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Abstract
For a pair (E,P ) of an elliptic curve E/Q and a nontorsion point P 2 E(Q), the
sequence of elliptic Fermat numbers is defined by taking quotients of terms in the
corresponding elliptic divisibility sequence (Dn)n2N with index powers of two, i.e.
D1, D2/D1, D4/D2, etc. Elliptic Fermat numbers share many properties with the
classical Fermat numbers, Fk = 22k

+ 1. In the present paper, we show that for
magnified elliptic Fermat sequences, only finitely many terms are prime. We also
define generalized elliptic Fermat numbers by taking quotients of terms in elliptic
divisibility sequences that correspond to powers of any odd positive integer m, and
show that many of the classical properties of Fermat numbers, including coprimality,
order universality, and compositeness, still hold.

1. Introduction

Let E be an elliptic curve defined over Q by a Weierstrass equation with rational
coe�cients

E : y2 + a1y + a3xy = x3 + a2x
2 + a4x + a6. (1)

We say (1) is minimal if the discriminant |�(E)| is minimal among all Weierstrass
equations for E. Moreover, we say a minimal Weierstrass equation is reduced if
a1, a3 2 {0, 1} and a2 2 {�1, 0, 1}. It is worth noting that for all elliptic curves over
Q, minimal models exist and a reduced minimal model is unique.

For a fixed nontorsion point P 2 E(Q), we can define the elliptic divisibility
sequence as follows.

Definition 1. Let E be an elliptic curve defined over Q by a Weierstrass equation
and choose a nontorsion point P 2 E(Q). The elliptic divisibility sequence (EDS)
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associated with the pair (E,P ) is the sequence D = (Dn)n2N : N ! N defined by
taking the positive square root of the denominator of successive iterations of a fixed
nontorsion point P 2 E(Q) as the lowest fraction, i.e.,

[n]P =
✓

An

D2
n

,
Bn

D3
n

◆
, (2)

where gcd(An,Dn) = gcd(Bn,Dn) = 1.

An EDS is minimal if the Weierstrass equation of E/Q is minimal and reduced.
Much of our work revolves around elliptic Fermat numbers, analogues of the classical
Fermat numbers (Fn = 22n

+ 1, n � 0) defined by S. Binegar, R. Dominick, M.
Kenney, J. Rouse, and A. Walsh in [1]. In the original version of the paper [2], they
define elliptic Fermat numbers as follows:

Definition 2. Let E be an elliptic curve defined over Q by a Weierstrass equation
and choose a nontorsion point P 2 E(Q). Let D = (Dn)n2N be an EDS associ-
ated with the pair (E,P ). Define the sequence of elliptic Fermat numbers (EFN)
(Fk(E,P ))k2N as follows:

Fk(E,P ) =

(
D2k

D2k�1
if k � 1,

D1 if k = 0.

Remark 1. The published version of the paper presents a slightly di↵erent defi-
nition of elliptic Fermat numbers than the one stated above. Namely, the authors
define elliptic Fermat numbers as

Fk(E,P ) = Bk,

where Bk is the numerator of the lowest fraction of y-coordinate of [k]P , as in
(2). The motivation for this change was to make elliptic Fermat numbers a closer
analogue of classical Fermat numbers: Fermat’s choice of sequence relied largely
on the fact that 2n + 1 is composite when n is not a power of 2, and when put in
the language of elliptic divisibility sequences, 2n + 1 corresponds to Bn. While this
change provides stronger motivation for studying elliptic Fermat numbers, it does
not largely alter the paper’s results. We choose to use the original definition of EFN
because it is in keeping with the notation of elliptic divisibility sequences and thus
allows us to access a broad range of past results.

In [1, Theorem 7] (Also, please refer to [2, Theorem 9]), the authors show that the
following seven conditions force Fk(E,P ) to be composite for all k � 1. While they
state that it is easy to check whether these conditions are satisfied, they are quite
restrictive. Note that “egg” in Theorem 1 refers to the non-identity component of
E, and that m0 (used in condition (vi)) is the numerator of the lowest fraction of
x-coordinate of P , as A1 in (2).
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Theorem 1. For an elliptic curve E : y2 = x3 + ax2 + bx, assume the following:

(i) E(Q) = hP, T i, where P has infinite order and T = (0, 0) is a rational point
of order 2;

(ii) E has an egg;

(iii) T is on the egg;

(iv) T is the only integral point on the egg;

(v) P is not integral;

(vi) gcd(b,m0) = 1;

(vii) the equations x4 + ax2y2 + by4 = ±1 have no integer solutions where y 62
{0,±1}.

