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Abstract
Furstenberg and Glasner proved that for an arbitrary k 2 N, any piecewise syndetic
set contains k-term arithmetic progressions and, in a sense to be made precise
later, the set of such arithmetic progressions is piecewise syndetic in Z2. They
used the algebraic structure of �N. The above result was extended for arbitrary
semigroups by Bergelson and Hindman, again using the structure of the Stone-Čech
compactification of a general semigroup. Beiglböck provided an elementary proof
of the above result and asked whether the combinatorial argument in his proof can
be enhanced in a way which makes it applicable to a more abstract setting. In a
recent work S. Jana and the second author of this paper provided an a�rmative
answer to Beiglböck’s question for countable commutative semigroups. In this work
we will extend the result of Beiglböck in di↵erent types of settings.

1. Introduction

A subset S of Z is called syndetic if there exists r 2 N such that
Sr

i=1 (S � i) = Z
and it is called thick if it contains arbitrary long intervals. Sets which can be
expressed as the intersection of thick and syndetic sets are called piecewise syndetic
sets.

For a general commutative semigroup (S,+), a set A ✓ S is said to be syndetic
in (S,+), if there exists a finite nonempty set F ✓ S such that

S
t2F �t + A = S

where �t + A = {s 2 S : t + s 2 A}. A set A ✓ S is said to be thick if for every
finite nonempty set E ✓ S, there exists an element x 2 S such that E + x ✓ A.
A set A ✓ S is said to be piecewise syndetic if there exists a finite nonempty set
F ✓ S such that

S
t2F (�t + A) is thick in S. It can be proved that a piecewise

syndetic set is the intersection of a thick set and a syndetic set [10, Theorem 4.49].
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One of the famous Ramsey theoretic results is van der Waerden’s Theorem [12]
which states that at least one cell of any partition {C1, C2, . . . , Cr} of N contains
arithmetic progressions of arbitrary length. The following theorem is due to van
der Waerden [12].

Theorem 1. Given any r, l 2 N, there exists N (r, l) 2 N, such that for any r-
partition of [1, N ], at least one cell of the partition contains an l-length arithmetic
progression.

It follows from van der Waerden’s Theorem that any piecewise syndetic subset A
of N contains arbitrarily long arithmetic progressions. To see this, pick finite F ✓ N
such that

S
t2F �t + A is thick in N. Let r = |F | and let a length k be given. Pick

l as guaranteed for r and k and pick x such that {1, 2, . . . , l} + x ✓
S

t2F �t + A.
For t 2 F , let Ct = {y 2 {1, 2, . . . , l} : y + x 2 (�t + A)}. Pick a and d in N and
t 2 F such that {a, a + d, a + 2d, . . . , a + (k � 1) d} ✓ Ct and let a0 = a + x + t.
Then {a0, a0 + d, a0 + 2d, . . . , a0 + (k � 1) d} ✓ A.

H. Furstenberg and E. Glasner in [7] algebraically and Beiglböck in [1] combi-
natorially proved that if S is a piecewise syndetic subset of Z and l 2 N then the
set of all l-length progressions contained in S is also large. The statement is the
following.

Theorem 2. Let k 2 N and assume that S ✓ Z is piecewise syndetic. Then
{(a, d) : {a, a + d, . . . , a + kd} ✓ S} is piecewise syndetic in Z2.

In a recent work [8, Theorem 6], the authors have extended the technique of
Beigelböck in general commutative semigroups and proved the following.

Theorem 3. Let (S,+) be a commutative semigroup and let F be any finite subset
of S. Then for any piecewise syndetic set M ✓ S, the collection

{(a, n) 2 S ⇥ N : a + n · F ✓ M}

is piecewise syndetic in (S ⇥ N,+).

Let (S,+) be a commutative semigroup and let M be a piecewise syndetic set
in S. For any d0 2 S, take F = {d0, 2d0, ..., (l + 1)d0}. Then from [8, Theorem 6] it
follows that there exist n 2 N and a 2 S such that:

a + n · F = {a + nd0, a + 2nd0, ..., a + (l + 1)nd0} ✓ M.

So, {(c, d) : {c, c + d, ..., c + ld} ✓ M} is non-empty.
Parallelly the following problem comes from Theorem 2.

Problem 4. Let S be a countable commutative semigroup and let A be any piece-
wise syndetic subset of S. Is it true that for any l 2 N,

{(s, t) 2 S ⇥ S : {s, s + t, s + 2t, . . . , s + lt} ✓ A}

is piecewise syndetic in S ⇥ S?
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At this time we are unable to give complete answer to this question but we have
a proof of a weaker version of the theorem for countable commutative semigroups.
We will also give an answer to Problem 4 for some special kinds of semigroups.

