. It follows that ¢ = 4 ¢ for some
4,0 € T'* satisfying a (@) = u and « (0) = v. Using the commutative diagram 10,
the fact that x is an isomorphism and the equalities,

p(a) =

we obtain that @ € ker ¢ = H. Similarly, 0 € ker p = H. Hence, ¢ ¢ Q, contrary to
our hypothesis. By reductio ad absurdum, o (Q) C P. O

Lemma 8. Given w € H, we have © (w) = Q (a(w)), where « is the morphism
defined in Lemma 6, © is given by diagram (8) and § is given by diagram (7).

Proof. Notice that the diagram
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H— OF

|

D—— P

commutes, where D — P* is the identification of D with the free monoid P*,
H — QF is the identification of H with the free monoid Q*, Q* — P* is the
morphism of monoids given by w — a(w) for all w € Q (this function is well-
defined in virtue of Lemma 7) and H — D is given by w — a(w) (this function is
well-defined in virtue of Lemma 6). It follows that © (w) = Q (a(w)) holds for each
w e H. O

The following construction was previously used in [4].

Definition 5. Given a finite set of positive real numbers S, let vg, v1, ..., V-_1 be
the elements of the union S U A S written in increasing order, i.e.,

SUXNS={vy < <..<vp_1}.

Consider the word
[[S]])\ = UOUL UL ... Up—1 € P*,

where each letter is given by

a ifv; € S\(AS),
w =4 b ify; e (AS)\S,
c ifrye SNAS,

forall0<¢<r-—1.

Example 6. The Dyck path corresponding to {(126))2 = aabaababbabb is shown in
Fig 1. The Schroder path corresponding to [126]2 = acabcaabecabbeabeb is shown
in Fig 2.

Lemma 9. Consider a finite set of positive real numbers S. For any real number
A > 1 we have [S]x € H.

Proof. We proceed by induction on the number of elements of S, denoted m := #S.

For m = 0, we have [S]y =€ € H.

Given m > 0, suppose that for each finite set of positive real numbers S, we have
[S]x € H, provided that #S < m. Take an arbitrary finite set of real numbers
S having precisely #S = m elements. Denote vy, v1, Va,..., vp—1 the elements of
S UAS written in increasing order. Consider the word [S]x = uoui ug ... ur—1 as
given in Definition 5.

The inequality A > 1 implies that there exists at least one integer i satisfying
u;#aand 1 <i<r—1. Define j:=min{i: u; Zaand 1 <i<r—1}.
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Suppose that u; = b. Setting S" := S\{ry}, we have
[[Sl]])\ = U UL U2 ... Uj—2 aj,1 ﬁj Uj41 - Upr—1,

where the hat indicates that the corresponding letter is suppressed. Indeed, Ay =
viand vp =11 = ... =Vj_1 = a.

By the induction hypothesis, [S'], € H. Hence, [S]x € H, because it can be
transformed into [S'] € H using the relation ab = ¢ from C.

Suppose that u; = ¢ and uj;1 = b. Setting S’ := S\{wo}, we have

! o~
[[S ]])\ =UoULU2 ... Uj—2 Uj—1 Uj Ujit1 - Up—1-

By the induction hypothesis, [S'], € H. Hence, [S]x € H, because it can be
transformed into [S'] € H using the relation acb = ab.
Suppose that u; = ¢ and uj;1 = c¢. Setting S’ := S\{wo}, we have

! o~
[[S ]])\ =UoUL U oo Uj—2 Uj—1 Uj Ujp] oo Up—1-

By the induction hypothesis, [S’]x» € H. Hence, [S]x» € H, because it can be
transformed into [S’]x € H using the relation cc = c.
Finally, suppose that u; = ¢ and ;41 = a. Setting 5" := S\{vo}, we have

1 ~
[[S ]])\ =UoULU2 ... Uj—2 Uj—1 Uj Uji1 - Up—1-

By the induction hypothesis, [S’]x € H. Then using the rewriting rules from C,
the word

Uo UL U2 +-- Uj—2 Uj—1 Uj Uj41 -.- Upr—1

can be reduced to
U U U2 o Uj—2 Uj—1 Uj Ujy Ujy ... Ugy,

where u;, = b, and the word obtained after the reduction u;_; u;, = ¢,

U UL U2 -on Uj—2 Uiy +-- Uy,

can be reduced to the empty word using the rewriting rules from C. So, using the
rewriting rules from C, the original word [S] can be reduced to

U U U2 o Uj—2 Uj—1 Uj Ujy Ujy ... Ugy,

and the word obtained after the reduction u;_; uju;, = acb = ab = €, can be
reduced to the empty word as we mentioned above. Hence, [S]x € H.

