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Abstract
A sequence (x1, x2, · · · , xN+d) is an N -regular sequence with at most d irregu-
larities if, for every n  N , each one of the intervals [0, 1), [1, 2), · · · , [n � 1, n)
contains at least one term from the sequence (nx1, nx2, · · · , nxn+d). The function
s(d) is equal to the largest N for which there exists an N -regular sequence with at
most d irregularities. In the current paper we show that

⌅p
4d + 895 + 1

⇧
 s(d) <

24801d3 + 942d2 + 3 for d � 1.

1. Introduction

In his long famous book, One Hundred Problems in Elementary Mathematics [5],
Steinhaus asked a question about the regularity of sequences. Before repeating his
question, we define his notion of regularity.

Definition 1. A sequence
(x1, x2, · · · , xN )

is N-regular if, for every n  N , each one of the intervals

[0, 1), [1, 2), · · · , [n� 1, n)

contains one term from the sequence

(nx1, nx2, · · · , nxn).

For example, though the sequence (1/3, 1/2) is 2-regular, its extension to (1/3,
1/2, 0) is not 3-regular. With the previous definition in mind, Steinhaus’s question
is easily given: is there a longest N -regular sequence? A few years after Steinhaus
asked this, Warmus answered thus: N -regular sequences are at most seventeen
elements long [6]. In the same paper Warmus gave the following example of one
such maximal sequence
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Steinhaus’s question was answered. But then, Berlekamp and Graham [1] asked
a more general question. Again, it is helpful to first give a definition, namely, of
their more relaxed notion of regularity, before repeating their question.

Definition 2. A sequence
(x1, x2, · · · , xN+d)

is N-regular with at most d irregularities if, for every n  N , each one of the
intervals

[0, 1), [1, 2), · · · , [n� 1, n)

contains at least one term from the sequence

(nx1, nx2, · · · , nxn+d).

For example, though the sequence (1/3, 2/5, 1/2) is 2-regular with at most one
irregularity, its extension to (1/3, 2/5, 1/2, 0) is not 3-regular with at most one ir-
regularity. With the previous definition in mind, Graham and Berlekamp’s question
can be stated as follows: for a given d � 0, what is the largest N for which there
exists an N -regular sequence with at most d irregularities? Next, we introduce some
notation that conveniently subsumes most of their question into a function.

Definition 3. For all d � 0, s(d) is equal to the largest N for which there exists
an N -regular sequence with at most d irregularities.

Graham and Berlekamp’s question becomes, concisely: what is s(d)? To what
extent has this question been answered? In terms of our function, Warmus’s result
from above is s(0) = 17. Unfortunately, for d � 1, the exact values of s(d) remain
unknown. There are, however, some lower and upper bounds.

For lower bounds, Oliveira’s recent construction of the following 31-regular se-
quence with at most one irregularity [3],
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, (1.1)

means that s(1) � 31.1 In general, by Corollary 1, s(d) �
⌅p

4d + 895 + 1
⇧

for all
d � 1.

For upper bounds, in their 1970 paper [1], Berlekamp and Graham gave a proof
that s(d) < 4(d+2)2 for all d � 0. But then in 2012, in a private email received by
Graham from David and Moshe Newman, it was pointed out that the proof was

1Oliveira claimed to have verified that s(1) = 31 by an exhaustive computer search but the
computer code was not provided.
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incomplete. In 2013, Graham responded with a note [2] acknowledging this and
pointing out that a result of the same form, namely, that s(d) < exp(cd2), for an
appropriate absolute constant c, follows directly from a fundamental inequality in
Roth’s paper on discrepancies [4]. Further, in the same note, Graham outlined ideas
for the following improved result.

Theorem 1 (Graham). For all d � 1, s(d) < 16000d3.

Unfortunately, it was impossible to reconstruct the details outlined in Graham’s
note. In Section 3, using some of the ideas outlined in Graham’s note, we give a
detailed proof of the slightly weaker bound, namely, that s(d) < 24801d3+942d2+3.

