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Abstract
It is the main purpose of this paper to reconsider some bivariate convolution iden-
tities discovered by Pan and Sun (and later by Zagier) for Bernoulli polynomials
that involve two di↵erent types of sums (precisely, an ordinary sum and a binomial
sum) and rephrase them into more concise and convincing forms of identities based
on operation methods for the generating function. Furthermore, we extend one of
them to a third-order trivariate convolution identity.

1. Introduction

Let Bn and Bn(x), n = 0, 1, 2, . . ., be the Bernoulli numbers and polynomials defined
by the generating functions

F(t) : =
t

et � 1
=

1X

n=0

Bntn

n!
(|t| < 2⇡);

F(t, x) : =
text

et � 1
=

1X

n=0

Bn(x)tn

n!
(|t| < 2⇡),

respectively. It is easy to find the values B0 = 1, B1 = �1
2 , B2 = 1

6 , B3 = 0, B4 =
� 1

30 , and so on. Since F(t) + 1
2 t is an even function, if n � 3 is odd, then Bn = 0.

Further, we see that Bn(0) = Bn and Bn(x) is represented by

Bn(x) =
nX

i=0

✓
n

i

◆
Bix

n�i (n � 0).

Numerous recurrence relations for these numbers and polynomials have been
developed over the years (cf., e.g., [29, 26, 20, 16]). Among them, the most basic
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linear recurrence relations are

(i) B0 = 1,
nX

i=0

✓
n

i

◆
Bi = Bn (n � 2);

(ii) B0(x) = 1,
n�1X

i=0

✓
n

i

◆
Bi(x) = nxn�1 (n � 2),

(1.1)

which can be easily deduced from the functional identities F(t)et = F(t) + t and
F(t, x)et = F(t, x)+text, respectively. On the other hand, the most basic quadratic
recurrence relations are

(i)
nX

i=0

✓
n

i

◆
BiBn�i = �nBn�1 � (n� 1)Bn;

(ii)
nX

i=0

✓
n

i

◆
Bi(x)Bn�i(y) = n(x + y � 1)Bn�1(x + y)

� (n� 1)Bn(x + y).

(1.2)

The first identity (1.2) (i), usually attributed to Euler, reflects a property of the
identity F(t)2 = (1� t)F(t)� t d

dtF(t). The second identity (1.2) (ii) is a bivariate
polynomial analogue of the first, due to Nörlund [27] (cf. [20, (50.11.2)]).

Dilcher [15] and later Chen [10] extended (1.2) (ii) to the higher-order identity

X

j1+···+jk=n
j1,...,jk�0

✓
n

j1, . . . , jk

◆
Bj1(x1) · · ·Bjk(xk)

= k

✓
n

k

◆ k�1X

r=0

(�1)r

8
<

:

k�1�rX

j=0

✓
r + j

j

◆
s(k, r + 1 + j)yj

9
=

;
Bn�k+1+r(y)
n� k + 1 + r

,

(1.3)

where y := x1 + · · · + xk for the independent variables x1, . . . , xk and s(n, k) is the
Stirling number of the first kind defined by the generating function

(z)n := z(z � 1) · · · (z � n + 1) =
nX

k=0

s(n, k)zk. (1.4)

Of course (1.3) is very interesting in its own right, but we now pay attention
to extraordinary identities that involve two di↵erent kinds of convolution sums (an
ordinary sum and a binomial sum). Such type of identities was first discovered by
Miki [25] for Bernoulli numbers and later it was generalized in many directions. We
therefore refer them to as “Miki-type” identities en-bloc for convenience sake.

This paper is to a large extent motivated by Miki-type identities for Bernoulli
numbers and polynomials. Thus we begin by giving, in Section 2, a brief overview
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of the development process of these types of identities. Section 3 is just for some
elementary lemmas, which will be needed later in our discussion. In Section 4
we reconsider the bivariate formulas for Bernoulli polynomials discovered by Pan
and Sun, and later by Zagier, from our original point of view using the generating
function methods. As a result, we rephrase them into more concise and convincing
forms of identities. Subsequently, we extend one of them to a third-order trivariate
convolution identity and close this paper by asking an open question on the multiple
sum having any number of independent variables.

