

JORDAN'S EXPANSION OF THE RECIPROCAL OF THETA FUNCTIONS AND 2-DENSELY DIVISIBLE NUMBERS

José Manuel Rodríguez Caballero

Institute of Computer Science, University of Tartu, Tartu, Estonia

jose.manuel.rodriguez.caballero@ut.ee

Received: 1/22/19, Accepted: 1/1/20, Published: 1/8/20

Abstract

We prove that the expansion of some classical infinite product is closely related to the sequence of 2-densely divisible numbers.

1. Introduction

Motivated by a mechanical problem, C. G. J. Jacobi [6] wrote the expression¹

$$\frac{\sum (-1)^{\frac{\mu-1}{2}} \mu q^{\frac{1}{4}\mu^2} \cdot \sum (-1)^{\frac{\nu-1}{2}} q^{\frac{1}{4}\nu^2} \left(x^{\nu} y^{\nu} - x^{-\nu} y^{-\nu} \right)}{\sum (-q)^{m^2} x^{2m} \cdot \sum (-q)^{n^2} y^{2n}},$$

where μ and ν run through the positive odd integers, whereas m and n run by the integers.

Let $z=xy,\ q=e^{\tau\pi i}$ and $z=e^{\zeta\pi i}$. Using complex integration techniques, L. Kronecker [11] found several identities related to Jacobi's expression, e.g.,

$$2\pi i x y \sqrt{q} F(q, x, y) = \frac{\vartheta'(0) \vartheta(\xi + \eta)}{\vartheta\left(\xi + \frac{\tau}{2}\right) \vartheta\left(\eta + \frac{\tau}{2}\right)},$$

where

$$\begin{split} \vartheta \left(\zeta \right) & := & -i \sum_{\nu} \left(-1 \right)^{\frac{\nu-1}{2}} q^{\frac{1}{4}\nu^2} \left(z^{\nu} - z^{-\nu} \right), \\ F(q,x,y) & := & \sum_{\mu} \sum_{\nu} q^{\frac{1}{2}\,\mu\,\nu} \left(x^{\mu} y^{\nu} - x^{-\mu} y^{-\nu} \right). \end{split}$$

¹We omit the range of summation of μ , ν , m and n in order to preserve the notation from our main historical reference [11]. Throughout this introduction, we will keep this convention.

C. Jordan [7] made some substitutions in Kronecker's identities in order to obtain the expansion of the multiplicative inverse of some θ -functions², e.g.,

$$\frac{1}{\theta(w)} = \frac{1}{1-w} + \sum_{\substack{n,m>0\\n \neq m \pmod{2}}} (-1)^n q^{\frac{nm}{2}} w^{\frac{m-n-1}{2}}, \tag{1}$$

where $\theta(w)$ is associated to the formal powers series given by the initial condition $\theta(0) = 1$ and the functional equations

$$\theta(q w) = -w^{-1} \theta(w),$$

$$\theta(w^{-1}) = -w^{-1} \theta(w).$$

Using a powerful tool from algebraic geometry known as Gttsche's formula, T. Hausel, E. Letellier and F. Rodriguez-Villegas [5] studied a polynomial $C_n(q)$ which contains important topological information³ about a rather mysterious space named the Hilbert scheme⁴ of n points on the algebraic torus $(\mathbb{C}\setminus\{0\})\times(\mathbb{C}\setminus\{0\})$. This polynomial, named the E-polynomial of the space, is given by the infinite product

$$\prod_{m=1}^{\infty} \frac{\left(1-t^{m}\right)^{2}}{\left(1-qt^{m}\right)\left(1-q^{-1}t^{m}\right)} = 1 + \sum_{n=1}^{\infty} \frac{C_{n}(q)}{q^{n}} t^{n},$$

which is equivalent to Jordan's identity (1) after a change of variables.

C. Kassel and C. Reutenauer [8, 9, 10] studied some number theoretical properties of $C_n(q)$ and of the polynomial $P_n(q) \in \mathbb{Z}[q]$ satisfying $C_n(q) = (q-1)^2 P_n(q)$. J. M. R. Caballero [1, 2, 3] referred to $P_n(q)$ as the Kassel–Reutenauer q-analog of the sum of divisors because $P_n(1)$ is the sum of divisors of n, as it was shown by C. Kassel and C. Reutenauer [8].

In virtue of (1), we can explicitly express $P_n(q)$ as

$$P_n(q) = \frac{1}{q-1} \sum_{\substack{d|n\\ d \equiv 1 \pmod{2}}} \left(q^{n+\frac{1}{2}\left(\frac{2n}{d}-d-1\right)} - q^{n-\frac{1}{2}\left(\frac{2n}{d}-d+1\right)} \right). \tag{2}$$

It easily follows from (2) that the coefficients of $P_n(q)$ are non-negative. Motivated by this fact, the author wrote the code

R.<q> = PolynomialRing(ZZ)

²Jordan never wrote this formula in [7], he only explained how to derive it from Kronecker's identities. Nevertheless, this identity can be found in [5].

³The information is about the so-called Hodge structure of the space.

 $^{^4}$ An informal way to visualize this space is to think that it is the set of all possible configurations of n sugar grains on the surface of a doughnut: each configuration is a point. The technical definition, due to A. Grothendieck, is based on the so-called functor of points.

3

def P(n):

```
return R(1/(q-1)*sum([q^(n + ZZ((2*n/d - d - 1)/2)) - q^(n-ZZ((2*n/d - d + 1)/2))
for d in n.divisors() if d%2 == 1))
```

```
print [n for n in [1..256] if len(P(n).coefficients()) == 2*n-1]
```

in SageMath in order to find the list of $n \ge 1$ for which all the coefficients of $P_n(q)$ are non-zero. Surprisingly, this integer sequence already exists: it is A174973 in [12], i.e., the sequence of 2-densely divisible numbers. T. Tao [14] defined these numbers in a more general way as follows.

Definition 1. If y > 1 and n is a natural number, we say that n is y-densely divisible if, for every $1 \le R \le n$, one can find a factor of n in the interval $[y^{-1}R, R]$.

The y-densely divisible numbers were used by the Polymath8 project [13], led by T. Tao, in order to improve the Zhang's bounded gaps between primes [15].

The aim of this paper is to prove the above-mentioned empirical connection between $P_n(q)$ and the sequence of 2-densely divisible numbers.

Theorem 2. For any integer $n \geq 1$, all the coefficients of $P_n(q)$ are non-zero if and only if n is 2-densely divisible.

