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Abstract
We present a new combinatorial identity with two parameters, and applying it, we
establish several combinatorial identities involving harmonic numbers; some of them
have already been considered previously, and the others are new. For example, we
prove that
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1. Introduction

Let s 2 C. Then the generalized harmonic numbers H(s)
n of order s are defined by

H(s)
n =

nX

k=1

1
ks

, H(s)
0 = 0 and H(1)

n = Hn; (1)

see [1, 13]. These numbers have various applications in number theory, combina-
torics, analysis, computer science and di↵erential equations. Recently, they have
found applications in evaluating Feynman diagrams contributions of perturbed
quantum field theory; see [7, 8]. Throughout this paper we let N0 = N [ {0},
Z� = {�1,�2,�3, · · · } and Z�

0 = Z� [ {0}. The polygamma functions  (n)(s)
(s 2 C\Z�) are defined by

 (n)(s) =
dn+1

dsn+1
log �(s) =

dn

dsn
 (s), n = 0, 1, 2, · · · , (2)
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where �(s) is the classical Euler gamma function, and  (0)(s) =  (s) is the digamma
function. Let us recall some basic properties of these functions that will be used fre-
quently in this work. A well-known relationship between the polygamma functions
 (n)(s) and the generalized harmonic numbers H(s)

n is given by

 (m�1)(n + 1)�  (m�1)(1) = (�1)m�1(m� 1)!H(m)
n , (3)

for m 2 N and n 2 N0; see [6, pg. 22]. The digamma function  and harmonic
numbers Hn are related by

 (n + 1) = �� + Hn (n 2 N); (4)

see [23, pg. 31], where � = 0.57721 · · · is the Euler-Mascheroni constant. The
digamma function  possesses the following properties:
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= 2 (2s)�  (s)� 2 log 2 (s 2 C\Z�), (5)

and
 (s)�  (1� s) = �⇡ cot(⇡s); (6)

see [23, pg. 25]. The gamma function satisfies the reflection formula

�(s)�(1� s) =
⇡

sin(⇡s)
(s 2 C\Z�), (7)

and the duplication formula
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see [16, pgs. 346, 349]. The binomial coe�cients
�s

t
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(s, t 2 C\Z�) are defined by
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and they satisfy the following identities for n, k 2 N with k  n.
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The beta function B(s, t) is defined by

B(s, t) =
1Z

0

us�1(1� u)t�1du (<(s) > 0 ,<(t) > 0).

The gamma and beta functions are related by

B(s, t) =
�(s)�(t)
�(s + t)

; (11)
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see [9, p.251]. In this paper, we shall frequently use the following form of the
binomial coe�cients:

fn(s) :=
✓

s + n

k

◆
=

�(s + n + 1)
k!�(s + n� k + 1)

.

Taking the logarithm of both sides of this equation, and then di↵erentiating with
respect to s, gives

f 0n(s) =
✓

s + n

k

◆
{ (s + n + 1)�  (s + n� k + 1)}. (12)

Let us also define
gn(s) =

✓
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n

◆
.

Then, di↵erentiating with respect to s yields

g0n(s) =
✓
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◆
[ (s + n + 1)�  (s + 1)]. (13)

In the literature, there are many interesting papers dealing with finite sums involv-
ing the binomial coe�cients and harmonic numbers. For example, we have
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(see [24]).

Over the decades, combinatorial identities involving harmonic numbers have at-
tracted the interest of many mathematicians, and many remarkable identities have
been discovered by using a variety of methods. In [17], the authors computed the
following family of sums by using di↵erential operator and Zeilberger’s algorithm
for definite hypergeometric sums.
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◆m

{1 + m(n� 2k)Hk} m = 1, 2, 3, 4, 5.

Please see [2,3,4,5,12,14,15,17,18,21,22,24,25] and the references cited therein for
more identities on this issue. The aim of this paper is to present further combi-
natorial identities involving harmonic numbers. First, we establish a new general
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combinatorial identity involving two parameters, and by di↵erentiating and inte-
grating both sides of this identity with respect to these parameters, we obtain
several harmonic number identities. Some of them have already been considered
previously, and the others are new. Although many other combinatorial identities
can be derived by using these identities, for briefness, we have selected here just
some of them, and we intend to prepare a separate paper containing many other
applications.

Now we are ready to present our main results.