By induction, we conclude that [S]n € H for any finite set of positive real
numbers S. O
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Lemma 10. Consider a finite set of positive real numbers S. For any real number
A > 1, we have v ([S]r) = (S)a, where 7 is the morphism defined in Lemma 3.

Proof. In virtue of the identity (S UAS)\(S N AS) = SANS, the result follows just
combining Definition 3 and Definition 5. (|

Example 7. Lemma 10 can be illustrated by means of Fig 1 and Fig 2.

Lemma 11. Consider a finite set of positive real numbers S. For any real number
A > 1, the equality o ([S]x) = (SHa holds for all X € |\, +o0] near enough to X,
where « is the morphism defined in Lemma 6.

Proof. For any AN €]\, +o00[, the change from SUAS to SU N S keeps fixed the
points in S and it displaces the points in A S to the right. This displacement to
the right can be made as small as we want just setting A’ near enough to A. In
particular, any point in SNAS, after this transformation, becomes a pair of different
points, one stays at the original position and the other one displaces to the right an
arbitrary small distance. Notice that SNX' S = @ for all A €]\, +o00[ near enough to
A (this guarantees that A\’ will be regular). Combining Definition 3 and Definition
5, we conclude that a ([S]x) = (S)» provided that X" €]\, +00[ is near enough to
A O

Example 8. Lemma 11 can be illustrated by means of Fig 2 and Fig 3.

Figure 1: Representation of (126))2 = aabaababbabd.

Figure 2: Representation of [126]2 = acabcaabccabbeabeb.

Figure 3: Representation of [126]2.001 = (126)2.001 = aabababaababababbabababb.
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Lemma 12. Let S be a finite set of positive real numbers. The step function
1,400 — N, given by X\ — Q({(SHr), is continuous from the right, i.e., given
a real number X > 1, for each real number X' € |\, +oo[, we have Q({(SHr) =
Q({(SHar), provided that X' is near enough to \.

Proof. By Lemma 9, [S]x € H. By Lemma 10, v ([S]x) = {S)a, where v is the
morphism defined in Lemma 3. Using Lemma 5 we obtain © ([S]x) = Q ({S)a). By
Lemma 11, o ([S]x) = (S)a for all X' € |\, +00[ near enough to A, where « is the
morphism defined in Lemma 6. Using Lemma 8 we obtain © ([S]x) = Q ({S)r)
for all X € ]\, +oo] near enough to A. Therefore, Q ({(SHr) = Q({(S)) for all
X € |\, +oo[ near enough to . O

Lemma 13. Let L be a finite set of real numbers. Consider the step function
f:]0, +00[— N such that fr,(t) is the number of connected components of T (L;t).
The function fr(t) is continuous from the right, i.e., given a real number t > 0 we
have fr, (t') = fr (t) for all t' € ]t, +o00[ near enough to t.

Proof. Let £y,£1,0s,...,lk_1 be the elements of L written in increasing order, i.e.,

L={ly <t <ly<..</lp_1}.

Define ¢ := fr(¢). In virtue of (3), we can write 7 (L;t) as the union

T(L,t) = [£i1;£i2 -I—t] U [£i3;£i4 -I—t] U...u [£i2u717£i2u -I—ﬂ

of the pairwise disjoint sets [¢;,, i, +t], [liy, iy + 1], -y [lina_y, lig. +t], for some
subsequence 11 < is < i3 < ig < ... < G9.-1 < 9. 0of 0,1,2,....,k — 1. So, for all
t' € ]t,4+o0[, the set T (L;t") can be expressed as the union

T(L,t/) = [&1;&'2 + tl] U [&'3;&'4 + tl] U...uJ [€i2c—l’€i2c + fq ,

where some of sets in the list [(;,, 0, + 1], [liy, iy + 1), ooy [Cige ys lin, + '] may
overlap among them. Assuming that ¢’ is near enough to ¢, we guarantee that
the sets [€;,, i, +t'], [lig, Ciy +t'], ...y [Cigoys lis, + ] are pairwise disjoint. Hence,
fo() = fL(t') for all t € |t,4o00[ near enough to t. Therefore, f(t) is continuous
from the right. O

Using the previous auxiliary results, we can prove Proposition 1.