2. A Lower Bound for s(d)

First we prove something about the spacing of terms in N -regular sequences with
at most d irregularities.

Lemma 1. If
(x1, x2, · · · , xN+d)

is N-regular with at most d irregularities, then, for each positive integer k  N , the
interval [k � 1, k + 1) contains at least one element from the sequence

((N + 1)x1, (N + 1)x2, · · · , (N + 1)xN+d).

Proof. Assume that there does exist a positive integer k such that [k � 1, k + 1)
does not contain a term from the sequence

((N + 1)x1, (N + 1)x2, · · · , (N + 1)xN+d).

This is equivalent to assuming that, for each xi 2 (x1, x2, · · · , xN+d), either

(N + 1)xi < k � 1

or
(N + 1)xi � k + 1.

In the former case, this implies that xi < 1. In the later case, this implies that
xi � 0. By pairing our inequalities, we have that either

Nxi < k � 1

or
Nxi � k.
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This is equivalent to [k � 1, k) not containing a term from the sequence

(Nx1, Nx2, · · · , NxN+d).

This, in turn, contradicts our lemma’s assumption that (x1, x2, · · · , xN+d) is N -
regular with at most d regularities.

Next, we “extend the regularity” of a sequence.

Lemma 2. If
(x1, x2, · · · , xN+d)

is N-regular with at most d irregularities, then there exists a sequence

(x01, x
0
2, · · · , x0dN+1

2 e)

such that the sequence formed by concatenating the two,

(x1, · · · , xN+d, x
0
1, · · · , x0dN+1

2 e),

is (N + 1)-regular with at most (d +
⌃

N+1
2

⌥
� 1) irregularities.

Proof. In Lemma 1, we proved that when the terms of an N -regular sequence are
multiplied by (N + 1), they do not miss two consecutive unit-length intervals. This
means that at most

⌃
N+1

2

⌥
of the intervals

[0, 1), [1, 2), · · · , [N,N + 1)

do not contain a term from

((N + 1)x1, (N + 1)x2, · · · , (N + 1)xN+d).

We pick the terms in the sequence

(x01, x
0
2, · · · , x0dN+1

2 e)

so that at least one of them is in each of the at most
⌃

N+1
2

⌥
intervals not containing

a term from
((N + 1)x1, (N + 1)x2, · · · , (N + 1)xN+d).

This guarantees that
(x1, · · · , xN+d, x

0
1, · · · , x0dN+1

2 e)

is an (N + 1)-regular sequence with at most (d +
⌃

N+1
2

⌥
� 1) irregularities.

Next, we put the previous two lemmas together to get our lower bound.
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Theorem 2. For all d0 � 1, if
s(d0) � N,

then
s(d) �

jp
4d� 4d0 � 1 + (N � 1)2 + 1

k

for all d � d0.

Proof. By Definition 3, s(d0) � N if and only if an N -regular sequence with at
most d0 irregularities exists. By Lemma 1, if an N -regular sequence with at most d
irregularities exists, then an (N + 1)-regular seqence with at most (d +

⌃
N+1

2

⌥
� 1)

irregularities must also exist. Thus, again by Definition 3, an (N + 1)-regular
sequence with at most (d +

⌃
N+1

2

⌥
� 1) irregularities exists, if and only if s(d0 +⌃

N+1
2

⌥
� 1) � N + 1. Recursively repeating this argument j times yields

s(d0 +
jX

i=1

✓⇠
N + i

2

⇡
� 1

◆
) � N + j

for all j � 1. We rewrite this as

s(d⇤j ) �
q

4d⇤j � 4d0 � 1 + (N � 1)2 + 1 (2.1)

for the increasing sequence of values

(d⇤j )
1
j=1 = (d0 +

jX

i=1

✓⇠
N + i

2

⇡
� 1

◆
)1j=1.