2. Main Results

Theorem 1. Let n 2 N, s 2 C\Z� and x 2 C. Then the following identity holds:
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Proof. We prove the theorem by mathematical induction. Clearly, (14) is valid for
n = 1. We assume that it is valid for n, and then we show that it is also valid for
n + 1. We have
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Using the first relation in (10), this becomes
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Setting k � 1 = k0 in the second sum on the right-hand side of this equation, and
then dropping the prime on k, we get, after a simple computation,

n+1X

k=0

✓
s + n + 1

k

◆
xk =

nX

k=0

✓
s + n

k

◆
xk + x

nX

k=0

✓
s + n

k

◆
xk

+
✓

s + n + 1
n + 1

◆
�

✓
s + n

n

◆�
xn+1.

By (10) we have
�s+n+1

n+1

�
�

�s+n
n

�
=

�s+n
1+n

�
; thus, we get

n+1X

k=0

✓
s + n + 1

k

◆
xk = (1 + x)

nX

k=0

✓
s + n

k

◆
xk +

✓
s + n

1 + n

◆
x1+n. (15)



INTEGERS: 20 (2020) 5

Therefore, by induction hypothesis, we deduce that
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�
� s
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�
= 0, this proves that (14) is also valid for n + 1. This

completes the proof of Theorem 1.

Theorem 2. Let n 2 N, s 2 C\Z� and x 2 C. Then we have
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Proof. The proof follows from di↵erentiating both sides of (14) with respect to s,
and then using formulas (12) and (13).

Corollary 1. For n 2 N and s 2 C\Z� we have
nX
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(�1)k
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Proof. The proof immediately follows from (16) by taking x = �1.

Theorem 3. Let n 2 N, s 2 C\Z� and x 2 C. Then, we have
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Proof. Di↵erentiating both sides of (16) with respect to s, and then using (12) and
(13), we conclude that (18) is valid. The next corollary follows from (18) by setting
x = �1.

Corollary 2. For n 2 N and s 2 C\Z� we have
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Proof. If we write equation (18) at x = �1, the proof is completed.

Theorem 4. Let n 2 N and s 2 C\Z�. Then, we have
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n�1X

k=0

(�1)k
�s+k

k

�

(k + 1)2
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� . (20)

Proof. If we take the first term of the sum on the left-hand side of (14) to the
right, and then divide both sides by x, and finally replace x by �x in the resulting
equation, we obtain the following equality:
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Integrating both sides of (21) from x = 0 to x = 1 yields
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It is well-known that Z 1

0

(1� x)n � 1
(1� x)� 1

dx = Hn;

see [19], and
Z 1

0
(1� x)n�k�1xk dx =

(n� k � 1)!k!
n!

=
1

(k + 1)
� n
k+1

� .

Substituting these expressions in (22), we see that (20) is valid.
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Theorem 5. Let n 2 N and s 2 C\Z�. Then we have
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Proof. If we di↵erentiate both sides of (20) with respect to s, and use (12) and (13),
the desired conclusion follows.

Theorem 6. For n 2 N and s 2 C\Z� we have
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�
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k

�
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� n
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�
⇢

( (s + k + 1)�  (s + 1))2 +  0(s + k + 1)�  0(s + 1)
�

.

(24)

Proof. If we di↵erentiate both sides of (23) with respect to s, the proof is follows.

Theorem 7. For n 2 N and s 2 C\Z� the following identity holds:
nX

k=1
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s + n

k
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(�1)k�1

k2
=

H2
n + H(2)

n

2
+ s

n�1X

k=0

(�1)k

k + 1

✓
s + k

k

◆
Hn �Hk

(n� k)
�n

k

� . (25)

Proof. Integrating both sides of (21) from x = 0 to x = u, we get
nX

k=1

(�1)k

✓
s + n

k

◆
uk

k
=

Z u

0

(1� x)n � 1
x
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+ s
n�1X

k=0

(�1)k
�s+k

k

�
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0
(1� x)n�k�1xkdx.

Divide both sides of this equation by u, and then integrate each side from u = 0 to
u = 1 to obtain
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(1� x)n�k�1xkdxdu. (26)
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Integration by parts gives
Z 1

0

1
u

Z u

0

(1� x)n � 1
x

dxdu = log u

Z u

0

(1� x)n � 1
x

dx

����
u=1

u=0

�
Z 1

0

log u

u
[(1� u)n � 1]du. (27)

The first term on the right-hand side of (27) is equal to zero. Therefore, applying
integration by parts, we get

Z 1

0

1
u

Z u

0

(1� x)n � 1
x

dxdu = �1
2

log2 u[(1� u)n � 1]
����
u=1

u=0

� n

2

Z 1

0
log2 u(1� u)n�1du. (28)