Then Fk(E,P ) is composite for all k � 1.

In the same vein, we prove the non-primality of a sequence of elliptic Fermat
numbers defined by magnified elliptic divisibility sequences. First, we recall the
definition of magnified elliptic divisibility sequences.

Definition 3. Let E/Q and E0/Q be two elliptic curves. We say a nontorsion point
P 2 E(Q) is magnified if P = �(P 0) for some (nonzero) isogeny � : E0 ! E over Q
of degree deg(�) > 1, and some nontorsion point P 0 2 E0(Q). Moreover, an EDS
D = (Dn)n2N is magnified if D is a minimal EDS associated with some magnified
point on an elliptic curve over Q. We call a sequence of elliptic Fermat numbers
(Fk(E,P ))k2N magnified if it is defined by using a magnified EDS.

We prove the following non-primality result about sequences of magnified elliptic
Fermat numbers. The statement follows from Theorem 9 when m = 2.

Theorem 2. Let E/Q be a minimal magnified elliptic curve with a fixed nontorsion
point P 2 E(Q) having an isogeny � : E0 ! E of odd degree deg(�) > 1 from
a minimal elliptic curve E0/Q satisfying �(P 0) = P for some nontorsion point
P 0 2 E0(Q). Then the terms Fk(E,P ) are composite for su�ciently large k.

In this paper, we consider not only elliptic Fermat numbers, but also a gener-
alization of these sequences. Generalized classical Fermat numbers have the form
a2n

+ b2n
for some relatively prime integers a and b. It is natural to consider a

similar generalization of elliptic Fermat numbers:

Definition 4. Let E be an elliptic curve defined over Q by a Weierstrass equation
and choose a nontorsion point P 2 E(Q). Let D = (Dn)n2N be an EDS associated
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with the pair (E,P ), and let m � 1 be an integer. We define the sequence of gen-
eralized elliptic Fermat numbers (Fk

(m)(E,P ))k2N associated with the pair (E,P )
as follows:

Fk
(m)(E,P ) =

(
Dmk

Dmk�1
if k � 1,

D1 if k = 0.

A sequence of generalized elliptic Fermat numbers associated with the pair (E,P )
is minimal if the Weierstrass equation of E/Q is minimal and reduced. Note that
Definition 2 is the special case where m = 2. In [1] and [2], they prove theorems
regarding the common divisors of elliptic Fermat numbers and the so-called order
universality of EFN, mirroring the coprimality and order universality of classical
Fermat numbers. We show the following similar results about generalized EFN:

Theorem 3 (Coprimality). Let F = (F (m)
k (E,P ))k2N be the sequence of minimal

generalized elliptic Fermat numbers for a fixed elliptic curve E, a nontorsion point
P 2 E(Q) and an odd integer m � 1. Then for all distinct k, ` � 0,

gcd(Fk
(m)(E,P ), F`

(m)(E,P )) | m.

Theorem 4 (Order Universality). Let F = (F (m)
k (E,P ))k2N be the sequence

of generalized elliptic Fermat numbers for a fixed elliptic curve E, a nontorsion
point P 2 E(Q) and an odd integer m � 1. Then for all N 2 N satisfying
gcd(N, 6�(E)) = 1,

P has order mk in E(Z/NZ)

if and only if
N | F0

(m) · · ·Fk
(m) and N - F0

(m) · · ·Fk�1
(m).

Theorem 3 and Theorem 4 also hold for m = 2, please refer to [1, Theorem
2, Theorem 3] and [2, Theorem 3, Theorem 4] for more details. We also have a
non-primality result for generalized elliptic Fermat numbers, which is motivated by
various works on magnified elliptic sequences, such as [3].

Theorem 5. Let E/Q be a minimal magnified elliptic curve with a fixed nontorsion
point P 2 E(Q) having an isogeny � : E0 ! E of degree deg(�) > 1 from a minimal
elliptic curve E0/Q satisfying �(P 0) = P for some nontorsion point P 0 2 E0(Q).
For m relatively prime to deg(�), F (m)

k (E,P ) are composite for su�ciently large k.