Our method of proof will be rather atypical in number theory, because of the use of well-matched parentheses following our previous approach [4]. Despite the use of some terminology borrowed from the theory of formal languages⁵, our proof will be completely elementary and no advanced knowledge from language theory will be required to follow the argument step by step.

2. A Language-theoretic Approach

Let L be a finite set of real numbers. Consider the set⁶

$$\mathcal{T}(L;t) := \bigcup_{\ell \in L} [\ell, \ell + t], \qquad (3)$$

endowed with the topology inherited from \mathbb{R} , where t > 0 is an arbitrary real number. It is natural to associate any integer $n \geq 1$ with the topological space

$$\mathcal{T}_{\lambda}(n) := \mathcal{T}(L;t)$$

 $^{^5\}mathrm{We}$ use commutative diagrams in a trivial, set-theoretic, way. No knowledge of category theory is required.

⁶As usual, we use the notation [a, b], [a, b], [a, b] and [a, b] for the sets of real numbers x satisfying $a \le x \le b$, $a < x \le b$, $a \le x < b$ and a < x < b respectively.

where $L := \{\ln d : d | n\}$ and $t := \ln \lambda$. It follows that an integer $n \ge 1$ is λ -densely divisible if and only if $\mathcal{T}_{\lambda}(n)$ is connected (see Proposition 3).

We will show a relationship between the number of connected components of $\mathcal{T}(L;t)$ and the factorization of the Dyck word $\langle\!\langle S \rangle\!\rangle_{\lambda}$ introduced in [4], provided that $L = \{\ln s : s \in S\}$ and $t = \ln \lambda$. From this general result, we will derive a characterization of λ -densely divisible numbers in terms of the Dyck word $\langle\!\langle n \rangle\!\rangle_{\lambda}$, also introduced in [4]. We recall the definitions of $\langle\!\langle S \rangle\!\rangle_{\lambda}$ and $\langle\!\langle n \rangle\!\rangle_{\lambda}$ given in [4].

Definition 3. Consider a real number $\lambda > 1$ and a 2-letter alphabet $\Sigma = \{a, b\}$.

(i) Given a finite set of positive real numbers S, the λ -class of S is the word

$$\langle\!\langle S \rangle\!\rangle_{\lambda} := w_0 \, w_1 \, w_2 \dots w_{k-1} \in \Sigma^*, \tag{4}$$

such that each letter is given by

$$w_i := \begin{cases} a & \text{if } \mu_i \in S, \\ b & \text{if } \mu_i \in \lambda S, \end{cases}$$
 (5)

for all $0 \le i \le k-1$, where $\mu_0, \mu_1, ..., \mu_{k-1}$ are the elements of the symmetric difference $S \triangle \lambda S$ written in increasing order, i.e.,

$$\lambda S := \{\lambda s : s \in S\},$$

$$S \triangle \lambda S = \{\mu_0 < \mu_1 < \dots < \mu_{k-1}\}.$$
(6)

(ii) If S is the set of divisors of n, then we will write $\langle n \rangle_{\lambda} := \langle S \rangle_{\lambda}$. The word $\langle n \rangle_{\lambda}$ will be called the λ -class of n.

The proof that $\langle \langle n \rangle \rangle_{\lambda}$ and $\langle \langle S \rangle \rangle_{\lambda}$ are Dyck words was given in [4]. Also, the height of the Dyck path associated to $\langle \langle n \rangle \rangle_{\lambda}$ coincides with the generalized Hooley's Δ_{λ} -function

$$\Delta_{\lambda}(n) := \max_{R>0} \# \left\{ d|n: d \in \left] \lambda^{-1} R, R \right] \right\},\,$$

where R runs over the positive real numbers (see [4]).

The main language-theoretic will be the following theorem.

Theorem 4. Let $\lambda > 1$ be a real number.

- (i) For any integer $n \geq 1$, the number of connected components of $\mathcal{T}_{\lambda}(n)$ is precisely $\Omega(\langle\langle n \rangle\rangle_{\lambda})$.
- (ii) An integer $n \geq 1$ is λ -densely divisible if and only if $\langle \langle n \rangle \rangle_{\lambda}$ is an irreducible Dyck word.

The function $\Omega(w)$, formally defined using diagram (7), is just the number of irreducible Dyck words needed to obtain the Dyck word w as a concatenation of them⁷. We will derive Theorem 4 taking S to be the set of divisors of n in the following more general result.

Proposition 1. Let $\lambda > 1$ be a real number. Consider a finite set of positive real numbers S. Define $L := \{\ln s : s \in S\}$ and $t := \ln \lambda$. The number of connected components of $\mathcal{T}(L;t)$ is $\Omega(\langle\langle S \rangle\rangle_{\lambda})$.

3. Preliminaries

Consider a 2-letter alphabet $\Sigma = \{a, b\}$. The bicyclic semigroup⁸ \mathcal{B} is the monoid given by the presentation

$$\mathcal{B} := \langle a, b | a \, b = \varepsilon \rangle \,,$$

where ε is the empty word.

Let $\pi: \Sigma^* \longrightarrow \mathcal{B}$ be the canonical projection. The *Dyck language* \mathcal{D} is the kernel of π , i.e.,

$$\mathcal{D} := \pi^{-1} \left(\pi \left(\varepsilon \right) \right).$$

Interpreting the letters a and b as the displacements $1+\sqrt{-1}$ and $1-\sqrt{-1}$ in the complex plane \mathbb{C} , we can represent each word $w\in\mathcal{H}$ by means of a Dyck path, i.e., a lattice path from 0 to |w|, using only the above-mentioned steps and always keeping the imaginary part on the upper half-plane $\{z\in\mathbb{C}: \text{Im }z\geq 0\}$. For an example of a Dyck path, see Fig 1. It is easy to check that \mathcal{D} can be described as the language corresponding to all possible Dyck paths.

The language of reducible Dyck words is the submonoid

$$\widetilde{\mathcal{D}} := \{\varepsilon\} \cup \{u \, v : \, u, v \in \mathcal{D} \setminus \{\varepsilon\}\}\$$

of \mathcal{D} . The elements of the complement of $\widetilde{\mathcal{D}}$ in \mathcal{D} , denoted

$$\mathcal{P} := \mathcal{D} \backslash \widetilde{\mathcal{D}},$$

are called *irreducible Dyck words*.