The first term on the right-hand side of (28) is also equal to zero, hence, we get by
(11) and (3)

Z 1

0

1
u

Z u

0

(1� x)n � 1
x

dxdu = �n

2

Z 1

0
log2 u(1� u)n�1du

= �n

2
d2

dt2

Z 1

0
ut(1� u)n�1du

����
t=0

= �n

2
d2

dt2
�(t + 1)�(n)
�(t + n + 1)

����
t=0

= �H2
n + H(2)

n

2
. (29)

An application of integration by parts to the second integral on the right-hand side
of (26) leads to

Z 1

0

1
u

Z u

0
(1� x)n�k�1xkdxdu = log u

Z u

0
(1� x)n�k�1xkdx

����
u=1

u=0

�
Z 1

0
log u(1� u)n�k�1ukdu.

The first term on the right-hand side of this equation is equal to zero. So, from (11)
and (3) we get

Z 1

0

1
u

Z u

0
(1� x)n�k�1xkdxdu = �

Z 1

0
log u(1� u)n�k�1ukdu

= �
Z 1

0

d

dt
ut(1� u)n�k�1du

����
t=k

= � d

dt

Z 1

0
ut(1� u)n�k�1du

����
t=k

= � d

dt

�(t + 1)�(n� k)
�(n + t� k + 1)

����
t=k

=
Hn �Hk

(n� k)
�n

k

� . (30)

Inserting the values of the integrals given in (29) and (30) into (26), and using (3),
we complete the proof of Theorem 7.
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Theorem 8. For n 2 N and s 2 C\Z� we have

nX

k=1

✓
s + n

k

◆
(�1)k�1

k2
[ (s + n + 1)�  (s + n� k + 1)]

=
n�1X

k=0

(�1)k

k + 1

✓
s + k

k

◆
Hn �Hk

(n� k)
�n

k

�

+ s
n�1X

k=0

(�1)k

k + 1

✓
s + k

k

◆
Hn �Hk

(n� k)
�n

k

� [ (s + k + 1)�  (s + 1)]. (31)

Proof. The proof follows from di↵erentiating both sides of (25) with respect to s,
and then using (12) and (13).

Theorem 9. For all n 2 N and s 2 C\Z� we have

nX

k=1

✓
s + n

k

◆
(�1)k�1

k2

⇢
( (s + n + 1)�  (s + n� k + 1))2

+  0(s + n + 1)�  0(s + n� k + 1)
�

= 2
n�1X

k=0

(�1)k

k + 1

✓
s + k

k

◆
Hn �Hk

(n� k)
�n

k

� [ (s + k + 1)�  (s + 1)]

+ s
n�1X

k=0

(�1)k

k + 1

✓
s + k

k

◆
Hn �Hk

(n� k)
�n

k

�
⇢

( (s + k + 1)�  (s + 1))2

+  0(s + k + 1)�  0(s + 1)
�

. (32)

Proof. The proof follows from di↵erentiating both sides of (31) with respect to s,
and using (12) and (13).

3. Applications

In this section, we present several applications of our main results, which are derived
by taking particular values for the parameters s and x.

Identity 1. Let n 2 N. Then we have

nX

k=1

1
22k

✓
2k
k

◆
(2H2k �Hk) =

2n + 1
22n

✓
2n
n

◆
[2H2n+1 �Hn � 2].
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Proof. Putting x = �1 and performing the replacement s! s� n in (14), we get
nX

k=0

(�1)k

✓
s

k

◆
= (�1)n

✓
s� 1

n

◆
. (33)

If we di↵erentiate both sides of (33) with respect to s, and then let s = �1/2, the
proof follows from (4)-(8).

Identity 2. For all n 2 N the following identity holds:
nX

k=1

(�1)k�1

k

✓
n

k

◆
= Hn. (34)

Proof. The proof follows from (20) by setting s = 0.

Remark 1. Identity 2 is well-known and due to Euler (see [10], [5] and [2]).

Remark 2. Theorem 4 provides a generalization of (34).

Identity 3. Let n 2 N. Then it holds that
nX

k=1

(�1)k�1

k

✓
n

k

◆
Hn�k = H2

n +
nX

k=1

(�1)k

k2
�n

k

� . (35)

Proof. The proof follows from (23) by setting s = 0, and using (34) and (3).