Note that in the main section of the paper we only prove results about generalized
elliptic Fermat numbers, but the m = 2 case holds true for each of the more general
theorems.
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2. Properties of Generalized Elliptic Fermat Numbers

2.1. Coprimality

The authors of [1], motivated by the coprimality of the classical Fermat numbers,
show that any prime dividing the greatest common divisor of two distinct elliptic
Fermat numbers is a prime of bad reduction for the given elliptic curve. In this
section, we prove a similar result for generalized elliptic Fermat numbers generated
by odd m. We also generalize the order universality properties stated in [1, Theorem
3] and [1, Corollary 4].

Before proving any results, we present an example of a sequence of generalized
elliptic Fermat numbers generated by m = 3.

Example 1. Let E : y2 = x3 + x2 � 4x, P = (�2, 2) and m = 3. The first four
generalized elliptic Fermat numbers are listed below.

P = (�2
12 , 2

13 ) F (3)
0 (E,P ) = 1

3P = (�2
32 , 26

33 ) F (3)
1 (E,P ) = 3

1 = 3

9P = (�213293858
105932 , 2478721052834

105933 ) F (3)
2 (E,P ) = 10593

3 = 3531

27P = (�2387...4098
4777...26592 , 7135...8638

4777...26593 ) F (3)
3 (E,P ) = 4777...2659

10593 = 4509 . . . 2163
(33 digits)

We will now prove the following “coprimality” theorem, which states that the
greatest common divisor of any two generalized elliptic Fermat numbers generated
by an odd integer m must divide m.

Theorem 6 (Coprimality). Let F = (F (m)
k (E,P ))k2N be the sequence of minimal

generalized elliptic Fermat numbers for a fixed elliptic curve E, a nontorsion point
P 2 E(Q) and an odd integer m � 1. Then for all distinct k, ` � 0,

gcd(Fk
(m)(E,P ), F`

(m)(E,P )) | m.

The heart of the proof relies on the following lemma from [5]:

Lemma 1. Let D = (Dn)n2N be a minimal EDS, let n � 1, and let p be a prime
satisfying p | Dn.

(a) For all m � 1 we have

ordp(Dmn) � ordp(mDn).
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(b) The inequality in (a) is strict,

ordp(Dmn) > ordp(mDn),

if and only if p = 2, 2 | m, ord2(Dn) = 1 and E has ordinary or multiplicative
reduction at 2.

For our purposes, the conditions of (b) will never be met, since we are only
working with odd m. Thus, we always have equality, i.e., if a prime p satisfies
p | Dn, then

ordp(Dmn) = ordp(mDn).

We can apply Lemma 1 to generalized elliptic Fermat numbers in the following way.

Proposition 1. Let D = (Dn)n2N be a minimal EDS, and let m � 1 be an odd
integer. If p | Dms�1 for some s � 1, then

ordp(Fs
(m)) = ordp(m).

Proof. Consider the case of Lemma 1 where n = ms�1. Then if p | Dms�1 for some
s � 1,

ordp(Dms) = ordp(mDms�1).

It immediately follows that

ordp(Fs
(m)) = ordp

✓
Dms

Dms�1

◆
= ordp(m).

We now use Proposition 1 to prove Theorem 6. For simplicity, we will let Fk
(m)

denote Fk
(m)(E,P ) whenever it appears in the rest of the paper.

Proof of Theorem 6. Let p be a prime, and suppose p | Dms�1 for some s � 1. Let
t = min{s � 1 : p | Dms�1}. Since (Dn)n2N is a divisibility sequence, it is given that
p | Dmt�1 implies p | Dmk�1 for all k � t. Without loss of generality, we assume
k < ` throughout the proof.

First, when t  k < `, Proposition 1 implies

ordp(Fk
(m)) = ordp(F`

(m)) = ordp(m).

Thus, for each prime p that divides a term in (Dn)n2N, and for all distinct k, ` � t,
we have

ordp(gcd(Fk
(m), F`

(m))) = ordp(m). (3)
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For all distinct k, ` with k < t� 1, we have p - Dmk , which implies that p is not
a factor of gcd(Fk

(m), F`
(m))). Hence, for all distinct k, ` with k < t� 1, we have

ordp(gcd(Fk
(m), F`

(m))) = 0. (4)

When k = t� 1 and ` > k, we have

p - Dmk�1 and p | Dmk

and
p | Dm`�1 and p | Dm` .

