

BRAZILIAN PRIMES WHICH ARE ALSO SOPHIE GERMAIN PRIMES

Jon Grantham

Institute for Defense Analyses/Center for Computing Sciences, Bowie, Maryland grantham@super.org

Hester Graves

Institute for Defense Analyses/Center for Computing Sciences, Bowie, Maryland hkgrave@super.org

Received: 6/6/19, Revised: 12/9/19, Accepted: 4/23/20, Published: 5/8/20

Abstract

We disprove a conjecture of Schott that no Brazilian prime is a Sophie Germain prime. We compute all counterexamples up to 10^{46} . We prove conditional asymptotics for the number of Brazilian Sophie Germain primes up to x.

1. Introduction

The term "Brazilian numbers" comes from the 1994 Iberoamerican Mathematical Olympiad [8] in Fortaleza, Brazil, in a problem proposed by the Mexican math team.¹. They became a topic of lively discussion on the forum mathematiques.net. Bernard Schott [5] summarized the results in the standard reference on Brazilian numbers.

Definition 1. A Brazilian number n is an integer whose base-b representation has all the same digits for some 1 < b < n - 1.

In other words, n is Brazilian if and only if $n = m\left(\frac{b^q-1}{b-1}\right) = mb^{q-1} + \cdots + mb + m$, with $q \geq 2$. These numbers are <u>A125134</u> in the Online Encylopedia of Integer Sequences (OEIS).

A Brazilian prime (or "prime repunit") is a Brazilian number that is prime; by necessity, m=1 and $q\geq 3$. See <u>A085104</u> in the OEIS for the sequence of Brazilian primes. In 2010, Schott [5] conjectured that no Brazilian prime is also a Sophie Germain prime.

 $^{^{1}}$ The term appears as "sensato" in the original problem [6]. The authors are puzzled by the discrepancy with [8].

Sophie Germain discovered her eponymous primes while trying to prove Fermat's Last Theorem; her work was one of the first major steps towards a proof.

2

Definition 2. A *Sophie Germain prime* is a prime p such that 2p+1 is also prime.

Germain showed that if p is such a prime, then there are no non-zero integers x, y, z, not divisible by p, such that $x^p + y^p = z^p$. If p is a Sophie Germain prime, then we say that 2p + 1 is a safe prime.

It is conjectured that there are infinitely many Sophie Germain primes, but the claim is still unproven. The Bateman-Horn conjecture [1] implies that the number of Sophie Germain primes less than x is asymptotic to $2C\frac{x}{\log^2 x}$, where

$$C = \prod_{p>2} \frac{p(p-2)}{(p-1)^2} \approx 0.660161.$$

See [3] for further information about Sophie Germain primes.

2. Enumerating Counterexamples

To aid our search, we use a few lemmas.

Lemma 1. If $p = \frac{b^q - 1}{b - 1}$ is a Brazilian prime, then q is an odd prime.

Proof. Recall $x^q - 1$ is divisible by the mth cyclotomic polynomial $\Phi_m(x)$ for m|q; therefore p can only be prime if q is also prime. Note that q > 2 because b , so <math>q is an odd prime.

The preceding lemma is also Corollary 4.1 of Schott [5].

Lemma 2. If p is a Brazilian prime and a Sophie Germain prime, then $p \equiv q \equiv 2 \pmod{3}$ and $b \equiv 1 \pmod{3}$.

Proof. If p is a Sophie Germain prime, then 3 cannot divide the safe prime 2p+1, so p cannot be congruent to 1 (mod 3). The number 3 is not Brazilian, so $p \neq 3$ and thus $p \equiv 2 \pmod{3}$.

If 3|b, then

$$p = b^{q-1} + b^{q-2} + \dots + b + 1 \equiv 1 \pmod{3},$$

which is a contradiction. Lemma 1 states that q is an odd prime, so if $b \equiv 2 \pmod{3}$, then $p \equiv 1 \pmod{3}$, a contradiction. We conclude that $b \equiv 1 \pmod{3}$, so that $q \equiv p \pmod{3}$, and therefore $q \equiv 2 \pmod{3}$.

For q = 5, we use a modification of the technique described in [7] to compute a table of length-5 Brazilian primes up to 10^{46} . We will describe this computation in full in a forthcoming paper [2]. Of these, 104890280 are Sophie Germain primes.

The smallest is $28792661 = 73^4 + 73^3 + 73^2 + 73 + 1$. We very easily prove the primality of Sophie German primes with the Pocklington-Lehmer test.