2. Proofs of Our Results

The following lemma was proved in [3] for general semigroups using the algebraic
structure of the Stone-Čech compactification of an arbitrary semigroup and in [8]
for commutative semigroups combinatorially.

Lemma 5. Let (S,+) and (T,+) be commutative semigroups, let ' : S ! T be a
homomorphism and let A ✓ S. If A is piecewise syndetic in S and ' (S) is piecewise
syndetic in T , then ' (A) is piecewise syndetic in T .

Now we need the following useful lemma.

Lemma 6. Let (S,+) be a countable commutative semigroup and let A ✓ S⇥S be
piecewise syndetic. Then for any c 2 S and a 2 N,

{(s + at + c, t) : (s, t) 2 A}

is piecewise syndetic in S ⇥ S.

Proof. Let c 2 S and consider the following homomorphism  c : S ⇥ S �! S ⇥
S defined by  c (s, t) = (s + c, t). We claim that this map preserves piecewise
syndeticity.

As A ✓ S ⇥ S is a piecewise syndetic set, there exists a finite subset E1 =
{(a1, b1) , (a2, b2) , . . . , (ar, br)} of S ⇥S such that

Sr
i=1 (� (ai, bi) + A) is thick and

since
r[

i=1

(� (ai, bi) + A) ✓
r[

i=1

(� (ai + c, bi) +  c (A)) ,

the set
Sr

i=1 (� (ai + c, bi) +  c (A)) is thick. So we have  c (A) is piecewise synde-
tic.

Now, for any a 2 N, suppose the semigroup homomorphism 'a : S ⇥ S ! S ⇥ S
is defined by 'a (s, t) = (s + at, t). Now we will show that 'a (S ⇥ S) is thick in
S ⇥ S and hence piecewise syndetic. Let F = {(u1, v1) , (u2, v2) , . . . , (un, vn)} be
a finite nonempty subset of S ⇥ S. Fix y 2 S and let x = ay +

Pn
i=1 avi. To

see that F + (x, y) ✓ 'a (S ⇥ S), let j 2 {1, 2, . . . , n}. Let t = vj + y and let
s = uj +

P
i2{1,2,...,n}\{j} avi. Then (uj , vj) + (x, y) = 'a (s, t). So from Lemma 5,

'a map preserves piecewise syndeticity.
Therefore, {(s + at + c, t) : (s, t) 2 A} = 'a � c (A) is piecewise syndetic in S ⇥

S.
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The following is a weaker version of Problem 4. We would like to thank the
referee for correcting and simplifying the proof of the following theorem.

Theorem 7. Let S be a countable commutative semigroup and let A be piecewise
syndetic in S. Then for l 2 N, there exists d 2 N such that

{(s, t) 2 S ⇥ S : {s, s + dt, . . . , s + ldt} ✓ A}

is piecewise syndetic in S ⇥ S.

Proof. Since A is piecewise syndetic in S, there exists a finite subset E of S, such
that

S
c2E �c + A is thick in S.

Let |E| = r, say E = {c1, c2, . . . , cr}, and let N (r, l + 1) = N be the van der
Waerden number.

The set of all possible (l + 1)-length arithmetic progressions in [1, N ] is finite
as [1, N ] is finite. Let H = {h1, h2, . . . , hn} be the set of such progressions with
|H| = n (say).

Then, for any (s1, t1) 2 S ⇥ S, if the set {s1 + t1, s1 + 2t1, . . . , s1 + Nt1} is
partitioned into r cells, one of the cells contains an l-length arithmetic progression.

Consider the set B =
�
(s, t) 2 S ⇥ S : s + [1, N ] t ✓

S
c2E �c + A

 
. It is easy to

verify that B is thick in S ⇥ S.
Define ' : B ! [1, n] ⇥ [1, r] as follows. Given (s, t) 2 B, s + [1, N ] t ✓S

c2E (�c + A) so there exist i 2 [1, n] and c 2 E such that s + hit ✓ �c + A.
Pick the least i 2 [1, n] such that there exists c 2 E with s+hit ✓ �c+A and then
pick the least j 2 [1, r] such that s+hit ✓ �cj +A and define ' (s, t) = (i, j). Since
B is thick, there is some (i, j) 2 [1, n]⇥ [1, r] such that {(s, t) 2 B : ' (s, t) = (i, j)}
is piecewise syndetic. (We are using the elementary fact that if the union of finitely
many sets is piecewise syndetic, then one of them is.) Pick a, d 2 S such that

hi = {a, a + d, . . . , a + ld} .

Then

Q = {(s, t) 2 B : {s + at, s + at + dt, . . . , s + at + ldt} ✓ �cj + A}

is piecewise syndetic.
Thus, the set Q̃ = {(s + at + cj , t) : (s, t) 2 Q} is piecewise syndetic by Lemma

6 and this proves the theorem.