2. A Brief Overview on Miki-Type Identities

In 1978 Miki [25] discovered a remarkable identity that involves both ordinary and
binomial convolutions for Bernoulli numbers using a certain congruence modulo p2

(p an odd prime) for the Fermat quotient qp(a) := (ap�1 � 1)/p of base a, where a
is a positive integer with p - a. His identity can be stated as follows:

n�2X

i=2

Bi

i

Bn�i

n� i
=

n�2X

i=2

✓
n

i

◆
Bi

i

Bn�i

n� i
+ 2Hn

Bn

n
(n � 4), (2.1)

where Hn := 1+ 1
2+· · ·+ 1

n is the harmonic number. Shortly afterward, Shiratani and
Yokoyama [30] found another proof of (2.1) using p-adic analysis. An elementary
proof has been presented in [2] by developing a linear version of (2.1), namely

n�1X

i=1

Bi

i
kn�i =

n�1X

i=1

✓
n

i

◆
Bi

i
kn�i +

kX

j=1

(k � j)n

j
+ kn (Hn �Hk) (n, k � 1),

which is actually equivalent to Faulhaber’s formula for the power sum of the first k
positive integers. In particular, when k = 1, this linear one reduces to an identity
equivalent to (1.1) (i). For details, see [2, Sections 2 and 3].

Inspired by Miki’s work, Matiyasevich [24] discovered a di↵erent type of formula
and announced it on his website without proof. His original formula is

n�2X

i=2

BiBn�i =
2

n + 2

n�2X

i=2

✓
n + 2

i

◆
BiBn�i +

n(n + 1)
n + 2

Bn (n � 4), (2.2)

which was later proved and generalized in many directions (see, e.g., [11, 18, 1]).
On the other hand, in 2005 Gessel [19] established a polynomial analogue of (2.1)

using the Stirling numbers of the second kind and proved that for n � 1,

n�1X

i=1

Bi(x)
i

Bn�i(x)
n� i

=
2
n

n�1X

i=0

✓
n

i

◆
Bi(x)Bn�i

n� i
+ Bn�1(x) + 2Hn�1

Bn(x)
n

. (2.3)
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We can find a short and intelligible proof of (2.3) in Crabb’s paper [14] (see also [1]).
Further, a polynomial analogue of (2.2) can be stated as follows (cf. [1, 28]):

n�1X

i=1

Bi(x)Bn�i(x) =
2

n + 2

n�1X

i=0

✓
n + 2

i

◆
Bi(x)Bn�i +

n(n + 1)
6

Bn�1(x)

+ (n� 1)Bn(x) (n � 1).

(2.4)

In 2006 Pan and Sun [28] generalized both (2.3) and (2.4) to bivariate identities
using di↵erences and derivatives of polynomials and proved that if x 6= y, then

(i)
nX

i=0

Bi(x)Bn�i(y)

=
nX

i=0

✓
n + 1
i + 1

◆
Bi(x� y)Bn�i(y) + Bi(y � x)Bn�i(x)

i + 2

+
Bn+1(x) + Bn+1(y)

(x� y)2
� 2 (Bn+2(x)�Bn+2(y))

(n + 2)(x� y)3
(n � 0);

(ii)
n�1X

i=1

Bi(x)
i

Bn�i(y)
n� i

=
nX

i=1

✓
n� 1
i� 1

◆
Bi(x� y)Bn�i(y) + Bi(y � x)Bn�i(x)

i2

+ Hn�1
Bn(x) + Bn(y)

n
+

Bn(x)�Bn(y)
n(x� y)

(n � 1).

(2.5)

As we have seen, these identities involve some rational fraction terms with powers
of x� y in the denominator. However, these denominators disappear by virtue of a
certain formula for the di↵erence Bn(x)�Bn(y) (see Proposition 4.3 below).

Concerning a product of two Bernoulli polynomials, it is well-known that (cf.,
e.g., Nielsen [26, p.75], Carlitz [7, 8, 9] and Zagier [34, (A.30)])

Bi(x)
i

Bj(x)
j

=
b i+j

2 cX

m=0

⇢
1
i

✓
i

2m

◆
+

1
j

✓
j

2m

◆�
B2mBi+j�2m(x)

i + j � 2m

+ (�1)i�1 (i� 1)!(j � 1)!
(i + j)!

Bi+j (i, j � 1).

(2.6)

Without going into detail, (2.6) has an intimate connection with the integral
Z x

0
Br(t)Bs(t)dt =

r!s!
(r + s + 1)!

rX

m=0

(�1)m

✓
r + s + 1
r �m

◆
T (r,s)

m (x) (r, s � 1),

where T (r,s)
m (x) := Br�m(x)Bs+1+m(x)�Br�mBs+1+m (see [4, Proposition 1]).
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In 2014 Zagier [34, (A.35)] extended (2.6) to a bivariate version by using some
significant properties of the periodic extension Bn(x) := Bn(x � bxc) of Bn(x)
defined on the interval (0, 1]. Actually, finding the integral formula

Z 1

0
Br(x + ↵)Bs(x + �)dx = (�1)r�1 r!s!

(r + s)!
Br+s(↵� �) (r, s � 1),

where ↵,� are arbitrary real numbers, he proved that

Bi(x)
i

Bj(y)
j

=
max{i,j}X

m=0

⇢
1
i

✓
i

m

◆
Bi+j�m(y)
i + j �m

+
(�1)m

j

✓
j

m

◆
Bi+j�m(x)
i + j �m

�
B+

m(x� y)

+ (�1)j�1 (i� 1)!(j � 1)!
(i + j)!