By Definition 3, s(d) is an increasing, integer-valued function. By examination, we
see that

q
4d⇤j+1 � 4d0 � 1 + (N � 1)2 + 1 =

⇣q
4d⇤j � 4d0 � 1 + (N � 1)2 + 1

⌘
+ 1

holds for the right-side of Inequality (2.1). Combining the previous two facts yields
that

s(d) �
jp

4d� 4d0 � 1 + (N � 1)2 + 1
k

for all d � d0.

Corollary 1. For all d � 1,

s(d) �
jp

4d + 895 + 1
k

.

Proof. By Definition 3, the existence of the 31-regular sequence with one irregular-
ity, as demonstrated in [3], is equivalent to s(1) � 31. Setting d0 = 1 and N = 31,
in Theorem 2, yields our result.
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2.1. A Few Thoughts on Improving the Lower Bound for s(d)

Perhaps, by examining the geometric structure of n-regular subsequences, the max-
imum number of intervals left empty when multiplying the terms of an N -regular
sequence by (N + 1) could be made fewer? Perhaps some specific N -regular se-
quence with at most d irregularities can be found that leaves fewer empty intervals
when multiplied by (N + 1)?

3. An Upper Bound for s(d)

We show that a sequence X, which we assume to be N -regular with at most d
irregularities, contains a certain set of terms we call P 0. We then use the set P 0 to
show that if N were allowed to be greater than some d-dependent value, then X
would be forced to have more than d irregularities. This contradicts the assumption
that X has at most d irregularities. The process of establishing this contradiction
yields our upper bound.

3.1. Subsequences P and P 0

First, we show that there is an increasing subsequence

P ⇢ X

such that each of its terms, when dilated by some positive integer n0, is contained
in a unit-length interval separated from the subsequence’s next dilated term by an
empty unit-length interval.

Lemma 3. Let
X = (x1, x2, · · · , xN+d)

be N-regular with at most d irregularities. If l,m and n0 are all positive integer
constants such that

l + 8md + 3  n0  N,

then there exists a (not necessarily order preserving) subsequence taken from the
first n0 + d terms of X,

P = (v1 < w1 < v2 < w2 < · · · < v2md+1 < w2md+1),

such that

n0vi 2 [l + 4i� 4, l + 4i� 3) and n0wi 2 [l + 4i� 2, l + 4i� 1).
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Proof. For all n0  N , Definition 2 guarantees that each one of the intervals

[0, 1), [1, 0), · · · , [n0 � 1, n0)

contains at least one term from (n0x1, n0x2, · · · , n0xn0+d). Since 1  l  n0 �
8md + 3 and 1  i  2md + 1, it follows that the set of all intervals of the form

[l + 4i� 4, l + 4i� 3) or [l + 4i� 2, l + 4i� 1)

is a subset of the intervals

[0, 1), [1, 0), · · · , [n0 � 1, n0).

We construct P by picking, in ascending order, one of the n0xi from each of the
4md + 2 intervals of the form

[l + 4i� 4, l + 4i� 3) or [l + 4i� 2, l + 4i� 1)

and then dividing by the coe�cient n0.

The previous lemma leads directly to the following bounds on both the values of
and the distances between P ’s paired terms.

Corollary 2. Let
X = (x1, x2, · · · , xN+d)

be N-regular with at most d irregularities. If l,m and n0 are all positive integer
constants such that

l + 8md + 3  n0  N,

then there exists a (not necessarily order preserving) subsequence taken from the
first n0 + d terms of X,

P = (v1 < w1 < v2 < w2 < · · · < v2md+1 < w2md+1),

such that
1 < n0(wi � vi) < 3 (3.1)

and
l

n0
 vi < wi <

l + 8md + 3
n0

. (3.2)

Proof. Since n0vi and n0wi are contained, respectively, in the intervals [l + 4i �
4, l + 4i � 3) and [l + 4i � 2, l + 4i � 1), two unit-length intervals that are exactly
separated by a unit-length interval, it follows that

1 < n0(wi � vi) < 3.
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Since n0v1 < n0vi < n0wi < n0w2md+1, n0v1 2 [l, l + 1) and n0wk 2 [l + 8md +
3, l + 8md + 3), it follows that

l  n0vi < n0wi < l + 8md + 3n0

and, thus, that
l

n0
 vi < wi <

l + 8md + 3
n0

.