It is well-known that \mathcal{D} is freely generated by \mathcal{P} , i.e., every word in \mathcal{D} may be formed in a unique way by concatenating a sequence of words from \mathcal{P} . So, there is a

⁷We use the notation $\Omega(w)$ in analogy to the arithmetical function $\Omega(n)$ which is equal to the number of prime factors of n counting their multiplicities.

⁸In this paper, the bicyclic semigroup is not just a semigroup, but also a monoid. We preserved the word "semigroup" in the name for historical reasons.

unique morphism of monoids⁹ $\Omega : \mathcal{D} \longrightarrow \mathbb{N}$, where \mathbb{N} is the monoid of non-negative integers endowed with the ordinary addition, such that the diagram

$$\mathcal{D} \xrightarrow{\mathcal{P}^*} \mathcal{P}^* \\
\Omega & \downarrow \\
\mathbb{N}$$
(7)

6

commutes, where $\mathcal{D} \longrightarrow \mathcal{P}^*$ is the identification of \mathcal{D} with the free monoid \mathcal{P}^* and $\mathcal{P}^* \longrightarrow \mathbb{N}$ is just the length of a word in \mathcal{P}^* considering each element of the set \mathcal{P} as a single letter (of length 1). In other words, $\Omega(w)$, with $w \in \mathcal{D}$, is the number of irreducible Dyck words that we need to obtain w as a concatenation of them.

We will use the following result proved in [4].

Proposition 2. Let S be a finite set of positive real numbers. For any real number $\lambda > 1$ we have that $\langle \langle S \rangle \rangle_{\lambda} \in \mathcal{D}$, i.e., $\langle \langle S \rangle \rangle_{\lambda}$ is a Dyck word.

4. Generic Case

Given a finite set of positive real numbers S, we says that a real number $\lambda > 1$ is regular (with respect to S) if S and λS are disjoint. Otherwise, we say that $\lambda > 1$ is singular (with respect to S). This notion was already introduced in [4].

It is easy to check that the number of singular values (corresponding to a finite set S) is finite. In this section we will prove Proposition 1 under the additional hypothesis that λ is regular. The proof that this proposition also holds true for singular values of λ will be deduced from the case for regular values in next section.

Lemma 1. Let $\lambda > 1$ be a real number. Consider a finite set of positive real numbers S. Suppose that λ is regular. Define $L := \{\ln s : s \in S\}$ and $t := \ln \lambda$. The space $\mathcal{T}(L;t)$ is disconnected if and only if $\langle\!\langle S \rangle\!\rangle_{\lambda}$ is a reducible Dyck word.

Proof. Define $L+t:=\{\ell+t:\ell\in L\}$. We have $L\cup(L+t)=\{\ln\mu_i:0\leq i\leq k-1\}$ because λ is regular. Here $\mu_0,\ \mu_1,\ ...,\ \mu_{k-1}$ are the numbers appearing in (6). Consider the word $\langle\!\langle S\rangle\!\rangle_{\lambda}=w_0\,w_1\ldots w_{k-1}$ as defined in (4).

Suppose that $\mathcal{T}(L;t)$ is disconnected. In virtue of (3), for some $0 \leq j < k-1$, we have $\ln \mu_j + t < \ln \mu_{j+1}$, i.e., $\lambda \mu_j < \mu_{j+1}$. Indeed, if for any $0 \leq j < k-1$, we have $\ln \mu_{j+1} \leq \ln \mu_j + t$, then the space $\mathcal{T}(L;t) = [\ln \mu_0, \ln (\mu_{k-1}) + t]$ will be a connected.

So, the list $\mu_0, \mu_1, ..., \mu_j$ contains as many elements from S as elements from λS . It follows from (5) that $u := w_0 w_1 ... w_j$ satisfies $|u|_a = |u|_b$. So, u is Dyck word. Therefore, $\langle\!\langle S \rangle\!\rangle_{\lambda}$ is a reducible Dyck word, because its nonempty proper prefix u is a Dyck word.

⁹A morphism of free monoids is just a fancy name for substitution.

7

Lemma 2. Let $\lambda > 1$ be a real number. Consider a finite set of positive real numbers S. Suppose that λ is regular. Define $L := \{\ln s : s \in S\}$ and $t := \ln \lambda$. The number of connected components of $\mathcal{T}(L;t)$ is $\Omega(\langle\langle S \rangle\rangle_{\lambda})$.

Proof. Let μ_0 , μ_1 , ..., μ_{k-1} be the numbers appearing in (6). Consider the word $\langle \langle S \rangle \rangle_{\lambda} = w_0 w_1 \dots w_{k-1}$ as defined in (4). By Proposition 2, $\langle \langle S \rangle \rangle_{\lambda}$ is a Dyck word. We proceed by induction on the number $c \geq 1$ of connected components of $\mathcal{T}(L;t)$.

Consider the case c = 1. Suppose that $\mathcal{T}(L;t)$ is connected. By Lemma 1, $\langle \langle S \rangle \rangle_{\lambda}$ is irreducible. Then $c = \Omega(\langle \langle S \rangle \rangle_{\lambda}) = 1$.

Suppose that the number of connected components of $\mathcal{T}(L;t)$ is $\Omega(\langle\langle S \rangle\rangle_{\lambda})$, provided that $\mathcal{T}(L;t)$ has at most c-1 connected components for some c>1. Assume that $\mathcal{T}(L;t)$ has precisely c connected components. By Lemma 1, $\langle\langle S \rangle\rangle_{\lambda}$ is reducible. Let $p_1, p_2, ..., p_h$ be irreducible Dyck words satisfying $\langle\langle S \rangle\rangle_{\lambda} = p_1 p_2 ... p_h$.

For some $0 \le j < k-1$ we have $p_1 = w_0 w_1 \dots w_j$. Notice that $\lambda \mu_i \le \mu_j < \mu_{j+1}$ for all $0 \le i \le j$ such that $\mu_i \in S$. Indeed, this follows from the fact that both p_1 and $p_2 \dots p_h$ are Dyck words.

Setting $R = \{\mu_0, \mu_1, ..., \mu_j\}$, it follows that $\langle S \backslash R \rangle \rangle_{\lambda} = p_2 p_3 ... p_h$.

The space $\mathcal{T}(L \setminus \ln(R); t)$, where $\ln(R) := \{\ln s : s \in R\}$, has precisely c - 1 connected components, because $\ln \mu_j + \ln \lambda < \ln \mu_{j+1}$. Applying the induction hypothesis, $c - 1 = \Omega(\langle \! \langle S \backslash R \rangle \! \rangle_{\lambda}) = h - 1$. Hence, $c = \Omega(\langle \! \langle S \rangle \! \rangle_{\lambda}) = h$.