Remark 3. Identity 3 can be compared with the following formula (see [19]):
nX

k=1

(�1)k�1

k

✓
n

k

◆
Hn+k = H2

n +
nX

k=1

1
k2

�n+k
k

� .

Identity 4. Let n 2 N and x 2 C. Then we have

nX

k=0

✓
n

k

◆
Hkxk = (1 + x)n

"

Hn �
nX

k=1

1
k(x + 1)k

#

. (36)

Proof. Taking s = 0 in (16), and using (4), we get

nX

k=0

✓
n

k

◆
[Hn �Hn�k]xk = (1 + x)n

nX

k=1

1
k

✓
x

1 + x

◆k

. (37)

If we replace x by 1/x and then multiply both sides of (37) by xn, we get
nX

k=0

✓
n

k

◆
[Hn �Hn�k]xn�k = (1 + x)n

nX

k=1

1
k(x + 1)k

, (38)

which is equivalent with (36), since
Pn

k=0

�n
k

�
Hn�kxn�k =

Pn
k=0

�n
k

�
Hkxk.
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If we set x = 1 in (36), we get the following known result (see [6, 12, 21]).

Identity 5. Let n 2 N. Then, it holds that

nX

k=1

✓
n

k

◆
Hk = 2n

"

Hn �
nX

k=1

1
k2k

#

.

Identity 6. For n 2 N and x 2 C we have

nX

k=1

✓
n

k

◆h
H2

k + H(2)
k

i
xk = (1 + x)n

"

H2
n + H(2)

n + 2
nX

k=1

Hk�1 �Hn

k(1 + x)k

#

. (39)

Proof. By setting s = 0 in (18), and using (3) and (4), we can readily deduce that

nX

k=0

✓
n

k

◆h
(Hn �Hn�k)2 �H(2)

n + H(2)
n�k

i
xk = 2(1 + x)n

nX

k=1

Hk�1

k

✓
x

1 + x

◆k

.

(40)
Expanding the quadratic term on the left-hand side of (40) and using (36), after
some simplifications, we find that

nX

k=0

✓
n

k

◆h
H2

n�k + H(2)
n�k

i
xk�(1 + x)n

"

H2
n + H(2)

n � 2Hn

nX

k=1

1
k

✓
x

1 + x

◆k
#

= 2(1 + x)n
nX

k=1

Hk�1

k

✓
x

1 + x

◆k

. (41)

If we replace x by 1/x here, and then multiply both sides of (41) by xn, after some
simplifications, we get the desired identity (39).

If we set x = �1 in (39), we get the following known result; see [20].

Identity 7. For n 2 N, we have

nX

k=1

(�1)k

✓
n

k

◆n
H2

k + H(2)
k

o
= � 2

n2
.

The following identity is known and computer program Mathematica recognizes
it.

Identity 8. For all n 2 N we have

nX

k=1

(�1)k

k
�n

k

� =
(�1)n � 1

n + 1
. (42)
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Proof. Setting s = 1 in (20), we get

nX

k=1

(�1)k�1

k

✓
n + 1

k

◆
= Hn +

nX

k=1

(�1)k�1

k
�n

k

� . (43)

Since
nX

k=1

(�1)k�1

k

✓
n + 1

k

◆
=

n+1X

k=1

(�1)k�1

k

✓
n + 1

k

◆
� (�1)n

n + 1
,

if we use (34), it follows that

nX

k=1

(�1)k�1

k

✓
n + 1

k

◆
= Hn+1 �

(�1)n

n + 1
.

This completes the proof of (42) by the help of (43).

Identity 9. Let n 2 N. Then we have
nX

k=1

(�1)k�1

k

✓
n

k

◆n
H2

n�k + H(2)
n�k

o
= H3

n + HnH(2)
n + 2

nX

k=1

(�1)k[Hn �Hk�1]
k2

�n
k

� .

Proof. Putting s = 0 in (24), we obtain that

nX

k=1

(�1)k�1

k

✓
n

k

◆n
(Hn �Hn�k)2 �H(2)

n + H(2)
n�k

o
= 2

n�1X

k=1

(�1)kHk

(k + 1)2
� n
k+1

� .

Expanding the quadratic term here, it simplifies to

h
H2

n �H(2)
n

i nX

k=1

(�1)k�1

k

✓
n

k

◆
� 2Hn

nX

k=1

(�1)k�1

k

✓
n

k

◆
Hn�k

+
nX

k=1

(�1)k�1

k

✓
n

k

◆n
H2

n�k + H(2)
n�k

o
= 2

n�1X

k=1

(�1)kHk

(k + 1)2
� n
k+1

� .