Next, we show that there is a certain subsequence, P 0 ⇢ P , made up of paired
terms all separated by almost the same distance. Controlling this distance is key
to forcing the contradiction that yields our upper bound for s(d).

Lemma 4. Let X be an N-regular sequence with at most d irregularities. If l,m
and n0 are all positive integer constants such that

l + 8md + 3  n0  N,

then there exists a (not necessarily order preserving) subsequence taken from the
first n0 + d terms of X,

P 0 = (y1 < z1 < y2 < z2 < · · · < yd+1 < zd+1),

such that, for some positive integer r  2m,

1 +
r � 1
m

< n0(zi � yi)  1 +
r

m

holds for all yi, zi.

Proof. By Lemma 3, there exists a (not necessarily order preserving) subsequence
taken from the first n0 + d terms of X,

P = (v1 < w1 < v2 < w2 < · · · < v2md+1 < w2md+1).

By Corollary 2, we know that

1 < n0(wi � vi) < 3

holds for the 2md + 1 pairs wi, vi in P . If we partition the interval (1, 3) into 2m
subintervals of length 1/m, then, by the pigeonhole principle, there must exist a
subsequence

P 0 = (y1 < z1 < y2 < z2 < · · · < yd+1 < zd+1)

of P such that, for some positive integer r  2m,

1 +
r � 1
m

< n0(zi � yi)  1 +
r

m

for the d + 1 pairs yi, zi in P 0.
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3.2. Increasing the Dilated Distances Between Paired Terms in P 0

Next, we find an n1 < n0 such that when the paired terms of P 0 are dilated by this
n1, the distances between them are all slightly greater than three. This is the key
to controlling the number of unit-length intervals between the dilated paired terms
of P 0. This, in turn, is the key to getting our upper bound on s(d).

Lemma 5. Let X be an N-regular sequence with at most d irregularities. If

1. l,m and n0 are all positive integer constants such that l +8md+3  n0  N ;
and

2. P 0 ⇢ X is as given by Lemma 4,

then there exists a positive integer constant n1 such that both n0 < n1  3n0 +
(l + 8md + 3) and

3 +
l + 8md + 3

n0
 n1(zi � yi) 

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

hold for all the yi, zi in P 0.

Proof. By Lemma 4, there exists a (not necessarily order preserving) subsequence
of the first n0 + d terms of X,

P 0 = (y1 < z1 < y2 < z2 < · · · < yd+1 < zd+1),

such that, for some positive integer r  2m,

1 +
r � 1
m

< n0(zi � yi)  1 +
r

m
(3.3)

holds for all the yi, zi in P 0. Multiplying Inequalities (3.3) by

m

m + r � 1

✓
3 +

l + 8md + 3
n0

◆

yields

3 +
l + 8md + 3

n0
<

m

m + r � 1
(3n0 + l + 8md + 3) (zi � yi)


✓

1 +
1

m + r � 1

◆✓
3 +

l + 8md + 3
n0

◆
.

The inequality to the right in (3.3) implies that zi� yi  1
n0

�
1 + r

m

�
. This in turn,

when the ceiling function is applied, implies that

3 +
l + 8md + 3

n0
<

⇠
m

m + r � 1
(3n0 + l + 8md + 3)

⇡
(zi � yi)


✓

1 +
1

m + r � 1

◆✓
3 +

l + 8md + 3
n0

◆
+

1
n0

⇣
1 +

r

m

⌘
. (3.4)
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Next, we set

n1 =
⇠

m

m + r � 1
(3n0 + l + 8md + 3)

⇡
. (3.5)

Since r is between 1 and 2m, it follows that

n0  n1  3n0 + (l + 8md + 3).

