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Abstract
We study an object: a sequence (collection) of arithmetic progressions with the
property that the jth terms of the ith and (i+1)th progressions are the multiplicative
inverses of each other, modulo the (j + 1)th term of the ith progression. In the
study we address some combinatorial and algorithmic issues on a mirror symmetry
(called the symmetricity property) satisfied by leading terms of progressions of such
an object. The issues are in connection with the number of divisors k of integers
of the form x2 � y2, with k falling in specific intervals. Our study explores a
new perspective on the quotient sequence of the standard Euclidean algorithm on
relatively-prime input pairs. Some open issues are left concerning the symmetricity
property.

1. Introduction

Let A(a, d) denote an arithmetic progression of integers with leading term a and
common di↵erence d.

The starting point of our study is the fact that, for a given progression A(a, d),
there exists a progression A(a0, d0) such that the terms of the two progressions satisfy
the property:

(a + jd)(a0 + jd0) ⌘ 1 (mod a + (j + 1)d), j � 0.

In other words, the property states that the jth terms of A(a, d) and A(a0, d0) are
the multiplicative inverses of each other modulo the (j + 1)th term of A(a, d). We
refer to this invertible property as Property P. Note that this property holds only
when a and d are co-prime.

We prove the following main result, which shows the uniqueness of existence of
A(a0, d0) when d0  d.
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Theorem 1. For a given progression A(a, d) with a and d being co-prime, there
exists only one progression A(a0, d0) with 1  d0  d such that, for any i � 0,

(a + id)(a0 + id0) ⌘ 1 (mod a + (i + 1)d).

The above result allows us to build inductively, from a given progression A(a0, d0), a
unique sequence of progressions A(a0, d0), A(a1, d1), A(a2, d2), . . ., where the terms
of any two consecutive progressions of the sequence satisfy Property P, i.e.,

(ai + jdi)(ai+1 + jdi+1) ⌘ 1 (mod ai + (j + 1)di), i, j � 0,

and the common di↵erences of the progressions satisfy di � di+1 � 1. The entire
sequence is constructed uniquely from the base progression A(a0, d0) for co-prime
integers a0, d0. Hence, we denote the sequence by S(a0, d0).

As an illustration, the sequence S(11, 25) is as follows.

11, 36, 61, 86, . . .
23, 39, 55, 71, . . .
17, 24, 31, 38, . . .
17, 22, 27, 32, . . .
13, 16, 19, 22, . . .
5, 6, 7, 8, . . .
5, 6, 7, 8, . . .

The common di↵erences are in decreasing order and any two consecutive common
di↵erences are co-prime. So, the sequence S(a0, d0) eventually has a progression
with common di↵erence 1. After that point the same progression repeats. This
shows that the sequence has only finitely many distinct arithmetic progressions.
The above example illustrates this fact.

The object S(a0, d0) displays some interesting properties, which are connected
to the quotient sequence arising in the standard Euclidean algorithm of finding the
greatest common divisor of two given numbers. Essentially, alternating quotients
of the quotient sequence of the Euclidean algorithm give the sizes of certain sub-
collections of the sequence S(a0, d0). We prove this connection. There has been
extensive study of the Euclidean algorithm. The average behavior of the quotient se-
quence and the average number of iterations of the algorithm are studied in [3, 4, 5].
Our connection is, to the best of our knowledge, the first time it has been shown
in the literature that the quotients of the Euclidean algorithm, on a given input
co-prime pair, correspond to the cardinalities (or sizes) of certain sub-collections
belonging to the defined object S(a0, d0) for some pair (a0, d0). Further, a mirror
symmetry exhibited by leading terms of progressions of S(a0, d0) is subject to cer-
tain conditions on the quotient sequence of the Euclidean algorithm. The property
is also related to the number of divisors k of integers of the form x2 � y2, with k
falling in specific intervals. We prove these connections.
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In the literature, collections of progressions have been considered in the context
of covering integers. A collection of progressions is called a regular covering system
if every integer belongs to at least one progression in the collection. Results on
covering systems can be found in [7]. In this paper, our object is also a collection
of progressions, but we have a di↵erent motivation. Our collection is ordered, thus
we call it a sequence rather than a collection.