B+
i+j(x� y) (i, j � 1),

where, using his notation, B+
k (x) denotes

B+
k (x) :=

Bk(x) + (�1)kBk(�x)
2

=
Bk(x) + Bk(x + 1)

2
= Bk(x) +

k

2
xk�1.

Taking here i + j = n � 2 and summing up over i = 1, 2, . . . , n � 1, he finally
established the Miki-type bivarite identity such that

n�1X

i=1

Bi(x)
i

Bn�i(y)
n� i

�Hn�1
Bn(x) + Bn(y)

n

=
n�1X

m=1

✓
n� 1

m

◆
(Bn�m(y) + (�1)mBn�m(x))

B+
m(x� y)

m

+ (1 + (�1)n)
B+

n (x� y)
n2

(see [34, (A.36)]).

(2.7)

As has been confirmed by Zagier himself, (2.7) is just the same as (2.5) (ii) if x 6= y.
Although all the above formulas are quadratic, Gessel [19, (4)] found a third-order

analogue of Miki’s (2.1) for Bernoulli numbers, namely

X

i+j+k=n
i,j,k�2

BiBjBk

ijk
�

X

i+j+k=n
i,j,k�2

✓
n

i, j, k

◆
BiBjBk

ijk
� 3Hn

n�2X

i=2

✓
n

i

◆
BiBn�i

i(n� i)

= 6Hn,2
Bn

n
� n2 � 3n + 5

4
Bn�2

n� 2
(n � 4),

(2.8)

where Hn,2 :=
P

1i<jn
1
ij (n � 2) is the generalized harmonic number.

It is worth mentioning that a slightly modified version of (2.8) has been derived
by Dunne and Schubert [18, Theorem 5.2] from a quite di↵erent point of view using
some basic tools from perturbative quantum field theory and string theory.

Besides the above identities, there are, as a matter of course, many interesting
new approaches and generalizations of Miki-type identities in various directions.
For instance, see [31, 13, 11, 12, 21, 22, 33, 17] and the references therein.
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3. Some Lemmas

To begin with, we present the following lemma related to the multivariate beta
integral, which will be needed later in our discussion.

Lemma 3.1. Let s � 2 and j1, . . . , js � 0 be arbitrary integers. With the variables
of integration u1, u2, . . . , us�1, let us set ws := 1�

Ps�1
i=1 ui. Then we have

Z 1

0

Z 1�u1

0
· · ·
Z 1�u1�···�us�2

0

⇣
uj1

1 · · ·ujs�1
s�1 wjs

s

⌘
dus�1 · · · du1

=
j1!j2! · · · js!

(j1 + · · · + js + s� 1)!
.

(3.1)

Proof. We will give an elementary proof by induction on s. In the case when s = 2,
several methods of proof are available, but perhaps the simplest being to use the
partial fraction decomposition of the reciprocal, namely

nY

r=0

1
X + r

=
1
n!

nX

r=0

(�1)r

✓
n

r

◆
1

X + r
(n � 0).

Actually, putting here X = j1 + 1 and n = j2, we have

Z 1

0
uj1

1 wj2
2 du1 =

Z 1

0
uj1

1 (1� u1)j2du1 =
j2X

r=0

(�1)r

✓
j2
r

◆Z 1

0
uj1+r

1 du1

=
j2X

r=0

(�1)r

✓
j2
r

◆
1

j1 + 1 + r
= j2!

j2Y

r=0

1
j1 + 1 + r

=
j1!j2!

(j1 + j2 + 1)!
,

and hence (3.1) holds true for s = 2. For the next induction step, assuming that
(3.1) is true for s = k � 3, we have

Z 1

0

Z 1�u1

0
· · ·
Z 1�u1�···�uk�1

0

⇣
uj1

1 · · ·ujk

k w
jk+1
k+1

⌘
duk · · · du1

=
j2! · · · jk+1!

(j2 + · · · + jk+1 + k � 1)!

Z 1

0

⇣
uj1

1 w
j2+j3+···+jk+1+k�1
2

⌘
du1

=
j2! · · · jk+1!

(j2 + · · · + jk+1 + k � 1)!
· j1!(j2 + · · · + jk+1 + k � 1)!

(j1 + · · · + jk+1 + k)!

=
j1!j2! · · · jk+1!

(j1 + · · · + jk+1 + k)!
,

which shows that (3.1) is true again for s = k+1; so the proof is now complete.

Another proof of (3.1) can be found in [32, (1.2)], where it was further generalized.
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We will utilize only the special cases of (3.1) for s = 2, 3 in the next Section 4,
namely, changing the notation of variables in integrals,

Z 1

0
ui(1� u)jdu =

i!j!
(i + j + 1)!