By induction, we conclude that the number of connected components of $\mathcal{T}(L;t)$ is $\Omega(\langle\langle S \rangle\rangle_{\lambda})$.

5. General Case

Consider a 3-letter alphabet $\Gamma = \{a, b, c\}$. We define the *Hooley monoid* C to be the monoid given by the presentation

$$\mathcal{C} := \langle a, b, c | a b = \varepsilon, a c b = a b, c c = c \rangle$$
.

Let $\varphi: \Gamma^* \longrightarrow \mathcal{C}$ be the canonical projection. The *Hooley-Dyck language* \mathcal{H} is the kernel of φ , i.e.,

$$\mathcal{H}:=\varphi^{-1}\left(\varphi\left(\varepsilon\right)\right).$$

Associating the letters a, b and c to the displacements $1+\sqrt{-1}$, $1-\sqrt{-1}$ and 1, respectively, in the complex plane $\mathbb C$, it follows that each word $w\in\mathcal H$ can be represented by Schröder path, i.e., a lattice path from 0 to |w|, using only the above-mentioned steps and always keeping the imaginary part on the upper halfplane $\{z\in\mathbb C: \text{Im } z\geq 0\}$. For an example of Schröder path, see Fig 2.

Notice that the language \mathcal{H} corresponds to all possible Schröder paths having all the horizontal displacements (corresponding to c) strictly above the real axis.

The language of reducible Hooley-Dyck words is the submonoid

$$\widetilde{\mathcal{H}} := \{\varepsilon\} \cup \{u\,v:\, u, v \in \mathcal{H} \setminus \{\varepsilon\}\}$$

of \mathcal{H} . The elements of the complement of $\widetilde{\mathcal{H}}$ in \mathcal{H} , denoted

$$\mathcal{Q} := \mathcal{H} \backslash \widetilde{\mathcal{H}}$$

are called *irreducible Hooley-Dyck words*.

It is easy to check that \mathcal{Q} freely generates \mathcal{H} . So, there is a unique morphism of monoids $\Theta: \mathcal{H} \longrightarrow \mathbb{N}$, where \mathbb{N} is the monoid of non-negative integers endowed with the ordinary addition, such that the diagram

$$\mathcal{H} \xrightarrow{\mathcal{Q}^*} \mathcal{Q}^*$$

$$\Theta \xrightarrow{\searrow} \mathbb{N}$$
(8)

commutes, where $\mathcal{H} \longrightarrow \mathcal{Q}^*$ is the identification of \mathcal{Q} with the free monoid \mathcal{Q}^* and $\mathcal{Q}^* \longrightarrow \mathbb{N}$ is just the length of a word in \mathcal{Q}^* considering each element of the set \mathcal{Q} as a single letter (of length 1).

Lemma 3. Let $\gamma : \Gamma^* \longrightarrow \Sigma^*$ be the morphism of monoids given by $a \mapsto a$, $b \mapsto b$ and $c \mapsto \varepsilon$. We have that $\gamma(\mathcal{H}) \subseteq \mathcal{D}$.

Proof. Notice that the diagram

$$\begin{array}{ccc}
\Gamma^* & \xrightarrow{\varphi} & \mathcal{C} \\
\gamma \downarrow & & \psi \downarrow \\
\Sigma^* & \xrightarrow{\pi} & \mathcal{B}
\end{array}$$
(9)

commutes, where ψ is the morphism of monoids given by $\psi(C) := \gamma(C)$, for each equivalence class $C \in \mathcal{C}$.

Take $w \in \gamma (\ker \varphi)$. By definition, $w = \gamma(v)$ for some $v \in \ker \varphi$. Using the equalities

$$\pi(w) = \pi (\gamma(v))$$

$$= \psi (\varphi(v))$$

$$= \psi (\varphi(\varepsilon))$$

$$= \pi(\varepsilon),$$

we obtain that $w \in \ker \pi$. Hence, $\gamma(\ker \varphi) \subseteq \ker \pi$, i.e., $\gamma(\mathcal{H}) \subseteq \mathcal{D}$.

Lemma 4. The morphism γ defined in Lemma 3 satisfies $\gamma(Q) \subseteq \mathcal{P}$.

Proof. Take $q \in \mathcal{Q}$. By Lemma 3, we have $\gamma(q) \in \mathcal{D}$. Also, we have $\gamma(q) \neq \varepsilon$, because c^* and \mathcal{Q} are disjoint, where $c^* := \{\varepsilon, c, cc, ccc, ...\}$.

Suppose that $\gamma(q) = u \, v$, for some $u, v \in \mathcal{D} \setminus \{\varepsilon\}$. It follows that $q = \hat{u} \, \hat{v}$ for some $\hat{u}, \hat{v} \in \Gamma^*$ satisfying $\gamma(\hat{u}) = u$ and $\gamma(\hat{v}) = v$. Using the commutative diagram 9, the fact that ψ is an isomorphism and the equalities,

$$\begin{split} \varphi(\hat{u}) &= \psi^{-1} \left(\pi \left(\gamma(\hat{u}) \right) \right) \\ &= \psi^{-1} \left(\pi \left(u \right) \right) \\ &= \psi^{-1} \left(\pi \left(\varepsilon \right) \right) \\ &= \varphi \left(\varepsilon \right), \end{split}$$

we obtain that $\hat{u} \in \ker \varphi = \mathcal{H}$. Similarly, $\hat{v} \in \ker \varphi = \mathcal{H}$. Hence, $q \notin \mathcal{Q}$, contrary to our hypothesis. By reductio ad absurdum, $\gamma(\mathcal{Q}) \subseteq \mathcal{P}$.

Lemma 5. Given $w \in \mathcal{H}$, we have $\Theta(w) = \Omega(\gamma(w))$, where γ is the morphism defined in Lemma 3, Θ is given by diagram (8) and Ω is given by diagram (7).

Proof. Notice that the diagram

$$\begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathcal{Q}^* \\ \downarrow & & \downarrow \\ \mathcal{D} & \longrightarrow & \mathcal{P}^* \end{array}$$

commutes, where $\mathcal{D} \longrightarrow \mathcal{P}^*$ is the identification of \mathcal{D} with the free monoid \mathcal{P}^* , $\mathcal{H} \longrightarrow \mathcal{Q}^*$ is the identification of \mathcal{H} with the free monoid \mathcal{Q}^* , $\mathcal{Q}^* \longrightarrow \mathcal{P}^*$ is the morphism of monoids given by $w \mapsto \gamma(w)$ for all $w \in \mathcal{Q}$ (this function is well-defined in virtue of Lemma 4) and $\mathcal{H} \longrightarrow \mathcal{D}$ is given by $w \mapsto \gamma(w)$ (this function is well-defined in virtue of Lemma 3). It follows that $\Theta(w) = \Omega(\gamma(w))$ holds for each $w \in \mathcal{H}$.