For $q \ge 11$, we very quickly enumerate all possibilities for $b \le 10^{46/(q-1)}$. We find 22 Brazilian Sophie Germain primes for q=11, and none for larger q. (We have $q < \log_2 10^{46} + 1 < 154$.) The smallest is

```
14781835607449391161742645225951 = 1309^{10} + 1309^9 + \dots + 1309 + 1.
```

While we disprove Schott's conjecture, we do have a related proposition.

Proposition 1. The only Brazilian prime which is a safe prime is 7.

Proof. If $p = b^{q-1} + \dots + b + 1$ is a safe prime, then $\frac{p-1}{2} = \frac{1}{2}(b^{q-1} + \dots + b)$ must also be prime. This expression, however, is divisible by $\frac{b(b+1)}{2}$, which is only prime when b = 2 and p = 7.

The list of Brazilian Sophie Germain primes is $\underline{A306845}$ in the OEIS. The first few counterexamples were also discovered by Giovanni Resta and Michel Marcus; see the comments for $\underline{A085104}$.

3. Conditional Results

The infinitude of Brazilian Sophie Germain primes, as well as the asymptotic number of them, is the consequence of well-known conjectures.

Proposition 2. Assuming Schnizel's Hypothesis H, there are infinitely many Brazilian Sophie Germain primes.

Proof. Recall that Hypothesis H [4] says that any set of polynomials, whose product is not identically zero modulo any prime, is simultaneously prime infinitely often. Take our two polynomials to be $f_0(x) = x^4 + x^3 + x^2 + x + 1$ and $f_1(x) = 2x^4 + 2x^3 + 2x^2 + 2x + 3$. Then $f_0(b)$ is Brazilian and $f_1(b) = 2f_0(b) + 1$. Rather than checking congruences, it suffices to note the existence of the above primes of this form to see that the conditions of Hypothesis H are satisfied.

The Bateman-Horn Conjecture [1] implies a more precise statement about the number of Brazilian Sophie Germain primes.

Proposition 3. For an odd prime q, let $\Phi_q(x)$ be the qth cyclotomic polynomial. Assuming the Bateman-Horn Conjecture, the number of values of b < x such that $\Phi_q(b)$ and $2\Phi_q(b) + 1$ are simultaneously prime is 0 or $\sim C_q \frac{x}{\log^2 x}$, for some positive constant C_q , depending on whether $\Phi_q(b)(2\Phi_q(b) + 1)$ is identically zero modulo some prime p.

INTEGERS: 20 (2020) 4

Proof. This follows immediately from the Bateman-Horn conjecture, with $C_q = \left(\prod_p \frac{1-N(p)/p}{(1-1/p)^2}\right)/q^2$, where N(p) is the number of roots of $\Phi_q(b)(2\Phi_q(b)+1)$ modulo p.

Corollary 1. Assuming the Bateman-Horn Conjecture, the number of Brazilian Sophie Germain primes up to x is $\sim C \frac{x^{1/4}}{\log^2 x}$, for some C.

Proof. To find the number of Brazilian Sophie Germain primes less than y of the form $\Phi_q(b)$ for a fixed q, we apply the preceding proposition, substituting $x=y^{1/(q-1)}$, and get $\sim C_q' \frac{y^{1/(q-1)}}{\log^2 y}$, with $C_q' = C_q(q-1)^2$. We sum over all $q \equiv 2 \pmod 3$ and notice that the q=5 term dominates. We can thus take $C=C_5'$.

Acknowledgement. Thanks to Enrique Treviño for helping track down the reference in [6], and to the referee for helpful comments.

References

- P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, *Math. Comp.* 16 (1962), 363–367.
- [2] J. Grantham and H. Graves, Goldbach variations, in preparation, 2020.
- [3] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.
- [4] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith. 4 (1958), 185–208; erratum 5 (1958), 259.
- [5] B. Schott, Les nombres brésiliens, Quadrature (2010), 30-38.
- [6] E. Wagner, G. T. de Araujo Moreira Carlos, P. Fauring, F. Gutiérrez, and A. Wykowski, 10 Olimpíadas Iberoamericanas de Matemática, OEI, Madrid, 1996.
- [7] M. Wolf, Some conjectures on primes of the form m² + 1, J. Comb. Number Theory 5 (2013), 103-131.
- [8] R. E. Woodrow, The Olympiad corner, Crux Mathematicorum 24 (1998), 385-395.