; (3.2)
Z 1

0

Z 1�u

0
uivj(1� u� v)kdvdu =

i!j!k!
(i + j + k + 2)!

. (3.3)

The following lemma is essentially the same as stated in [5, Lemma 1]. However,
for the sake of completeness we wish to give its full proof once again.

Lemma 3.2. Let m � 2 be an integer and f↵(Y ) be the function of Y defined by

f↵(Y ) :=
1

Y ↵ � 1
for ↵ 2 C\{0}.

Then for ↵1, . . . ,↵m 2 C\{0} satisfying m := ↵1 + · · · + ↵m 6= 0 we have

mY

i=1

f↵i(Y ) = fm(Y )

8
<

:1 +
m�1X

r=1

X

1i1<···<irm

rY

j=1

f↵ij
(Y )

9
=

; . (3.4)

Proof. Letting y1, . . . , ym be arbitrary non-zero numbers or polynomials, we first
consider the regular expansion

mY

i=1

(yi + 1)� 1 =
mY

i=1

yi

8
<

:1 +
m�1X

r=1

X

1i1<···<irm

rY

j=1

1
yij

9
=

; .

Dividing both sides of this by the left-hand side and then multiplying by
Qm

i=1 y�1
i ,

we have

mY

i=1

y�1
i =

 
mY

i=1

(yi + 1)� 1

!�1
8
<

:1 +
m�1X

r=1

X

1i1<···<irm

rY

j=1

1
yij

9
=

; . (3.5)

Setting here yi = 1/f↵i(Y ) = Y ↵i � 1 for i = 1, 2, . . . ,m, it can be shown that
 

mY

i=1

(yi + 1)� 1

!�1

= (Y m � 1)�1 = fm(Y ),

and thereby, we see that (3.5) implies (3.4).

In addition, we often use the obvious integral representations of Hn such that

Hn =
Z 1

0

1� un

1� u
du =

Z 1

0

1� (1� u)n

u
du (n � 1). (3.6)
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4. Main Results

We first prove the following Miki-type bivariate identities that involve two di↵erent
kinds of sums by manipulating the generating function F(t, x).

Theorem 4.1. For all integers n � 1 we have

(n + 2)
nX

i=0

Bi(x)Bn�i(y) =
nX

i=1

i

✓
n + 2
i + 2

◆
(x� y)i�1Bn�i(y)

+
nX

i=0

✓
n + 2

i

◆
(Bi(x)Bn�i(y � x) + Bi(y)Bn�i(x� y)) ;

(4.1)

(n + 1)
nX

i=1

Bi(x)Bn�i(y)
i

=
nX

i=1

✓
n + 1
i + 1

◆
(x� y)i�1Bn�i(y)

+
n�1X

i=0

✓
n + 1

i

◆✓
Bi(x)Bn�i(y � x) +

Bi(y)Bn�i(x� y)
n� i

◆

+ (n + 1)(Hn � 1)Bn(y) + (n + 1)Bn(x);

(4.2)

(n + 1)
n�1X

i=0

Bi(x)Bn�i(y)
n� i

=
nX

i=1

i

✓
n + 1
i + 1

◆
(x� y)i�1Bn�i(y)

+
n�1X

i=0

✓
n + 1

i

◆✓
Bi(y)Bn�i(x� y) +

Bi(x)Bn�i(y � x)
n� i

◆

+ (n + 1)(Hn � 1)Bn(x) + (n + 1)Bn(y)

(4.3)

and

n
n�1X

i=1

Bi(x)
i

Bn�i(y)
n� i

=
nX

i=1

✓
n

i

◆
(x� y)i�1Bn�i(y)

+
nX

i=1

1
i

✓
n

i

◆
(Bn�i(x)Bi(y � x) + Bn�i(y)Bi(x� y))

+ Hn�1 (Bn(x) + Bn(y)) .

(4.4)

Proof. Let u be an arbitrary real or complex number with u 6= 0, 1. Applying (3.4)
with m = 2 to ↵1 = u and ↵2 = 1� u, we obtain the identity

fu(Y )f1�u(Y ) = f1(Y ) (1 + fu(Y ) + f1�u(Y )) ,

that is, more concretely,

1
Y u � 1

· 1
Y 1�u � 1

=
1

Y � 1

✓
1 +

1
Y u � 1

+
1

Y 1�u � 1

◆
.
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We put here Y = et and then multiply both sides by u(1� u)t2e(y+u(x�y))t. Then,
noting that

e(y+u(x�y))t = exte(y�x)(1�u)t = eyte(x�y)ut,

one can find the functional identity

F(ut, x)F((1� u)t, y)

=u(1� u)teu(x�y)tF(t, y) + uF(t, x)F((1� u)t, y � x)
+ (1� u)F(t, y)F(ut, x� y).