Lemma 6. Let $\alpha : \Gamma^* \longrightarrow \Sigma^*$ be the morphism of monoids given by $a \mapsto a$, $b \mapsto b$ and $c \mapsto ab$. We have that $\alpha(\mathcal{H}) \subseteq \mathcal{D}$.

Proof. Notice that the diagram

$$\begin{array}{ccc}
\Gamma^* & \xrightarrow{\varphi} & \mathcal{C} \\
\alpha \downarrow & \chi \downarrow \\
\Sigma^* & \xrightarrow{\pi} & \mathcal{B}
\end{array}$$
(10)

commutes, where χ is the morphism of monoids given by $\chi(C) := \alpha(C)$, for each equivalence class $C \in \mathcal{C}$.

Take $w \in \alpha(\ker \varphi)$. By definition, $w = \alpha(v)$ for some $v \in \ker \varphi$. Using the equalities

$$\begin{array}{rcl} \pi(w) & = & \pi\left(\alpha(v)\right) \\ & = & \chi\left(\varphi(v)\right) \\ & = & \chi\left(\varphi(\varepsilon)\right) \\ & = & \pi(\varepsilon), \end{array}$$

we obtain that $w \in \ker \pi$. Hence, $\alpha(\ker \varphi) \subseteq \ker \pi$, i.e., $\alpha(\mathcal{H}) \subseteq \mathcal{D}$.

Lemma 7. The morphism α defined in Lemma 6 satisfies $\alpha(\mathcal{Q}) \subseteq \mathcal{P}$.

Proof. Take $q \in \mathcal{Q}$. By Lemma 6, we have $\alpha(q) \in \mathcal{D}$. Using the fact that α does not decrease length, we have that $\alpha(q) \neq \varepsilon$, because $\varepsilon \notin \mathcal{Q}$.

Suppose that $\alpha(q) = u \, v$ for some $u, v \in \mathcal{D} \setminus \{\varepsilon\}$. It follows that $q = \hat{u} \, \hat{v}$ for some $\hat{u}, \hat{v} \in \Gamma^*$ satisfying $\alpha(\hat{u}) = u$ and $\alpha(\hat{v}) = v$. Using the commutative diagram 10, the fact that χ is an isomorphism and the equalities,

$$\varphi(\hat{u}) = \chi^{-1} (\pi (\alpha(\hat{u})))$$

$$= \chi^{-1} (\pi (u))$$

$$= \chi^{-1} (\pi (\varepsilon))$$

$$= \varphi (\varepsilon),$$

we obtain that $\hat{u} \in \ker \varphi = \mathcal{H}$. Similarly, $\hat{v} \in \ker \varphi = \mathcal{H}$. Hence, $q \notin \mathcal{Q}$, contrary to our hypothesis. By reductio ad absurdum, $\alpha(\mathcal{Q}) \subseteq \mathcal{P}$.

Lemma 8. Given $w \in \mathcal{H}$, we have $\Theta(w) = \Omega(\alpha(w))$, where α is the morphism defined in Lemma 6, Θ is given by diagram (8) and Ω is given by diagram (7).

Proof. Notice that the diagram

$$\begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathcal{Q}^* \\ \downarrow & & \downarrow \\ \mathcal{D} & \longrightarrow & \mathcal{P}^* \end{array}$$

commutes, where $\mathcal{D} \longrightarrow \mathcal{P}^*$ is the identification of \mathcal{D} with the free monoid \mathcal{P}^* , $\mathcal{H} \longrightarrow \mathcal{Q}^*$ is the identification of \mathcal{H} with the free monoid \mathcal{Q}^* , $\mathcal{Q}^* \longrightarrow \mathcal{P}^*$ is the morphism of monoids given by $w \mapsto \alpha(w)$ for all $w \in \mathcal{Q}$ (this function is well-defined in virtue of Lemma 7) and $\mathcal{H} \longrightarrow \mathcal{D}$ is given by $w \mapsto \alpha(w)$ (this function is well-defined in virtue of Lemma 6). It follows that $\Theta(w) = \Omega(\alpha(w))$ holds for each $w \in \mathcal{H}$.

The following construction was previously used in [4].

Definition 5. Given a finite set of positive real numbers S, let $\nu_0, \nu_1, ..., \nu_{r-1}$ be the elements of the union $S \cup \lambda S$ written in increasing order, i.e.,

$$S \cup \lambda S = \{ \nu_0 < \nu_1 < \dots < \nu_{r-1} \}.$$

Consider the word

$$[S]_{\lambda} := u_0 u_1 u_2 \dots u_{r-1} \in \Gamma^*,$$

where each letter is given by

$$u_i := \begin{cases} a & \text{if } \nu_i \in S \setminus (\lambda S), \\ b & \text{if } \nu_i \in (\lambda S) \setminus S, \\ c & \text{if } \nu_i \in S \cap \lambda S, \end{cases}$$

for all $0 \le i \le r - 1$.

Example 6. The Dyck path corresponding to $\langle (126) \rangle_2 = aabaababbabb$ is shown in Fig 1. The Schröder path corresponding to $[126]_2 = acabcaabccabbcabcb$ is shown in Fig 2.

Lemma 9. Consider a finite set of positive real numbers S. For any real number $\lambda > 1$ we have $[S]_{\lambda} \in \mathcal{H}$.

Proof. We proceed by induction on the number of elements of S, denoted m := #S. For m = 0, we have $[S]_{\lambda} = \varepsilon \in \mathcal{H}$.

Given m > 0, suppose that for each finite set of positive real numbers S, we have $[\![S]\!]_{\lambda} \in \mathcal{H}$, provided that #S < m. Take an arbitrary finite set of real numbers S having precisely #S = m elements. Denote $\nu_0, \nu_1, \nu_2, \ldots, \nu_{r-1}$ the elements of $S \cup \lambda S$ written in increasing order. Consider the word $[\![S]\!]_{\lambda} = u_0 \, u_1 \, u_2 \ldots u_{r-1}$ as given in Definition 5.