Therefore, we have ordp(F
(m)
k )  ordp(m) and ordp(F

(m)
` ) = ordp(m), and we get

ordp(gcd(Fk
(m), F`

(m)))  ordp(m). (5)

From (3), (4), and (5), for any distinct k, `, we have the desired result:

gcd(Fk
(m), F`

(m)) | m.

Remark 2. Theorem 6 actually implies a more specific result than the theorem
states. For example, if 3 | Ft

(15)(E,P ), then Theorem 6 only tells us that

gcd(Fk
(15), F`

(15)) 2 {1, 3, 5, 15}

for all distinct k, ` � t, but in actuality, we know that gcd(Fk
(15), F`

(15)) 2 {3, 15}
because 3 - 1 and 3 - 5. In the case where m is prime, Theorem 6 gives an even
more specific result, as stated in the corollary below.

Corollary 1. Let D = (Dn)n2N be the minimal EDS for a fixed elliptic curve E

and a nontorsion point P 2 E(Q), and let F = (F (pa)
k (E,P ))k2N be the associated

sequence of minimal generalized elliptic Fermat numbers defined by an odd prime
power pa. Then for all distinct k, ` � 0,

gcd(Fk
(pa)(E,P ), F`

(pa)(E,P )) 2 {1, p, p2, . . . , pa}.

In particular, for distinct k, ` � t, we have

gcd(Fk
(pa)(E,P ), F`

(pa)(E,P )) 2 {1, pa},

where t = min{s � 1 : p | Dms�1}.

Proof. The result follows from the proof of Theorem 6.
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Example 2. We factor the generalized elliptic Fermat sequence from Example 1:

F (3)
0 (E,P ) = 1

F (3)
1 (E,P ) = 3

1 = 3

F (3)
2 (E,P ) = 10593

3 = 3531 = 3 ⇤ 11 ⇤ 107

F (3)
3 (E,P ) = 4777...2659

10593 = 4509 . . . 2163

= 3 ⇤ 3240769000879427 ⇤ 46385324158085723

We see that gcd(F0
(3), F1

(3)) = 1, while gcd(Fk
(3), F`

(3)) = 3 for distinct 1 
k, `  3.

2.2. Order Universality

In addition to proving results about the greatest common divisor of elliptic Fermat
numbers, the authors of [1] include a result connecting divisibility with order, which
they call order universality. This property holds in full force for generalized elliptic
Fermat numbers. In fact, the proofs are nearly the same as the proofs for the case
where m = 2.

Theorem 7 (Order Universality). Let F = (F (m)
k )k2N be the sequence of gener-

alized elliptic Fermat numbers for a fixed elliptic curve E, a nontorsion point P 2
E(Q) and an odd integer m � 1. Then for all N 2 N satisfying gcd(N, 6�(E)) = 1,

P has order mk in E(Z/NZ)

if and only if
N | F0

(m) · · ·Fk
(m) and N - F0

(m) · · ·Fk�1
(m).

Proof. The proof follows the exact same steps as the proof of Theorem 3 in [1].
Namely, we define a homomorphism � : E(Q) ! E(Z/NZ) that maps P 7! P
(mod N), then use the fact that �(pkP ) = pk�(P ) to demonstrate that P has order
mk in E(Z/NZ) exactly when N | F0

(m) · · ·Fk
(m) and N - F0

(m) · · ·Fk�1
(m).

Corollary 2. Let F = (F (m)
k )k2N be the sequence of minimal generalized elliptic

Fermat numbers for a fixed elliptic curve E, a nontorsion point P 2 E(Q) and an
odd integer m � 1. Let p be an odd prime such that p - 6m�(E). Then

P has order mk in E(Fp) if and only if p | Fk
(m).
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Proof. The proof is similar to that of Corollary 4 in [1]. However, whereas the proof
in [1] relies on the fact that gcd(Fk

(2), F`
(2)) 2 {1, 2}, here we require that p - m

in order to make use of Theorem 3, which tells us that gcd(Fk
(m), F`

(m)) | m. The
adapted proof proceeds as follows: If p | F0

(m) · · ·Fk
(m) and p - F0

(m) · · ·Fk�1
(m),

then p | Fk
(m). Conversely, if p | Fk

(m), then p | F0
(m) · · ·Fk

(m). Theorem 3 gives
us p - Fi

(m) for all i 6= k, implying p - F0
(m) · · ·Fk�1

(m). Thus we have shown that
p | Fk

(m) if and only if p | F0
(m) · · ·Fk

(m) and p - F0
(m) · · ·Fk�1

(m), and the desired
result follows from Theorem 7.