(4.5)

Di↵erentiating both sides of (4.5) n times with respect to t and then setting t = 0,
we are able to derive the following identity:

nX

i=0

✓
n

i

◆
ui(1� u)n�iBi(x)Bn�i(y)

=n
n�1X

i=0

✓
n� 1

i

◆
ui+1(1� u)(x� y)iBn�1�i(y)

+
nX

i=0

✓
n

i

◆
u(1� u)n�iBi(x)Bn�i(y � x)

+
nX

i=0

✓
n

i

◆
un�i(1� u)Bi(y)Bn�i(x� y).

(4.6)

All the proofs of (4.1)–(4.4) we will give below rely on this identity.
(a) In order to deduce (4.1), we integrate both sides of (4.6) from 0 to 1 with
respect to u based on (3.2) and use the identities n

�n�1
i

� (i+1)!1!
(i+3)! = i+1

(n+2)(n+1)

�n+2
i+3

�

and
�n

i

� (n�i)!1!
(n+2�i)! = 1

(n+2)(n+1)

�n+2
i

�
. Then we get (4.1) immediately by multiplying

the whole by (n + 2)(n + 1).
(b) For (4.2), we gather the terms in (4.6) that involve Bn(y) in one place and
then divide the whole by u to obtain the identity

nX

i=1

✓
n

i

◆
ui�1(1� u)n�iBi(x)Bn�i(y) +

(1� u)n � (1� u)
u

Bn(y)

=n
n�1X

i=0

✓
n� 1

i

◆
ui(1� u)(x� y)iBn�1�i(y)

+
nX

i=0

✓
n

i

◆
(1� u)n�iBi(x)Bn�i(y � x)

+
n�1X

i=0

✓
n

i

◆
(1� u)un�1�iBi(y)Bn�i(x� y).
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We integrate both sides of this identity from 0 to 1 with respect to u based on (3.2).
Then using the identities n

�n�1
i

�
i!1!

(i+2)! = 1
n+1

�n+1
i+2

�
,
�n

i

� 0!(n�i)!
(n+1�i)! = 1

n+1

�n+1
i

�
and

�n
i

�1!(n�1�i)!
(n+1�i)! = 1

(n+1)(n�i)

�n+1
i

�
, from (3.6) we obtain (4.2) after multiplying the

whole by n + 1.
(c) Similar to the above, gathering the terms in (4.6) that involve Bn(x) in one
place and dividing the whole by 1� u, we get the identity

n�1X

i=0

✓
n

i

◆
ui(1� u)n�1�iBi(x)Bn�i(y) +

un � u

1� u
Bn(x)

=n
n�1X

i=0

✓
n� 1

i

◆
ui+1(x� y)iBn�1�i(y)

+
n�1X

i=0

✓
n

i

◆
u(1� u)n�1�iBi(x)Bn�i(y � x)

+
nX

i=0

✓
n

i

◆
un�iBi(y)Bn�i(x� y).

We now integrate both sides of this from 0 to 1 with respect to u. By applying
(3.2), (3.6) and the same binomial identities as used in (b) we can deduce (4.3) after
multiplying the whole by n + 1.
(d) For (4.4), we next gather the terms in (4.6) that involve Bn(x) and Bn(y) in
one place and then divide the whole by u(1� u) to obtain the identity

n�1X

i=1

✓
n

i

◆
ui�1(1� u)n�1�iBi(x)Bn�i(y) +

un�1 � 1
1� u

Bn(x)

+
(1� u)n�1 � 1

u
Bn(y)

=n
n�1X

i=0

✓
n� 1

i

◆
ui(x� y)iBn�1�i(y)

+
n�1X

i=0

✓
n

i

◆
(1� u)n�1�iBi(x)Bn�i(y � x)

+
n�1X

i=0

✓
n

i

◆
un�1�iBi(y)Bn�i(x� y).

In the same way as before, by integrating both sides of this from 0 to 1 with respect
to u based on (3.2) and using (3.6) we can deduce (4.4), as desired.

Here note that we can deduce (4.4) with no discussion at all of (d). Indeed, adding
two identities (4.2) and (4.3) side-by-side without changing the original array of the
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sums and using the trivial identities 1
i + 1

n�i = n
i(n�i) , (i + 1)

�n+1
i+1

�
= (n + 1)

�n
i

�

and Hn � 1
n = Hn�1 for n � 1, one can get (4.4).

Now exchanging x for y in (4.2) and comparing it with (4.3), one is able to
deduce the following very practical identity that can be used to connect two sums
for Bernoulli polynomials with di↵erent variables. However, we wish to introduce
below a straightforward proof of this not relying on (4.2) and (4.3), which was
personally communicated by Karl Dilcher to the present author (April, 2019).

