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Abstract
We give two explicit formulas for the Bernoulli numbers, one in terms of the Stirling
numbers of the second kind, and the other in terms of the Eulerian numbers. To
the best of our knowledge, these formulas are new. We also derive two additional
formulas that are likely already known.

1. Main Results

Definition 1. The Bernoulli numbers Bn can be defined by the generating function
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where |t| < 2⇡.

There are many explicit formulas known for the Bernoulli numbers [1, 2]. Discus-
sions on Bernoulli and Euler polynomials, and their generalized versions, can be
found in [3], [4], and [5]. Here we prove the following formulas.

Theorem 1.1. We have
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where Br+1 is the Bernoulli number, S(r, k) denotes the Stirling number of the
second kind, and the

⌦ r
r�l

↵
represent the Eulerian numbers.

Proof. Our proof of (1) and (2) relies on the following integral representation for
the Riemann Zeta function
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which is valid for all s 2 C \ {1}. Here Lis(�x) is the polylogarithm function. The
above result is derived using the Ramanujan’s master theorem in the appendix. The
same can also be obtained from formula 3.2.1.6 in the book [6].

The integral representation (5) can be used to obtain
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We use the following representation from [7]
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which can be easily proved using induction on r.
Now, we can deduce equation (1) from the following steps:
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and the fact that ⇣(�r) = (�1)r Br+1
r+1 . Here, �(·) and �(·, ·) are the Gamma and

Beta functions respectively.
Another representation for Li�r(�x) is the following from [8]:

Li�r(�x) =
1

(1 + x)r+1
·

r�1X

j=0

⌧
r

j

�
· (�x)r�j . (7)

Now, to derive equation (2) we follow the steps below
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and use the fact that ⇣(�r) = (�1)r Br+1
r+1 .

To prove (3) and (4), we use the integral representation
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and the representations (6) and (7). The above equation can be derived by the
result in the appendix.
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Appendix

Theorem 1.2. For all s 2 C \ {1}, and 0 < n < 1, we have
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where ⇣(s, 1� n) represents the Hurwitz zeta function.

Proof. Let
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be the generalized harmonic number. Then, we have the following generating func-
tion from [9]:
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We have the following explicit form:

H(s)
n = ⇣(s)� ⇣(s, n + 1). (11)

Next, we use Ramanujan’s master theorem from [10], which is,
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where the integral is convergent for 0 < Re(n) < 1, and after certain conditions are
satisfied by �. Now, using Ramanujan’s master theorem with equations (10) and
(11) gives us required equation (9).