Using (34) and (35) here and simplifying the resulting equation, the desired con-
clussion follows.

Identity 10. Let m,n 2 N. Then we have
nX

k=0

(�1)k

✓
mn

k

◆
Hmn�k =

(�1)n

m

✓
mn

n

◆
(m� 1)H(m�1)n �

1
mn

�
. (44)

Proof. If we write equation (33) at s = mn, we get

nX

k=0

(�1)k

✓
mn

k

◆
= (�1)n

✓
mn� 1

n

◆
. (45)
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If we di↵erentiate both sides of (33) with respect to s, and then set s = mn (m 2 N),
we, in view of (3), get

nX

k=0

(�1)k

✓
mn

k

◆
{Hmn �Hmn�k} = (�1)n

✓
mn� 1

n

◆
{Hmn�1 �Hmn�n�1}. (46)

But if we use (45), this becomes
nX

k=0

(�1)k

✓
mn

k

◆
{Hmn �Hmn�k}

= Hmn

nX

k=0

(�1)k

✓
mn

k

◆
�

nX

k=0

(�1)k

✓
mn

k

◆
Hmn�k

= (�1)nHmn

✓
mn� 1

n

◆
�

nX

k=0

(�1)k

✓
mn

k

◆
Hmn�k.

Using this identity in (46) and simplifying the result, we complete the proof of
(44).

The following identity is an immediate consequence of Identity 10 with m = 2
and m = 3.

Identity 11. For n 2 N, we have
nX

k=0

(�1)k

✓
2n
k

◆
H2n�k =

(�1)n

2

✓
2n
n

◆✓
Hn �

1
2n

◆

and
nX

k=0

(�1)k

✓
3n
k

◆
H3n�k =

(�1)n

3

✓
3n
n

◆✓
2Hn �

1
3n

◆
.

Identity 12. For n 2 N we have
nX

k=1

(�1)kHk

k
�n

k

� =
(�1)nHn+1

n + 1
+

n+1X

k=1

(�1)k

k2
�n+1

k

� .

Proof. Setting s = 1 in (23), and using (3) and  (2) = 1 +  (1), we obtain
nX

k=1

(�1)k�1

k

✓
n + 1

k

◆
(Hn+1 �Hn�k+1)

=
n�1X

k=0

(�1)k

(k + 1)
� n
k+1

� +
n�1X

k=0

(�1)k(Hk+1 � 1)
(k + 1)

� n
k+1

�

=
nX

k=1

(�1)k�1Hk

k
�n

k

� . (47)
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On the other hand, we have
nX

k=1

(�1)k�1

k

✓
n + 1

k

◆
(Hn+1 �Hn�k+1) = Hn+1

"
n+1X

k=1

(�1)k�1

k

✓
n + 1

k

◆
� (�1)n

n + 1

#

�
n+1X

k=1

(�1)k�1

k

✓
n + 1

k

◆
Hn+1�k.

Using (34) and (35), we conclude from this equation that
nX

k=1

(�1)k�1

k

✓
n + 1

k

◆
(Hn+1 �Hn�k+1) =

(�1)n+1Hn+1

n + 1
+

n+1X

k=1

(�1)k�1

k2
�n+1

k

� . (48)

Equating the right-hand sides of (47) and (48), we see that Identity 12 is valid.

Identity 13. For n 2 N we have
nX

k=0

(�1)k�14k
�n

k

�
�2k

k

� =
1

2n� 1
.

Proof. Setting s = �1
2 and x = �1 in (14), and using (8) and (9), the proof is

completed.

Remark 4. Identity 13 is known and can be found in [22, Theorem 4.5] .

If we set s = 0 in (25), we get the following known result (see [2]).

Identity 14. Let n 2 N. Then we have
nX

k=1

✓
n

k

◆
(�1)k�1

k2
=

H2
n + H(2)

n

2
. (49)

Identity 15. For n 2 N we have
nX

k=1

(�1)kHn�k

k
�n

k

� =
1� (�1)n

(n + 1)2
� Hn

n + 1
.