Corollary 4.2. For an integer n � 1 we have
nX

i=1

✓
n + 1
i + 1

◆
(y � x)i�1Bn�i(x) =

nX

i=1

i

✓
n + 1
i + 1

◆
(x� y)i�1Bn�i(y). (4.7)

Proof. Since (4.7) is trivial if x = y, let us assume that x 6= y. As is easily seen,
the functional identity (e(x�y)t � 1)F(t, y) = F(t, x)� F(t, y) implies that

nX

i=1

✓
n

i

◆
(x� y)iBn�i(y) = Bn(x)�Bn(y). (4.8)

Multiplying both sides of (4.7) by (x� y)2, we shall prove the identity

nX

i=1

✓
n + 1
i + 1

◆
(y � x)i+1Bn�i(x) =

nX

i=1

i

✓
n + 1
i + 1

◆
(x� y)i+1Bn�i(y). (4.9)

For brevity denoting the left-hand side of (4.9) by P (n), we split up the right-hand
side of (4.9) as follows:

nX

i=1

i

✓
n + 1
i + 1

◆
(x� y)i+1Bn�i(y) = Q1(n)�Q2(n),

where

Q1(n) : =
nX

i=1

(i + 1)
✓

n + 1
i + 1

◆
(x� y)i+1Bn�i(y);

Q2(n) : =
nX

i=1

✓
n + 1
i + 1

◆
(x� y)i+1Bn�i(y).

Considering (4.8) with n+1 instead of n and separating the first term corresponding
to i = 1 in the sum on the left-hand side, we have

Q2(n) + (n + 1)(x� y)Bn(y) = Bn+1(x)�Bn+1(y).

This identity also yields, by symmetry in x and y,

P (n) + (n + 1)(y � x)Bn(x) = Bn+1(y)�Bn+1(x).
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So adding up these, it follows that

Q2(n) + P (n) = (n + 1)(x� y)(Bn(x)�Bn(y)). (4.10)

On the other hand, using (4.8) and the obvious identity (i + 1)
�n+1

i+1

�
= (n + 1)

�n
i

�
,

we see that Q1(n) can be expressed as follows:

Q1(n) =
nX

i=1

(i + 1)
✓

n + 1
i + 1

◆
(x� y)i+1Bn�i(y)

= (n + 1)(x� y)
nX

i=1

✓
n

i

◆
(x� y)iBn�i(y)

= (n + 1)(x� y)(Bn(x)�Bn(y)).

Thus we have only to compare this with (4.10) to show P (n) = Q1(n)�Q2(n).

From (4.7) we see that (4.3) can be obtained from (4.2) by interchanging x and y.
It should not be surprising that (4.7) is e↵ective not only for Bernoulli polynomials,
but also for any Appell polynomials (for example, such as Euler, Genocchi, monic
Hermite and modified Laguerre polynomials) with di↵erent variables (cf. [3]).

Note that the following proposition provides relationships between Pan-Sun’s
identities (2.5) (i)-(ii) and some of the identities in Theorem 4.1.

Proposition 4.3. In the case when x 6= y, (2.5) (i) (resp. (2.5) (ii)) is equivalent
to (4.1) (resp. (4.4)).

Proof. We now recall (4.8) and for brevity set

Un(x, y) :=
nX

i=1

✓
n

i

◆
(x� y)iBn�i(y) = Bn(x)�Bn(y). (4.11)

Using the identity i
�n+2

i+2

�
= (n + 2)

�n+1
i+1

�
� 2
�n+2

i+2

�
, the first sum on the right-hand

side of (4.1) can be written as, assuming that x 6= y,

nX

i=1

i

✓
n + 2
i + 2

◆
(x� y)i�1Bn�i(y)

= (n + 2)
nX

i=1

✓
n + 1
i + 1

◆
(x� y)i�1Bn�i(y)� 2

nX

i=1

✓
n + 2
i + 2

◆
(x� y)i�1Bn�i(y)

= (n + 2)
⇢

Un+1(x, y)
(x� y)2

�
✓

n + 1
1

◆
Bn(y)
x� y

�

� 2
⇢

Un+2(x, y)
(x� y)3

�
✓

n + 2
1

◆
Bn+1(y)
(x� y)2

�
✓

n + 2
2

◆
Bn(y)
x� y

�
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=
(n + 2) (Un+1(x, y) + 2Bn+1(y))

(x� y)2
� 2Un+2(x, y)

(x� y)3

=
(n + 2) (Bn+1(x) + Bn+1(y))

(x� y)2
� 2 (Bn+2(x)�Bn+2(y))

(x� y)3
.

From this identity we see that (2.5) (i) is equivalent to (4.1). On the other hand, the
equivalence between (2.5) (ii) and (4.4) can be easily shown by direct use of (4.11).
Indeed, for (2.5) (ii) we just have to apply the identity, divided both sides of (4.11)
by x � y 6= 0, to the first sum on the right-hand side of (4.4) and use the identity
1
i

�n
i

�
= n

i2

�n�1
i�1

�
. Of course the converse is also true.