Example 3. Using the curve E, point P and integer m from Example 1, observe
that the order of P 2 E(F593) = 32, and indeed, 593 | F2

(3) = 3 ⇤ 593 = 1779.

3. Compositeness of Magnified Generalized Elliptic Fermat Numbers

3.1. Primality Conjecture for Generalized Elliptic Fermat Numbers

Throughout this section, we assume E to be an elliptic curve over Q and P 2 E(Q)
to be a nontorsion point. Everest, Miller, and Stephens [3] proved the following
conjecture for magnified elliptic divisibility sequences.

Conjecture 1 (Primality conjecture). Let D = (Dn)n2N be an elliptic divisi-
bility sequence associated with the pair (E,P ). Then D = (Dn)n2N contains only
finitely many prime terms.

Note that for the Fibonacci sequence, it is conjectured that primes occur infinitely
many times. In this section, we will prove the following conjecture for magnified
generalized elliptic Fermat numbers.

Conjecture 2 (Primality conjecture for generalized elliptic Fermat num-
bers). Let F = (F (m)

k (E,P ))k2N be the sequence of generalized elliptic Fermat
numbers for an elliptic curve E and a fixed nontorsion point P 2 E(Q). Then
F = (F (m)

k (E,P ))k2N contains only finitely many prime terms.

Using Corollary 2, we can prove the following result.

Lemma 2. Let E/Q be a minimal magnified elliptic curve with a fixed nontorsion
point P 2 E(Q) having an isogeny � : E0 ! E of degree d = deg(�) > 1 from
a minimal elliptic curve E0/Q satisfying �(P 0) = P for some nontorsion point
P 0 2 E0(Q). For su�ciently large k and m with gcd(m,d) = 1, we have

gcd(F (m)
k (E0, P 0), F (m)

k (E,P )) 6= 1. (6)

Proof. Let p be a fixed prime which divides F (m)
k (E0, P 0). Let S be the set of

primes for which E and E0 have bad reduction, where � cannot be reduced to give
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an isogeny on elliptic curves E and E0 modulo p. Note that S is a finite set. Thus,
we consider su�ciently large k so that p /2 S, which is possible from Theorem 3. If
p | m, we have (6) for large enough k by Proposition 1. Otherwise, from Corollary
2, it is su�cient to prove that the isogeny � reduced modulo p (which is again an
isogeny) preserves the order mk of P 0,

� : E0(Fp) ! E(Fp).

We consider the dual isogeny �̂ of �. We know

�̂ � � = [d],

where [d] is the multiplication-by-d map on E0. Then the map

[d] : E0(Fp)
��! E(Fp)

�̂�! E0(Fp)

preserves the order mk of P 0 and so does �.

Example 4. We can see the divisibility of corresponding elliptic Fermat numbers
using the following magnified elliptic divisibility sequence, which has a degree 3
isogeny � that maps

E01 : y2 = x3 � 9x + 9, with P 0 = [1, 1]

to
E1 : y2 = x3 � 189x� 999, with P = [�8, 1].

Then we get the following factorizations, and we can check the divisibility of corre-
sponding elliptic Fermat numbers.

F1(E
0
1, P

0) = 1 F1(E1, P ) = 2

F2(E
0
1, P

0) = 17 F2(E1, P ) = 2 ⇤ 17 ⇤ 19

F3(E
0
1, P

0) = 53 ⇤ 127 F3(E1, P ) = 2 ⇤ 53 ⇤ 127 ⇤ 10799 ⇤ 14867

F4(E
0
1, P

0) = 89 ⇤ 179 ⇤ 307 F4(E1, P ) = 2 ⇤ 89 ⇤ 179 ⇤ 307 ⇤ 757 ⇤ 5813 ⇤ 67211
⇤ 5813 ⇤ 838133 ⇤ 838133 ⇤ 265666679 ⇤ 3205176128020873

...
...