It is not necessary that for any commutative semigroup G and for any n 2 N,
n ·G, the collection of n times added elements of G, is piecewise syndetic in G. e.g.
take any n 2 N \ {1} and let A = n · Z [x]. Suppose that A is piecewise syndetic
in Z [x] and pick F = {f1, f2, . . . , fm} ✓ Z [x] such that

Sm
i=1�fi + A is thick. Let

r = max {deg (fi) : 1  i  m} and let G =
�
xr+1, 2xr+1

 
. Pick f 2 Z [x] such that
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G + f ✓
Sm

i=1�fi + A. Pick i and j in {1, 2, . . . ,m} and g and h in Z [x] such that
fi + xr+1 + f = ng and fj + 2xr+1 + f = nh. Let a, b, and c be the coe�cients
of xr+1 in f , g, and h respectively. Then 1 + a = nb and 2 + a = nc, which is
impossible. Thus A is not piecewise syndetic in (Z [x] ,+).

Now we are taking A to be the collection of all those countable commutative
semigroups (S,+) with the property that for any d 2 N, d · S = {dx : x 2 S}
is piecewise syndetic in S. Clearly A includes all the divisible semigroups such
as (Q,+) , (Q+,+), (Q/Z,+) etc. and others like Z, N, Z [i] etc. We will say a
semigroup (S,+) is a semigroup of class A if S 2 A.

Lemma 8. Let S be a countable commutative semigroup of class A and assume
that A is a piecewise syndetic subset of S ⇥ S. Then for any d 2 N,

{(s, dt) : (s, t) 2 A}

is piecewise syndetic in S ⇥ S.

Proof. Let d 2 N and define �d : S ⇥ S �! S ⇥ S as �d (s, t) = (s, dt). Now, it is
easy to check that �d (S ⇥ S) is piecewise syndetic in S ⇥ S (we leave the routine
verification to the reader). Then �d preserves piecewise syndeticity by Lemma
5.

So we have the following result.

Proposition 9. Let S be a countable commutative semigroup of class A and let A
be piecewise syndetic in S. Then for l 2 N,

{(s, t) 2 S ⇥ S : {s, s + t, s + 2t, . . . , s + lt} ✓ A}

is piecewise syndetic in S ⇥ S.

At this moment we are unable to derive the above proposition for a general
commutative semigroup which would give an a�rmative answer of Problem 4. Thus
the question remains open.

3. Applications

The set AP l+1 = {(a, a + b, a + 2b, . . . , a + lb) : a, b 2 S} is a commutative subsemi-
group of Sl+1. Using a result deduced in [4, Theorem 3.7(a)] it is easy to see that
for any piecewise syndetic set A ✓ S, Al+1 \AP l+1 is piecewise syndetic in AP l+1.
Now, as a consequence of Proposition 9 we will derive this result not for all but for
a large class of semigroups in the following result.
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Corollary 10. Let S 2 A be a countable commutative semigroup. Then for any
piecewise syndetic set A ✓ S, Al+1 \AP l+1 is piecewise syndetic in AP l+1.

Proof. Let us take a surjective homomorphism ' : S ⇥ S ! AP l+1 by ' (a, b) =
(a, a + b, a + 2b, . . . , a + lb). Then by Lemma 5 the map ' preserves piecewise syn-
deticity.

Let B = {(s, t) 2 S ⇥ S : {s, s + t, s + 2t, . . . , s + lt} ✓ A}. Then by Proposition
9, ' (B) is piecewise syndetic in AP l+1.

Now clearly, '(B) ✓ Al+1 \ AP l+1, so by Proposition 9 we get our required
result.

Now we will give a combinatorial proof of Proposition 9 replacing the condition
of piecewise syndeticity by quasi-centrality which is another notion of largeness and
is very close to the more familiar notion of central set.

A quasi-central set is generally defined in terms of the algebraic structure of �S.
But it has a combinatorial characterization which will be needed for our purpose,
stated below.

Theorem 11. [9, Theorem 3.7] For a countable semigroup (S, ·), A ✓ S is quasi-
central if and only if there is a decreasing sequence hCni1n=1 of subsets of A such
that:

1. for each n 2 N and each x 2 Cn, there exists m 2 N with Cm ✓ x�1Cn; and

2. for each n 2 N, Cn is piecewise syndetic.

The following lemma is essential for our result.

Lemma 12. The notion of quasi-central is preserved under surjective semigroup
homomorphism.

Proof. Let ' : S1 ! S2 be a surjective semigroup homomorphism. Let A be
quasi-central in S1 and let

�
hAiii2N : Ai ✓ A

 
be a chain of piecewise syndetic sets

satisfying the properties of Theorem 11:

A ◆ A1 ◆ A2 ◆ . . . ◆ An ◆ . . .