Again, since r is between 1 and 2m, it directly follows that

1 +
1

m + r � 1
 1 +

1
m

and

1
n0

⇣
1 +

r

m

⌘
 3

n0
.

Finally, combining these two previous inequalities and our definition of n1 with
Inequality (3.4) gives us that

3 +
l + 8md + 3

n0
< n1(zi � yi) 

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

for all the yi, zi in P 0.

3.3. Forcing d + 1 Irregularities

In this final section we show that paired terms in P 0 contain an extra point between
them when dilated by a large fraction of the values between n1 and a certain n2.

Theorem 3. Let X be an N-regular sequence with at most d irregularities. If

1. l,m and n0 are all positive integer constants such that l +8md+3  n0  N ;
and

2. l = 351d2, m = 35d and n0 = 8267d3; and

3. n1 and P 0 are as given by Lemma 5; and

4. n2 = n1 + 311d2,

then, for each of the d + 1 pairs yi, zi in P 0, there exists some set of more than
d

d+1(n2 � n1) of the positive integers n between n1 and n2 such that at least two
points from the first n + d terms of the n-dilated sequence nX are contained in one
of the four intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1).
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Proof. We begin by dilating each of the yi from our subsequence

P 0 = (y1 < z1 < y2 < z2 < · · · < yd+1 < zd+1)

by the smallest positive integer n⇤i � n1 so that n⇤i · yi is immediately to the left of
a positive integer, that is, such that

bn⇤i · yi + yic = bn⇤i · yic+ 1. (3.6)

This implies that

n⇤i  n1 +
⇠

1
yi

⇡
. (3.7)

In Lemma 5, we proved that

n1(zi � yi) � 3 +
l + 8md + 3

n0

for all the yi, zi 2 P 0. This, since n⇤i � n1, implies that

n⇤i (zi � yi) � 3 +
l + 8md + 3

n0
.

Rearranging the last inequality and taking the floor of both sides gives us that

bn⇤i · zic � 3 �
�
n⇤i · yi +

l + 8md + 3
n0

⌫
. (3.8)

Lemma 4 picked the terms of P 0 from Lemma 3’s P , thus, by Corollary 2, we have
that

yi < zi <
l + 8md + 3

n0
. (3.9)

This, combined with Inequality (3.8), implies the looser inequality

bn⇤i · zic � 3 � bn⇤i · yi + yic .

Combining this looser inequality with Equation (3.6) gives us that

bn⇤i · zic � bn⇤i · yic � 4.

This means that the unit-length intervals containing n⇤i · yi and n⇤i zi are separated
by three unit-length intervals.

Next, for each of the yi, we define the positive constant

ki =
⇠

1
yi

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��⇡
� 1. (3.10)
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This yields the inequality

ki <
1
yi

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
.

This, in turn, combined with

n1(zi � yi) 
✓

1 +
1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

from Lemma 5, implies the looser inequality

kiyi +
n2

n1
[n1(zi � yi)] < 4.

This, in turn, assuming that n + ki  n2, implies the still looser inequality

kiyi + (n + k)(zi � yi) < 4, (3.11)

This inequality, in turn, as long as n is between n⇤i and n2 and bnyic = b(n+1)yic�1,
implies that the following equations hold:

b(n + 1)zic � b(n + 1)yic = b(n + 2)zic � b(n + 2)yic = · · ·
= b(n + ki)zic � b(n + ki)yic = 3. (3.12)

In other words, if nyi is immediately to the left of an integer, then the next ki

dilated pairs yi, zi are separated by two unit-length intervals.
Observing that there are at most d 1

yi
e values of n for which nyi is between two

integers, we divide ki by this amount. Also–to insure, as we assumed above, that
n + ki  n2 for all the n for which nyi is immediately to the left of an integer–we
throw away d 1

yi
e of the values of n that are immediately less than n2. Thus, we

have, for at least
ki

d 1
yi
e
((n2 � d 1

yi
e)� (n⇤i + 1))

of the positive integers n between n⇤i +1 and n2�d 1
yi
e, that all of the pairs nyi, nzi

are separated by two unit-length intervals. Put concisely, we have that

min
1id+1

#{n : (n⇤i + 1  n  n2) ^ (bnzic � bnyic = 3)}
n2 � n1

� min
1id+1

ki

d 1
yi
e

n2 � d 1
yi
e � n⇤i

n2 � n1
. (3.13)