The inequality $\lambda > 1$ implies that there exists at least one integer i satisfying $u_i \neq a$ and $1 \leq i \leq r - 1$. Define $j := \min \{i : u_i \neq a \text{ and } 1 \leq i \leq r - 1\}$.

Suppose that $u_i = b$. Setting $S' := S \setminus \{\nu_0\}$, we have

$$[S']_{\lambda} = u_0 u_1 u_2 \dots u_{j-2} \widehat{u}_{j-1} \widehat{u}_j u_{j+1} \dots u_{r-1},$$

where the hat indicates that the corresponding letter is suppressed. Indeed, $\lambda \nu_0 = \nu_j$ and $\nu_0 = \nu_1 = \dots = \nu_{j-1} = a$.

By the induction hypothesis, $[S']_{\lambda} \in \mathcal{H}$. Hence, $[S]_{\lambda} \in \mathcal{H}$, because it can be transformed into $[S']_{\lambda} \in \mathcal{H}$ using the relation $ab = \varepsilon$ from \mathcal{C} .

Suppose that $u_j = c$ and $u_{j+1} = b$. Setting $S' := S \setminus \{\nu_0\}$, we have

$$[S']_{\lambda} = u_0 u_1 u_2 \dots u_{j-2} u_{j-1} \widehat{u}_j u_{j+1} \dots u_{r-1}.$$

By the induction hypothesis, $[S']_{\lambda} \in \mathcal{H}$. Hence, $[S]_{\lambda} \in \mathcal{H}$, because it can be transformed into $[S']_{\lambda} \in \mathcal{H}$ using the relation a c b = a b.

Suppose that $u_i = c$ and $u_{i+1} = c$. Setting $S' := S \setminus \{\nu_0\}$, we have

$$[S']_{\lambda} = u_0 u_1 u_2 \dots u_{j-2} u_{j-1} \widehat{u}_j u_{j+1} \dots u_{r-1}.$$

By the induction hypothesis, $[S']_{\lambda} \in \mathcal{H}$. Hence, $[S]_{\lambda} \in \mathcal{H}$, because it can be transformed into $[S']_{\lambda} \in \mathcal{H}$ using the relation c c = c.

Finally, suppose that $u_j = c$ and $u_{j+1} = a$. Setting $S' := S \setminus \{\nu_0\}$, we have

$$[S']_{\lambda} = u_0 u_1 u_2 \dots u_{j-2} u_{j-1} \widehat{u}_j u_{j+1} \dots u_{r-1}.$$

By the induction hypothesis, $[S']_{\lambda} \in \mathcal{H}$. Then using the rewriting rules from C, the word

$$u_0 u_1 u_2 \dots u_{j-2} u_{j-1} \widehat{u}_j u_{j+1} \dots u_{r-1}$$

can be reduced to

$$u_0 u_1 u_2 \dots u_{j-2} u_{j-1} \widehat{u}_j u_{i_1} u_{i_2} \dots u_{i_h},$$

where $u_{i_1} = b$, and the word obtained after the reduction $u_{j-1} u_{i_1} = \varepsilon$,

$$u_0 u_1 u_2 \dots u_{j-2} u_{i_2} \dots u_{i_h},$$

can be reduced to the empty word using the rewriting rules from \mathcal{C} . So, using the rewriting rules from \mathcal{C} , the original word $[\![S]\!]_{\lambda}$ can be reduced to

$$u_0 u_1 u_2 \dots u_{j-2} u_{j-1} u_j u_{i_1} u_{i_2} \dots u_{i_h},$$

and the word obtained after the reduction $u_{j-1} u_j u_{i_1} = a c b = a b = \varepsilon$, can be reduced to the empty word as we mentioned above. Hence, $[S]_{\lambda} \in \mathcal{H}$.

By induction, we conclude that $[S]_{\lambda} \in \mathcal{H}$ for any finite set of positive real numbers S.

Lemma 10. Consider a finite set of positive real numbers S. For any real number $\lambda > 1$, we have $\gamma(\llbracket S \rrbracket_{\lambda}) = \langle \langle S \rangle \rangle_{\lambda}$, where γ is the morphism defined in Lemma 3.

13

Proof. In virtue of the identity $(S \cup \lambda S) \setminus (S \cap \lambda S) = S \triangle \lambda S$, the result follows just combining Definition 3 and Definition 5.

Example 7. Lemma 10 can be illustrated by means of Fig 1 and Fig 2.

Lemma 11. Consider a finite set of positive real numbers S. For any real number $\lambda > 1$, the equality $\alpha(\llbracket S \rrbracket_{\lambda}) = \langle \langle S \rangle \rangle_{\lambda'}$ holds for all $\lambda' \in]\lambda, +\infty[$ near enough to λ , where α is the morphism defined in Lemma 6.

Proof. For any $\lambda' \in]\lambda, +\infty[$, the change from $S \cup \lambda S$ to $S \cup \lambda' S$ keeps fixed the points in S and it displaces the points in λS to the right. This displacement to the right can be made as small as we want just setting λ' near enough to λ . In particular, any point in $S \cap \lambda S$, after this transformation, becomes a pair of different points, one stays at the original position and the other one displaces to the right an arbitrary small distance. Notice that $S \cap \lambda' S = \emptyset$ for all $\lambda' \in]\lambda, +\infty[$ near enough to λ (this guarantees that λ' will be regular). Combining Definition 3 and Definition 5, we conclude that $\alpha([S]_{\lambda}) = \langle\!\langle S \rangle\!\rangle_{\lambda'}$ provided that $\lambda' \in]\lambda, +\infty[$ is near enough to λ .

Example 8. Lemma 11 can be illustrated by means of Fig 2 and Fig 3.

Figure 1: Representation of $\langle (126) \rangle_2 = aabaababbabb$.

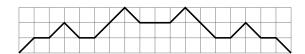


Figure 2: Representation of $[126]_2 = acabcaabccabbcabcb$.