Now in S2 consider the following sequence:

' (A) ◆ ' (A1) ◆ ' (A2) ◆ . . . ◆ ' (An) ◆ . . .

Due to the surjectivity of ', ' (A) and ' (Ai) for i 2 N are piecewise syndetic.
Hence property (2) of Theorem 11 is verified.

Let m 2 N and let y 2 ' (Am). Then there exists some x 2 Am such that
' (x) = y. Consider the set y�1' (Am) . Now as x�1Am ◆ An for some n, we have
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for any z 2 An, xz 2 Am and then y' (z) 2 ' (Am) and so ' (z) 2 y�1' (Am).
Thus y�1' (Am) ◆ ' (An). Hence we have verified property (1) of Theorem 11 as
required.

Now we will deduce Proposition 9 for quasi-central sets.

Theorem 13. Let (S,+) be a countable commutative semigroup of class A. Then
for any quasi-central A ✓ S and any l 2 N the collection

{(a, b) : {a, a + b, a + 2b, . . . , a + lb} ✓ A}

is quasi-central in (S ⇥ S,+).

Proof. As A is quasi-central, Theorem 11 guarantees that there exists a decreasing
sequence hAnin2N of piecewise syndetic subsets of S, such that property (1) of
Theorem 11 is satisfied.

Let B = {(a, b) 2 S ⇥ S : {a, a + b, a + 2b, . . . , a + lb} ✓ A} and for each i 2 N,
let Bi = {(a, b) 2 S ⇥ S : {a, a + b, a + 2b, . . . , a + lb} ✓ Ai}. Then by Proposition
9, B is piecewise syndetic in S ⇥ S and for each i 2 N, Bi is piecewise syndetic in
S ⇥ S.

Now choose n 2 N and (a, b) 2 Bn. Then {a, a + b, a + 2b, . . . , a + lb} ✓ An.
For i 2 {0, 1, . . . , l}, pick m (i) 2 N such that Am(i) ✓ � (a + bi) + An. Let N =
max {m (i) : i 2 {0, 1, . . . , l}}, then

AN ✓
l\

i=0

(� (a + ib) + An) .

As for any (a1, b1) 2 BN we have

{a1, a1 + b1, a1 + 2b1, . . . , a1 + lb1} ✓ AN ✓
l\

i=0

(� (a + ib) + An)

and (a1 + a) + i (b1 + b) 2 An for each i 2 {0, 1, 2, . . . , l}, therefore (a1, b1) 2
� (a, b) + Bn. This implies BN ✓ � (a, b) + Bn, which establishes property (1)
of Theorem 11.

The following is an analogue of Corollary 10.

Corollary 14. Let (S,+) be a countable commutative semigroup of class A. Then
for any quasi-central set A ✓ S, Al+1 \AP l+1 is quasi-central in AP l+1.

Proof. Let A ✓ S be quasi-central. Then B = {(a, b) : {a, a + b, . . . , a + lb} ✓ A}
is quasi-central by Theorem 13.

Now, ' : S⇥S ! AP l+1 defined by ' (a, b) = (a, a + b, . . . , a + lb) is a surjective
homomorphism. We claim that ' (B) ✓ Al+1 \AP l+1.
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Let b̄ 2 ' (B). Then there exists some (x, y) 2 B such that ' (x, y) = b̄ =
(x, x + y, . . . , x + ly) 2 AP l+1 and by the definition of B, b̄ 2 Al+1 \ AP l+1. So,
' (B) ✓ Al+1 \ AP l+1. Now as B is quasi-central and ' is a surjective homo-
morphism, ' (B) is quasi-central by Lemma 12. Consequently Al+1 \ AP l+1 is
quasi-central (since ' (B) ✓ Al+1 \AP l+1).

This proves the claim.

However, there are other di↵erent notions of largeness such as J-sets, C-sets and
D sets. The first two have their combinatorial characterizations in [10]. In [6], the
authors showed the abundance in J-sets and C-sets for N. In [2], it was shown that
D sets satisfy the conclusion of the original Central Sets Theorem and remarked
that they are in fact C-sets. Reference [11] has a combinatorial characterization of
D sets in Z. This result is extended to countable cancellative abelian semigroups in
[5, Theorem 2.11]. But we don’t know if it is possible to give an a�rmative answer
of Problem 4 for D sets.

Acknowledgment. The second author of the paper acknowledges the grant UGC-
NET SRF fellowship with id no. 421333 of CSIR-UGC NET. We would like to
thank Professor Dibyendu De for his helpful comments on an earlier version of this
paper. We also acknowledge the anonymous referee for several helpful comments
on the paper.

References
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