Proof. If we take s = 1 in (25), we get
nX

k=1

✓
n + 1

k

◆
(�1)k�1

k2
=

H2
n + H(2)

n

2
+

n�1X

k=0

(�1)k(Hn �Hk)
(n� k)

�n
k

� . (50)

By (49), we arrive at
nX

k=1

✓
n + 1

k

◆
(�1)k�1

k2
=

n+1X

k=1

✓
n + 1

k

◆
(�1)k�1

k2
� (�1)n

(n + 1)2

=
H2

n+1 + H(2)
n+1

2
� (�1)n

(n + 1)2
. (51)
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On the other hand, we have

n�1X

k=0

(�1)k(Hn �Hk)
(n� k)

�n
k

� = Hn

n�1X

k=0

(�1)k

(n� k)
�n

k

� �
n�1X

k=0

(�1)kHk

(n� k)
�n

k

� .

If we substitute n� k = k0 in the sums on the right-hand side of this equation and
then drop the prime on k, we get

n�1X

k=0

(�1)k(Hn �Hk)
(n� k)

�n
k

� = Hn

nX

k=1

(�1)n�k

k
�n

k

� �
nX

k=1

(�1)n�kHn�k

k
�n

k

� .

Using (42) gives

n�1X

k=0

(�1)k(Hn �Hk)
(n� k)

�n
k

� =
Hn(1� (�1)n)

n + 1
� (�1)n

nX

k=1

(�1)kHn�k

k
�n

k

� . (52)

Using (51) and (52) in (50), we conculde that Identity 15 is valid.

Identity 16. For all n 2 N we have

nX

k=1

(�1)k�1

k2

✓
n

k

◆
Hn�k =

Hn

⇣
H2

n + H(2)
n

⌘

2
�

n�1X

k=0

(�1)k(Hn �Hk)
(k + 1)(n� k)

�n
k

� . (53)

Proof. Setting s = 0 in (31) yields

nX

k=1

(�1)k�1

k2

✓
n

k

◆
(Hn �Hn�k) =

n�1X

k=0

(�1)k(Hn �Hk)
(k + 1)(n� k)

�n
k

� . (54)

By (49), we have

nX

k=1

(�1)k�1

k2

✓
n

k

◆
(Hn �Hn�k) =

Hn

⇣
(Hn)2 + H(2)

n

⌘

2
�

nX

k=1

(�1)k�1

k2

✓
n

k

◆
Hn�k.

(55)

Equating the right-hand sides of (54) and (55), The proof of (53) follows.

Identity 17. For all n 2 N the following identity holds:

nX

k=1

(�1)k�1

k2

✓
n

k

◆n
H2

n�k + H(2)
n�k

o
=

⇣
H2

n + H(2)
n

⌘2

2
� 2

n�1X

k=0

(�1)k(Hn �Hk)2

(k + 1)(n� k)
�n

k

� .
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Proof. Setting s = 0 in (32), we get

nX

k=1

(�1)k�1

k2

✓
n

k

◆n
(Hn �Hn�k)2 + H(2)

n�k �H(2)
n

o
= 2

n�1X

k=0

(�1)k(Hn �Hk)Hk

(k + 1)(n� k)
�n

k

� .

(56)

Clearly, we have

nX

k=1

(�1)k�1

k2

✓
n

k

◆n
(Hn �Hn�k)2 + H(2)

n�k �H(2)
n

o

=
h
H2

n �H(2)
n

i nX

k=1

(�1)k�1

k2

✓
n

k

◆
� 2Hn

nX

k=1

(�1)k�1

k2

✓
n

k

◆
Hn�k

+
nX

k=1

(�1)k�1

k2

✓
n

k

◆n
H2

n�k + H(2)
n�k

o
.

Thus, by the help of (49) and (53), after some algebraic manipulations, we find that

nX

k=1

(�1)k�1

k2

✓
n

k

◆n
(Hn �Hn�k)2 + H(2)

n�k �H(2)
n

o
= �

⇣
H2

n + H(2)
n

⌘2

2

� 2Hn

n�1X

k=0

(�1)k�1(Hn �Hk)
(k + 1)(n� k)

�n
k

� +
nX

k=1

(�1)k�1

k2

✓
n

k

◆n
H2

n�k + H(2)
n�k

o
. (57)

If we equate the right-hand sides of (56) and (57), the conclusion follows.

Remark 5. We want to provide some comments about how we discovered the core
identity (14) of this work. When we started writing this paper, our intention was
to generalize the binomial theorem

Pn
k=0

�n
k

�
xk = (1 + x)n. For this purpose, we

replace n by n + s in the summand of this sum and define an =
Pn

k=0

�n+s
k

�
xk.

First, we showed that an satisfies the following recurrence relation:

a0 = 1 and an+1 = (1 + x)an +
✓

n + s

n + 1

◆
xn+1 for n � 1.

Using this relation, formula (14) was found.
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