Lemma 12. Let S be a finite set of positive real numbers. The step function $]1,+\infty[\longrightarrow \mathbb{N}, \text{ given by } \lambda \mapsto \Omega(\langle\!\langle S \rangle\!\rangle_{\lambda}), \text{ is continuous from the right, i.e., given a real number } \lambda > 1, \text{ for each real number } \lambda' \in]\lambda,+\infty[, \text{ we have } \Omega(\langle\!\langle S \rangle\!\rangle_{\lambda}) = \Omega(\langle\!\langle S \rangle\!\rangle_{\lambda'}), \text{ provided that } \lambda' \text{ is near enough to } \lambda.$

Proof. By Lemma 9, $[\![S]\!]_{\lambda} \in \mathcal{H}$. By Lemma 10, $\gamma([\![S]\!]_{\lambda}) = \langle\!(S\rangle\!)_{\lambda}$, where γ is the morphism defined in Lemma 3. Using Lemma 5 we obtain $\Theta([\![S]\!]_{\lambda}) = \Omega(\langle\!(S\rangle\!)_{\lambda})$. By Lemma 11, $\alpha([\![S]\!]_{\lambda}) = \langle\!(S\rangle\!)_{\lambda'}$ for all $\lambda' \in]\![\lambda, +\infty[$ near enough to λ , where α is the morphism defined in Lemma 6. Using Lemma 8 we obtain $\Theta([\![S]\!]_{\lambda}) = \Omega(\langle\!(S\rangle\!)_{\lambda'})$ for all $\lambda' \in]\![\lambda, +\infty[$ near enough to λ . Therefore, $\Omega(\langle\!(S\rangle\!)_{\lambda}) = \Omega(\langle\!(S\rangle\!)_{\lambda'})$ for all $\lambda' \in]\![\lambda, +\infty[$ near enough to λ .

Lemma 13. Let L be a finite set of real numbers. Consider the step function $f:]0, +\infty[\longrightarrow \mathbb{N}$ such that $f_L(t)$ is the number of connected components of $\mathcal{T}(L;t)$. The function $f_L(t)$ is continuous from the right, i.e., given a real number t>0 we have $f_L(t')=f_L(t)$ for all $t'\in]t,+\infty[$ near enough to t.

Proof. Let $\ell_0, \ell_1, \ell_2, ..., \ell_{k-1}$ be the elements of L written in increasing order, i.e.,

$$L = \{\ell_0 < \ell_1 < \ell_2 < \dots < \ell_{k-1}\}.$$

Define $c := f_L(t)$. In virtue of (3), we can write $\mathcal{T}(L;t)$ as the union

$$\mathcal{T}(L,t) = [\ell_{i_1}, \ell_{i_2} + t] \cup [\ell_{i_3}, \ell_{i_4} + t] \cup \dots \cup [\ell_{i_{2c-1}}, \ell_{i_{2c}} + t]$$

of the pairwise disjoint sets $[\ell_{i_1}, \ell_{i_2} + t]$, $[\ell_{i_3}, \ell_{i_4} + t]$, ..., $[\ell_{i_{2c-1}}, \ell_{i_{2c}} + t]$, for some subsequence $i_1 < i_2 < i_3 < i_4 < ... < i_{2c-1} < i_{2c}$ of 0, 1, 2, ..., k-1. So, for all $t' \in]t, +\infty[$, the set $\mathcal{T}(L;t')$ can be expressed as the union

$$\mathcal{T}(L,t') = [\ell_{i_1},\ell_{i_2}+t'] \cup [\ell_{i_3},\ell_{i_4}+t'] \cup ... \cup [\ell_{i_{2c-1}},\ell_{i_{2c}}+t'],$$

where some of sets in the list $[\ell_{i_1},\ell_{i_2}+t']$, $[\ell_{i_3},\ell_{i_4}+t']$, ..., $[\ell_{i_{2c-1}},\ell_{i_{2c}}+t']$ may overlap among them. Assuming that t' is near enough to t, we guarantee that the sets $[\ell_{i_1},\ell_{i_2}+t']$, $[\ell_{i_3},\ell_{i_4}+t']$, ..., $[\ell_{i_{2c-1}},\ell_{i_{2c}}+t']$ are pairwise disjoint. Hence, $f_L(t)=f_L(t')$ for all $t'\in]t,+\infty[$ near enough to t. Therefore, $f_L(t)$ is continuous from the right.

Using the previous auxiliary results, we can prove Proposition 1.

Proof. (Proposition 1) By Lemma 12, the step function $]1, +\infty[\longrightarrow \mathbb{N},$ given by $\lambda \mapsto \Omega(\langle\!\langle S \rangle\!\rangle_{\lambda})$, is continuous from the right. By Lemma 13, the step function $f_L :]0, +\infty[\longrightarrow \mathbb{N}$ is continuous from the right, where $f_L(t)$ is the number of connected components of $\mathcal{T}(L;t)$. Notice that the step function $]1, +\infty[\longrightarrow \mathbb{N},$ given by $\lambda \mapsto f_L(\ln \lambda) - \Omega(\langle\!\langle S \rangle\!\rangle_{\lambda})$, is continuous from the right, because the natural logarithm is continuous on $]0, +\infty[$. By Lemma 2, $f_L(\ln \lambda') - \Omega(\langle\!\langle S \rangle\!\rangle_{\lambda'}) = 0$ for

all $\lambda' \in]\lambda, +\infty[$ near enough to λ (this guarantees that λ' is regular). Hence, $f_L(\ln \lambda) - \Omega(\langle S \rangle_{\lambda}) = 0$ follows by continuity from the right. Therefore, the space $\mathcal{T}(L;t)$ has precisely $\Omega(\langle S \rangle_{\lambda})$ connected components.

Proposition 3. Given a real number $\lambda > 1$, an integer $n \geq 1$ is λ -densely divisible if and only if $\mathcal{T}_{\lambda}(n)$ is connected.

Proof. Suppose that n is λ -densely divisible and $\mathcal{T}_{\lambda}(n)$ is disconnected. In virtue of (3), there are two divisors of n, denoted d < d', satisfying

$$\ln d + \ln \lambda < \ln d'$$

and there is no divisor of n on the interval]d, d'[. Using the fact that n is λ -densely divisible, there is a divisor of n on the interval $[\lambda^{-1} R, R]$, with $1 \leq R := \lambda \ (d + \epsilon) < d' \leq n$, for all $\epsilon > 0$ small enough. Notice that $[\lambda^{-1} R, R] \subseteq]d, d'[$. So, there is a divisor of n on the interval]d, d'[. By reductio ad absurdum, if n is λ -densely divisible then $\mathcal{T}_{\lambda}(n)$ is connected.

Now, suppose that $\mathcal{T}_{\lambda}(n)$ is connected and n is not λ -densely divisible. Then there is some $R \in [1, n]$ such that there is no divisor of n on the interval $[\lambda^{-1} R, R]$. It follows that $R > \lambda > 1$, because 1 is a divisor of n. Let d be the largest divisor of n satisfying $d \leq \lambda^{-1} R$. It follows that d < n, because $\lambda^{-1} R \leq \lambda^{-1} n < n$. Let d' be the smallest divisor of n satisfying $\lambda^{-1} R < d'$. Notice that $\lambda^{-1} R < d'$, $\lambda d \leq R$ and there is no divisor of n on the interval [d, d'].