As a consequence of Proposition 4.3, we state that Pan-Sun’s (2.5) (i) and (2.5) (ii)
can be supplanted by (4.1) and (4.4) valid even if x = y, respectively. In addition,
the equivalence between Zagier’s (2.7) and (4.4) can be verified using the identity

xi�1 = �1
i

�
Bi(x)� (�1)iBi(�x)

�
=

2
i

�
B+

i (x)�Bi(x)
�

(i � 1).

Indeed, by replacing here x with x�y and substituting it into each term of the first
sum on the right-hand side of (4.4) we get (2.7), and the vice versa is also true.

Next, we extend (4.1) to a third-order trivariate convolution in the same way as
the proof of Theorem 4.1 and establish the following identity.

Theorem 4.4. For an integer n � 2 we have

(n + 3)
X

i+j+k=n
i,j,k�0

Bi(x)Bj(y)Bk(z)

=
X

i+j+k=n�2
i,j,k�0

(i + 1)(j + 1)
✓

n + 3
k

◆
(y � x)i(z � x)jBk(x)

+
X

i+j+k=n�1
i,j,k�0

(i + 1)
✓

n + 3
j

◆
Pi,j,k(x, y, z)

+
X

i+j+k=n
i,j,k�0

✓
n + 3

i

◆
Qi,j,k(x, y, z),

(4.12)

where

Pi,j,k(x, y, z) : = (z � y)iBj(y)Bk(x� y) + (x� z)iBj(z)Bk(y � z)
+ (y � x)iBj(x)Bk(z � x)

and

Qi,j,k(x, y, z) : = Bi(z)Bj(x� z)Bk(y � z) + Bi(x)Bj(y � x)Bk(z � x)
+ Bi(y)Bj(z � y)Bk(x� y).
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Proof. Letting u, v and w be real or complex numbers satisfying u, v, w 6= 0, 1 and
u + v + w = 1, we consider the special case of (3.4) for m = 3, namely

fu(Y )fv(Y )fw(Y ) = f1(Y ) {1 + fu(Y ) + fv(Y ) + fw(Y )
+fu(Y )fv(Y ) + fv(Y )fw(Y ) + fw(Y )fu(Y )} .

We now put Y = et and multiply both sides by uvwt3e(ux+vy+wz)t. Then, since

e(ux+vy+wz)t = ezte(x�z)ute(y�z)vt = exte(y�x)vte(z�x)wt = eyte(z�y)wte(x�y)ut,

we can find the functional identity

A1 = A2 + A3 + A4 + A5 + A6 + A7 + A8, (4.13)

where each function Ai = Ai(t;u, v, w;x, y, z) (1  i  8) is exactly given by

A1 := F(ut, x)F(vt, y)F(wt, z); A2 := uvwt2e(y�x)vte(z�x)wtF(t, x);

A3 := vwte(z�y)wtF(t, y)F(ut, x� y); A4 := wute(x�z)utF(t, z)F(vt, y � z);

A5 := uvte(y�x)utF(t, x)F(wt, z � x); A6 := wF(t, z)F(ut, x� z)F(vt, y � z);
A7 := uF(t, x)F(vt, y � x)F(wt, z � x); A8 := vF(t, y)F(wt, z � y)F(ut, x� y).

Let us di↵erentiate partially both sides of (4.13) n times with respect to t and set
t = 0. Then, denoting

Ji = Ji(u, v, w;x, y, z) :=
@n

@tn
Ai

���
t=0

(1  i  8),

we see that (4.13) yields

J1 = J2 + J3 + J4 + J5 + J6 + J7 + J8, (4.14)

where each Ji (1  i  8) can be formulated as follows:

J1 =
X

i+j+k=n
i,j,k�0

✓
n

i, j, k

◆
uivjwkBi(x)Bj(y)Bk(z);

J2 = uvwn(n� 1)
X

i+j+k=n�2
i,j,k�0

✓
n� 2
i, j, k

◆
viwj(y � x)i(z � x)jBk(x);

J3 = vwn
X

i+j+k=n�1
i,j,k�0

✓
n� 1
i, j, k

◆
wiuk(z � y)iBj(y)Bk(x� y);

J4 = wun
X

i+j+k=n�1
i,j,k�0

✓
n� 1
i, j, k

◆
uivk(x� z)iBj(z)Bk(y � z);
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J5 = uvn
X

i+j+k=n�1
i,j,k�0

✓
n� 1
i, j, k

◆
uiwk(y � x)iBj(x)Bk(z � x);

J6 = w
X

i+j+k=n
i,j,k�0

✓
n

i, j, k

◆
ujvkBi(z)Bj(x� z)Bk(y � z);

J7 = u
X

i+j+k=n
i,j,k�0

✓
n

i, j, k

◆
vjwkBi(x)Bj(y � x)Bk(z � x);