By the upper bound for n⇤i , from Inequality (3.7), and by the lower bound for yi,
from Corollary 2, we have that

min
1id+1

ki

d 1
yi
e

n2 � d 1
yi
e � n⇤i

n2 � n1
� min

1id+1

ki

d 1
yi
e

n2 � dn0
l e � (n1 + dn0

l e)
n2 � n1

.
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Using Equation (3.10) to substitute for ki, together with the fact that dn0
l e 

n0
l +1,

gives us that

min
1id+1

ki

d 1
yi
e

n2 � n1 � 2dn0
l e

n2 � n1

� min
1id+1

✓
1
yi

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
� 1

◆
1

d 1
yi
e
·

✓
1� 2(n0 + l)

l(n2 � n1)

◆
.

Confining our focus to the above left two factors, together with the fact that d 1
yi
e

 1
yi

+ 1, gives us that

min
1id+1

✓
1
yi

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
� 1

◆
1

d 1
yi
e

� min
1id+1

✓
1
yi

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
� 1

◆
yi

yi + 1

= min
1id+1

✓
1

yi + 1

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
� yi

yi + 1

◆
.

Since yi 2 P , Corollary 2 gives us that yi  l+8md+3
n0 . This, in turn, gives us that

min
1id+1

✓
1

yi + 1

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
� yi

yi + 1

◆

� n0

l + 8md + 3 + n0

⇢
4� n2

n1

✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
�

l + 8md + 3
l + 8md + 3 + n0

.

Now, n2 = n1 + 190d2, from Premise (4), and n1 � n0, from Lemma 5, give us
that

n2

n1
� 1 +

190d2

n0
.
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Combining the chain of inequalities all the way back to (3.13) gives us that

min
1id+1

#{n : (n⇤i + 1  n  n2) ^ (bnzic � bnyic = 3)}
n2 � n1

�
✓

n0

l + 8md + 3 + n0

⇢
4�

✓
1 +

190d2

n0

◆✓
1 +

1
m

◆✓
3 +

l + 8md + 3
n0

◆
+

3
n0

��
� l + 8md + 3

l + 8md + 3 + n0

◆✓
1� n0 + l

l(n2 � n1)

◆
.

By substituting in the values from Premise (2), we have that

min
1id+1

#{n : (n⇤i + 1  n  n2) ^ (bnzic � bnyic = 3)}
n2 � n1

�
�
159357726d5 � 57282192d4 � 1389390d3 � 264027d2 � 8381d� 95

�

1724293890(1914d3 + 150d2 + 1)
·

�
20710d2 � 2871d� 109

�

d4
.

Since
�
159357726d5 � 57282192d4 � 1389390d3 � 264027d2 � 8381d� 95

�

1724293890(1914d3 + 150d2 + 1)
·

�
20710d2 � 2871d� 109

�

d4
>

d

d + 1

for all d � 1, we combine these last two inequalities and have that

min
1id+1

#{n : (n⇤i + 1  n  n2) ^ (bnzic � bnyic = 3)}
n2 � n1

>
d

d + 1
.

Since we have assumed X to be N -regular (with at most d irregularities), we
have that each of the five intervals

[bn⇤i · yic, bn⇤i · yic+ 1), [bn⇤i · yic+ 1, bn⇤i · yic+ 2), [bn⇤i · yic+ 2, bn⇤i · yic+ 3),
[bn⇤i · yic+ 3, bn⇤i · zic), [bn⇤i · zic, bn⇤i · zic+ 1)

must contain one n⇤i -dilated term from the first n⇤i +d terms of n⇤i X, let’s call them

n⇤i · yi < n⇤i · x(a)
i < n⇤i · x(b)

i < n⇤i · x(c)
i < n⇤i · zi.