Proof. (Proposition 1) By Lemma 12, the step function ]1,4+00] — N, given by
A = Q({SHr), is continuous from the right. By Lemma 13, the step function
fr :]0,400] — N is continuous from the right, where fr(¢) is the number of
connected components of T (L;t). Notice that the step function ]1,+o0] — N,
given by A — fr (In A) —Q ({(S) ), is continuous from the right, because the natural
logarithm is continuous on |0, 4+o0o[. By Lemma 2, fr (InX) — Q({S)r) = 0 for
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all X' € ]\ +oo[ near enough to A (this guarantees that A\’ is regular). Hence,
fro(In ) —Q ({S)x) = 0 follows by continuity from the right. Therefore, the space
T (L;t) has precisely Q ({(S))») connected components. O

Proposition 3. Given a real number X\ > 1, an integer n > 1 is A-densely divisible
if and only if Ty (n) is connected.

Proof. Suppose that n is A-densely divisible and 7 (n) is disconnected. In virtue
of (3), there are two divisors of n, denoted d < d’, satisfying

Ind+In)X<Ind

and there is no divisor of n on the interval |d, d'[. Using the fact that n is A-densely
divisible, there is a divisor of n on the interval [A™' R, R], with 1 < R:= X (d +¢€) <
d" < n, for all € > 0 small enough. Notice that [A\™! R, R] C]d,d’[. So, there is a
divisor of n on the interval |d, d'[. By reductio ad absurdum, if n is A-densely divisible
then 7Ty (n) is connected.

Now, suppose that Ty (n) is connected and n is not A-densely divisible. Then
there is some R € [1,n] such that there is no divisor of n on the interval [A\~! R, R].
It follows that R > X > 1, because 1 is a divisor of n. Let d be the largest divisor of
n satisfying d < A™! R. It follows that d < n, because \™' R < A™'n < n. Let d'
be the smallest divisor of n satisfying A™' R < d’. Notice that \™'R < d’, A\d < R
and there is no divisor of n on the interval |d, d'[.

Using the fact that 7y (n) is connected, we have that

Ind,Ind +In A N[Ind,Ind +In )\ # 0.

It follows that Ind’ < Ind +1In )\, ie., d < Ad. So, 'R < d < Ad < R. In
particular, d’ € [\"'R, R]. By reductio ad absurdum, if T (n) is connected then n
is A-densely divisible. [l

We proceed now with the proof of the main result of this paper.

Proof. (Theorem 4) Statement (i) follows by Proposition 1 taking S to be the set
of divisors of n.

Take an integer n > 1. By Proposition 3, n is A-densely divisible if and only if
Tr(n) is connected. By Proposition 1, the space Ty(n) is connected if and only if
{(n)x is irreducible. Hence, n is A-densely divisible if and only if {(n)) is irreducible.
Therefore, statement (ii) holds. O

6. Proof of the Main Result

We proceed to prove our main result.



INTEGERS: 20 (2020) 16

Proof of Theorem 2. In virtue of (2), the sequence of coefficients of (¢ — 1)P,(q),
read from left to right in the traditional degree-decreasing expansion, can be iden-
tified!® with the Dyck word ((n))s via the correspondence!* +1 + a, —1 + b and
0 e.

Suppose that n is 2-densely divisible. In virtue of Theorem 4 (ii), the polynomial
(¢ — 1)P,(q) corresponds to the irreducible Dyck word {(n))2. For example, the
polynomial

— 1P _ 11 + 6 5 _ 1
(¢—1)Ps(q) = ¢ q q )
( ( )

corresponds to the Dyck word aabb, associated to the well-matched parentheses

2n—1_

(())- So, all the coefficients of P,(q) — = L are non-negatives. It follows that
all the coefficients of P,(¢) are non-zero.

Now, suppose that n is not 2-densely divisible. In virtue of Theorem 4 (ii), the
polynomial (¢g—1) P, (q) corresponds to the reducible Dyck word ((n))s. For example,
the polynomial

1P = 2T g2
(q—1)Pis(q) = ¢ q q )
( ) (

corresponds to the Dyck word abab, associated to the well-matched parentheses
() (). So, (g = 1)P.(q) = Un(q) + Va(q), for two polynomials U, (q) and V;,(q)
corresponding to some non-empty Dyck words u and v, respectively, such that
{(n)2 = uv. We assume that the degree of every term in U, (q) is greater than the
degree of V;,(q). In our example, U14(q) = ¢*” — ¢*° and V14(q) = ¢'? — 1. Let k be
the degree of V,,(g). It follows that the coefficient of ¢* in P,(q) is equal to zero.
([l
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