J8 = v
X

i+j+k=n
i,j,k�0

✓
n

i, j, k

◆
wjukBi(y)Bj(z � y)Bk(x� y),

where
� n
i,j,k

�
:= n!

i!j!k! (n, i, j, k � 0) is the multinomial coe�cient. Further, letting

Ii = Ii(x, y, z) :=
Z 1

0

Z 1�u

0
Ji dvdu, (1  i  8)

we obtain from (4.14) that

I1 = I2 + I3 + I4 + I5 + I6 + I7 + I8. (4.15)

Here, using the multiple integral (3.3), each Ii can be calculated as follows:

I1 =
1

(n + 2)2

X

i+j+k=n
i,j,k�0

Bi(x)Bj(y)Bk(z);

I2 =
1

(n + 3)3

X

i+j+k=n�2
i,j,k�0

(i + 1)(j + 1)
✓

n + 3
k

◆
(y � x)i(z � x)jBk(x);

I3 =
1

(n + 3)3

X

i+j+k=n�1
i,j,k�0

(i + 1)
✓

n + 3
j

◆
(z � y)iBj(y)Bk(x� y);

I4 =
1

(n + 3)3

X

i+j+k=n�1
i,j,k�0

(i + 1)
✓

n + 3
j

◆
(x� z)iBj(z)Bk(y � z);

I5 =
1

(n + 3)3

X

i+j+k=n�1
i,j,k�0

(i + 1)
✓

n + 3
j

◆
(y � x)iBj(x)Bk(z � x);

I6 =
1

(n + 3)3

X

i+j+k=n
i,j,k�0

✓
n + 3

i

◆
Bi(z)Bj(x� z)Bk(y � z);
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I7 =
1

(n + 3)3

X

i+j+k=n
i,j,k�0

✓
n + 3

i

◆
Bi(x)Bj(y � x)Bk(z � x);

I8 =
1

(n + 3)3

X

i+j+k=n
i,j,k�0

✓
n + 3

i

◆
Bi(y)Bj(z � y)Bk(x� y),

where (z)n is the lower factorial polynomial in z of degree n as stated in (1.4).
Multiplying both sides of (4.15) by (n + 3)3, we finally obtain (4.12).

We would like to add that (4.12) is a symmetric identity with respect to x, y and
z; so it is invariant under cyclic permutations of these letters.

In particular, letting y = z = x in (4.12), one can deduce the following third-order
convolution identity in a single variable.

Corollary 4.5. For an integer n � 2 we have

(n + 3)
X

j+j+k=n
i,j,k�0

Bi(x)Bj(x)Bk(x) = 3
n�1X

j=0

✓
n + 3

j

◆
Bj(x)Bn�1�j

+ 3
X

j+j+k=n
i,j,k�0

✓
n + 3

i

◆
Bi(x)BiBk +

✓
n + 3

5

◆
Bn�2(x).

This identity is exactly consistent with the case for m = 3 of the more general
identity proved in [5, Theorem 1], namely

(n + m)
X

k1+···+km=n
k1,...,km�0

mY

i=1

Bki(x) =
m�1X

r=0

✓
m

r

◆ X

k0+k1+···+kr=n+1�m+r
k0,k1,...,kr�0

✓
n + m

k0

◆

⇥Bk0(x)Bk1 · · ·Bkr ,

which is valid for all integers n,m � 1 with n � m� 1.
We cannot say for sure at the moment, but it seems that the following question

still remains to be resolved as far as we know.

Open Question. Find a closed-form expression for the multiple sum

S(x1, . . . , xm) :=
X

k1+···+km=n
k1,...,km�1

mY

i=1

Bki(xi)
ki

(n � m � 3), (4.16)

where x1, . . . , xm are independent variables.
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A certain formula for (4.16) in the case when m = 3 and x1 = x2 = x3 has been
derived in [5, (6.5)], which is of interest in its own right, but rather complicated to
restate here. In addition, it should be mentioned that D. S. Kim and T. Kim [23]
studied several kinds of multiple sums similar to (4.16) in a single variable case and
expressed them by means of linear combinations of Bernoulli polynomials over Q
based on the fact that {Bk(x) | k = 0, 1, . . . ,m} forms a basis of the vector space
Vm := {f(x) 2 Q[x] | deg f  m} with dimVm = m + 1. On the other hand,
A. Bayad and D. Kim [6, Theorem 4] recently discussed the product of arbitrary
number of Bernoulli polynomials such that

�k1,...,km(x) :=
mY

i=1

Bki(x)
ki!

(m � 1; k1, . . . , km � 1)

and expressed it explicitly as a linear combination of {Bk(x)/k! | k = 0, 1, . . . ,m}.
Here note that B0(x)/0! = 1 and this set also forms a basis of Vm over Q.
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