Similarly, for a degree 7 isogeny which maps

E02 : y2 + xy = x3 � x2 + x + 1, with Q0 = [0, 1]

to
E2 : y2 + xy = x3 � x2 � 389x� 2859, with Q = [26, 51],
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we have

F1(E
0
2, Q

0) = 1 F1(E2, Q) = 1

F2(E
0
2, Q

0) = 3 F2(E2, Q) = 3 ⇤ 701

F3(E
0
2, Q

0) = 11 F3(E2, Q) = 11 ⇤ 233 ⇤ 2887 ⇤ 273001

F4(E
0
2, Q

0) = 1523 ⇤ 15443 F4(E2, Q) = 103 ⇤ 131 ⇤ 311 ⇤ 467 ⇤ 1523 ⇤ 11831
⇤ 15443 ⇤ 12539851
⇤ 7015932452763098743789

...
...

Example 5. We can see the divisibility of corresponding generalized elliptic Fermat
numbers using the following magnified elliptic divisibility sequence, which has a
degree 2 isogeny � that maps

E0 : y2 = x3 + x2 � 4x, with P 0 = [�2, 2]

to
E : y2 = x3 + x2 + 16x + 16 with P = [0, 4].

Then we get the following list of F (3)
k (E0, P 0) and F (3)

k (E,P ).

F (3)
1 (E0, P 0) = 3 F (3)

1 (E, P ) = 3

F (3)
2 (E0, P 0) = 3 ⇤ 11 ⇤ 107 F (3)

2 (E, P ) = 3 ⇤ 11 ⇤ 23 ⇤ 107 ⇤ 449

F (3)
3 (E0, P 0) = 3 ⇤ 3240769000879427 F (3)

3 (E, P ) = 3 ⇤ 114078700999
⇤ 46385324158085723 ⇤3240769000879427

⇤46385324158085723
⇤927508107491526089159

...
...

3.2. Compositeness of Magnified Generalized Elliptic Fermat Numbers

Following the idea in [3], we consider the growth of generalized elliptic Fermat
numbers and the compositeness of all but finitely many magnified generalized elliptic
Fermat numbers.

Definition 5. Let E/Q be an elliptic curve with a point P 2 E(Q), denoted as
P =

�
A
D2 , B

D3

�
. We define the height of a point h(P ) by using its x-coordinate:

h(P ) = log(max(|A|,D2)).

Moreover, we define the canonical height of a point ĥ(P ) by

ĥ(P ) = lim
k!1

h(2kP )
4k

.
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Remark 3. Note that when we have [l]P =
⇣

Al

D2
l
, Bl

D3
l

⌘
with gcd(Al,Dl) = 1, the

strong version of Siegel’s theorem [4, VIII] implies

lim
l!1

log(D2
l )

l2
= lim

l!1

log |Al|
l2

= ĥ(P ).

For instance, if we choose l = 3k for some k, we can also represent

ĥ(P ) = lim
k!1

log(D2
3k)

9k
= lim

k!1

log |A3k |
9k

.

From Remark 3, we can also describe the growth of generalized elliptic Fermat
numbers using the canonical height of P .

Theorem 8. Let E/Q be an elliptic curve with a fixed point P 2 E(Q). Denote by
ĥ(P ) the canonical height of P . For any m, we get

lim
k!1

log(F (m)
k (E,P ))
m2k

=
✓

1
2
� 1

2m2

◆
· ĥ(P ).

Proof. We have

lim
k!1

log(F (m)
k (E,P ))
m2k

= lim
k!1

log
⇣

Dmk

Dmk�1

⌘

m2k

= lim
k!1

log(Dmk)
m2k

� lim
k!1

log(Dmk�1)
m2k

= lim
k!1

1
2
·
log(D2

mk)
m2k

� lim
k!1

1
2m2

·
log(D2

mk�1)
m2(k�1)

=
✓

1
2
� 1

2m2

◆
· ĥ(P ).

Using Lemma 2 and Theorem 8, we can prove the primality conjecture for mag-
nified generalized elliptic Fermat numbers.

Theorem 9. Let E/Q be a minimal magnified elliptic curve with a fixed nontorsion
point P 2 E(Q) having an isogeny � : E0 ! E of degree deg(�) > 1 from a minimal
elliptic curve E0/Q satisfying �(P 0) = P for some nontorsion point P 0 2 E0(Q).
For m relatively prime to deg(�), F (m)

k (E,P ) are composite for su�ciently large k.

Proof. Using Siegel’s Theorem, we know

ĥ(P ) = dĥ(P 0),

where d is the degree of the given isogeny �. Therefore, for su�ciently large k,
there is a prime divisor which is a proper divisor of F (m)

k (E,P ) by Lemma 2 and
Theorem 8.
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