Using the fact that $\mathcal{T}_{\lambda}(n)$ is connected, we have that

$$[\ln d, \ln d + \ln \lambda] \cap [\ln d', \ln d' + \ln \lambda] \neq \emptyset.$$

It follows that $\ln d' \leq \ln d + \ln \lambda$, i.e., $d' \leq \lambda d$. So, $\lambda^{-1}R < d' \leq \lambda d \leq R$. In particular, $d' \in [\lambda^{-1}R, R]$. By reductio ad absurdum, if $\mathcal{T}_{\lambda}(n)$ is connected then n is λ -densely divisible.

We proceed now with the proof of the main result of this paper.

Proof. (Theorem 4) Statement (i) follows by Proposition 1 taking S to be the set of divisors of n.

Take an integer $n \geq 1$. By Proposition 3, n is λ -densely divisible if and only if $\mathcal{T}_{\lambda}(n)$ is connected. By Proposition 1, the space $\mathcal{T}_{\lambda}(n)$ is connected if and only if $\langle \langle n \rangle \rangle_{\lambda}$ is irreducible. Hence, n is λ -densely divisible if and only if $\langle \langle n \rangle \rangle_{\lambda}$ is irreducible. Therefore, statement (ii) holds.

6. Proof of the Main Result

We proceed to prove our main result.

Proof of Theorem 2. In virtue of (2), the sequence of coefficients of $(q-1)P_n(q)$, read from left to right in the traditional degree-decreasing expansion, can be identified¹⁰ with the Dyck word $\langle n \rangle_2$ via the correspondence¹¹ +1 $\mapsto a$, -1 $\mapsto b$ and $0 \mapsto \varepsilon$.

Suppose that n is 2-densely divisible. In virtue of Theorem 4 (ii), the polynomial $(q-1)P_n(q)$ corresponds to the irreducible Dyck word $\langle n \rangle_2$. For example, the polynomial

$$(q-1)P_6(q) = \underbrace{q^{11}}_{(} + \underbrace{q^6}_{(} - \underbrace{q^5}_{)} - \underbrace{1}_{)}$$

corresponds to the Dyck word aabb, associated to the well-matched parentheses (()). So, all the coefficients of $P_n(q) - \frac{q^{2n-1}-1}{q-1}$ are non-negatives. It follows that all the coefficients of $P_n(q)$ are non-zero.

Now, suppose that n is not 2-densely divisible. In virtue of Theorem 4 (ii), the polynomial $(q-1)P_n(q)$ corresponds to the reducible Dyck word $\langle n \rangle_2$. For example, the polynomial

$$(q-1)P_{14}(q) = \underbrace{q^{27}}_{(} - \underbrace{q^{15}}_{)} + \underbrace{q^{12}}_{(} - \underbrace{1}_{)}$$

corresponds to the Dyck word abab, associated to the well-matched parentheses ()(). So, $(q-1)P_n(q) = U_n(q) + V_n(q)$, for two polynomials $U_n(q)$ and $V_n(q)$ corresponding to some non-empty Dyck words u and v, respectively, such that $\langle\langle n \rangle\rangle_2 = uv$. We assume that the degree of every term in $U_n(q)$ is greater than the degree of $V_n(q)$. In our example, $U_{14}(q) = q^{27} - q^{15}$ and $V_{14}(q) = q^{12} - 1$. Let k be the degree of $V_n(q)$. It follows that the coefficient of q^k in $P_n(q)$ is equal to zero.

Acknowledgement. The author is supported by the Air Force Office of Scientific Research through the project "Verification of quantum cryptography" (AOARD Grant FA2386-17-1- 4022).

References

- [1] J. M. R. Caballero, On Kassel–Reutenauer q-analog of the sum of divisors and the ring $\mathbb{F}_3[X]/X^2\mathbb{F}_3[X]$, Finite Fields Appl. **51** (2018), 183–190.
- [2] J. M. R. Caballero, On a function introduced by Erdös and Nicolas, J. Number Theory 194 (2019), 381–389.

¹⁰This fact was already remarked by J. M. R. Caballero [4].

¹¹Now it is clear that the fact that all the coefficients of $P_n(q)$ are non-negative is equivalent to the fact that $\langle n \rangle_2$ is not an arbitrary word, but a Dyck word.

[3] J. M. R. Caballero, Integers which cannot be partitioned into an even number of consecutive parts, *Integers* **19** (2019), #A20.

17

- [4] J. M. R. Caballero, Symmetric Dyck paths and Hooley's Δ-function. In: Brlek, S, Dolce, F., Reutenauer, C., Vandomme, E., eds. Combinatorics on Words: 11th International Conference, Words 2017, Vol. 10432, Springer, Montral, QC, Canada, pp. 252–261.
- [5] T. Hausel, E. Letellier, F. Rodriguez-Villegas, Arithmetic harmonic analysis on character and quiver varieties II, Adv. Math. 234 (2013), 85–128.
- [6] C. G. J. Jacobi, Sur la rotation d'un corps, J. Reine Angew. Math., 39 (1850), 293-350.
- [7] C. Jordan, Fonctions elliptiques: Calcul Integral, Springer-Verlag, Paris, 1894.
- [8] C. Kassel, C. Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, Ramanujan J. 46.3 (2018), 633-655.
- [9] C. Kassel, C. Reutenauer, Counting the ideals of given codimension of the algebra of Laurent polynomials in two variables, *Michigan Math. J.*, **67**.4 (2018), 715-741.
- [10] C. Kassel, C. Reutenauer, The Fourier expansion of $\eta(z)$ $\eta(2z)$ $\eta(3z)$ / $\eta(6z)$, Arch. Math. **108**.5 (2017), 453–463.
- [11] L. Kronecker, Zur theorie der elliptischen Functionen, Königlich Preussischen Akademie der Wissenschaften zu Berlin (1881), Berlin, Germany.
- [12] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences (2018) oeis.org.
- [13] D. H. J. Polymath, New equidistribution estimates of Zhang type, Algebra Number Theory 8.9 (2014), 2067–2199.
- [14] T. Tao, The distribution of primes in doubly densely divisible moduli (2016) https://terrytao.wordpress.com/2013/07/07/the-distribution-of-primes-in-doubly-densely-divisible-moduli/.
- [15] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2), 179.3 (2014), 1121-1174.