But then Inequality (3.3) implies that, for more than d
d+1(n2 � n1) of the positive

integers n between n1 and n2, the four intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1)
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contain the five n-dilated terms

nyi < nx(a)
i < nx(b)

i < nx(c)
i < nzi.

This, by the pigeonhole principle, implies that, for more than d
d+1(n2 � n1) of the

positive integers n between n1 and n2, two of the five terms (which are all from
the first n + d terms of the n-dilated sequence nX) are contained in one of the four
intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1).

Corollary 3. There is an n0 between n1 and n2 such that, for the d + 1 pairs yi, zi,
one of the four intervals

[bn0yic, bn0yic+ 1), [bn0yic+ 1, bn0yic+ 2), [bn0yic+ 2, bn0zic), [bn0zic, bn0zic+ 1)

contains two of the first n0 + d terms from the n0-dilated sequence n0X.

Proof. Assume that no such n0 exists. This implies that, for any single n between
n1 and n2, there are at most d pairs yi, zi such that one of the four intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1)

contains two of the first n+d terms from the n-dilated sequence nX. But then this
implies that if we sum over all n between n1 and n2, then the total amount of times
that, for a pair yi, zi, one of the four intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1)

contains two of the first n + d terms from the n-dilated sequence nX is at most

d(n2 � n1).

But then this implies that, for any single pair yi, zi, the average amount of n between
n1 and n2 for which one of the four intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1)

contains two of the first n + d terms from the n-dilated sequence nX is at most

d

d + 1
(n2 � n1).

This, in turn–since an average cannot be less than all of the numbers from which it is
calculated–contradicts Theorem 3’s result that, for strictly more than d

d+1(n2�n1)
of the (n2 � n1) positive integers n between n1 and n2, one of the four intervals

[bnyic, bnyic+ 1), [bnyic+ 1, bnyic+ 2), [bnyic+ 2, bnzic), [bnzic, bnzic+ 1)

contains two of the first n + d terms from the n-dilated sequence nX.
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Finally, we put the pieces together to form our upper bound on s(d).

Corollary 4. For all d � 1,

s(d) < 24801d3 + 942d2 + 3.

Proof. Given a sequence X, if there is an n0 such that for some d + 1 pairs yi, zi ⇢ X,
one of the four intervals

[bn0yic, bn0yic+ 1), [bn0yic+ 1, bn0yic+ 2), [bn0yic+ 2, bn0zic), [bn0zic, bn0zic+ 1)

contains two of the first n0 + d terms from the n0-dilated sequence n0X, then, using
the terminology of Definition 2, the sequence X has at least d + 1 irregularities.

For a given d, Theorem 3 along with Corollary 3 tell us that if a sequence X has

24801d3 + 942d2 + d + 3

terms2, then there must be an n0 guaranteeing that the sequence X has at least
d + 1 irregularities. But then this contradicts Theorem 3’s assumption that X has
as most d irregularities. Thus, again using the terminology of Definition 2, if X is
any N -regular sequence with at most d irregularities, then

N + d < 24801d3 + 942d2 + d + 3.

This, using the notation from Definition 3, is equivalent to

s(d) < 24801d3 + 942d2 + 3.

3.4. A Few Thoughts on Improving the Upper Bound for s(d)

Our, admittedly, technically involved demonstration of an upper bound focuses on
the behavior of the terms from our sequence that are quite close to zero. Perhaps
there is a technique focusing on terms from a larger portion of the unit-length
interval that would yield a lower upper bound for s(d)?

Computer-based construction of sequences can yield exact values for s(d). Un-
fortunately, our e↵orts in this direction, consisting primarily of exhaustively con-
structing N -regular sequences with at most d irregularities, have proven too com-
putationally expensive.

224801d3 + 942d2 + d + 3 comes from adding d to the largest possible value of Theorem 3’s n2.
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