The following notation is used throughout the paper. Let A(a, d) denote an
arithmetic progression (AP) of integers with leading term a, and common di↵erence
d. The natural logarithm of x is denoted by log x. The logarithm of x to base
a is denoted by loga x. The number of divisors of an integer x is denoted by
�0(x). A function f(x) is said to be O(g(x)) if f(x)  cg(x) for some constant
c > 0. An algorithm is said to be a polynomial-time algorithm if its running time is
O(nk) for some constant k > 0, where n is the binary length of input given to the
algorithm. For example, the standard Euclidean algorithm is called a polynomial-
time algorithm, since its running time on input pair (a, b) is O(log2 c) where c =
max{a, b} (see [2]).

1.1. Our Results

We consider certain combinatorial and algorithmic aspects of the defined sequence
S(a0, d0). Before describing our main results on these aspects, we make the follow-
ing remark.

Remark. The sequence S(a0, d0) exists for any pair of co-prime integers a0, d0.
In the present work, we maintain the condition: 1  a0 < d0, i.e., the common
di↵erence of the first progression of the sequence is greater than its leading term.
This condition is enforced to quantify some sets which we define in studying the
following aspects of S(a0, d0).

Let N(a0, d0) denote the number of distinct progressions of S(a0, d0). The in-
ductive procedure of computing leading terms and common di↵erences is ine�cient
when the number of progressions is exponential in log d0. We establish a connection
between S(a0, d0) and the quotient sequence of the Euclidean algorithm. This result
yields a polynomial-time (quick) algorithm for computing N (a0, d0). The algorithm
is a minor modification of the Euclidean algorithm. Using results [3, 4, 5] on the
average case analysis of the Euclidean algorithm, the average value of N(a0, d0) is
proved to be O(log d0) in Section 3.3.

Let d0 be a fixed integer. For some 1  a0 < d0, the leading terms of a few initial
progressions of S(a0, d0) follow a symmetricity property in the following sense: there
exists an integer k < d0 such that the leading terms of the first k + 1 progressions
of S(a0, d0) follow the property that ai = ak�i, 0  i  k. In other words, the
leading terms of the first k +1 progressions exhibit a mirror image symmetry about
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the index
⌅

k
2

⇧
. We call such an integer a0 a symmetric number for d0.

The following example illustrates the fact that 17 is a symmetric number for 23.
The leading terms of six initial progressions of S(17, 23) follow symmetricity:

17, 40, 63, 86, 109 . . .
33, 52, 71, 90, 109 . . .
41, 56, 71, 86, 101 . . .
41, 52, 63, 74, 85 . . .
33, 40, 47, 54, 61 . . .
17, 20, 23, 26, 29 . . .
13, 15, 17, 19, 21 . . .
7, 8, 9, 10, 11 . . .

It can be verified that S(1, d0), for d0 > 1, consists of two progressions whose
leading terms are 1, 1, respectively. So, 1 is a trivial symmetric number for any
d0 > 1. With these observations, it is natural to ask:

• What is the total number of symmetric numbers for a given d0?

We show that for every divisor x of d2
0 � 1 with x < d0, there is a corresponding

symmetric number for d0. Precisely, for every divisor x of d2
0 � 1 with x < d0,

a0 = d0� (x�1 (mod d0)) is a symmetric number for d0. For example, 4 is a divisor
of 232 � 1 and, corresponding to it, a0 = 23� (4�1 (mod 23)) = 17 is a symmetric
number for 23. This result proves that the number of symmetric numbers for d0 is
equal to half the number of divisors of d2

0 � 1 (Corollary 3).
In S(17, 23), the leading terms of the first six progressions follow the symmetric-

ity property. Notice that the property is also followed by the jth terms of the same
progressions for 1  j  5. As the value of j increases, the number of jth terms
following symmetricity decreases. We prove this symmetricity property extended
to higher terms of the progressions.

Having observed the symmetricity property of leading terms of some consecutive
initial progressions of S(a0, d0), we ask whether the leading terms of some later
progressions of S(a0, d0) also follow the symmetricity property. A general question
is: do there exist integers ↵,� > 0 such that the leading terms a↵, a↵+1, . . ., a�

satisfy: a↵+i = a��i for 0  i  ��↵? The answer is yes. For example, the leading
terms of the ith progressions1 of S(17, 37), 2  i  5, satisfy the symmetricity
property:

1Note that the indexing of progressions starts from 0.
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17, 54, 91, 128, . . .
35, 59, 83 107, . . .
27, 38, 49, 60, . . .
31, 40, 49, 58, . . .
31, 38, 45, 52, . . .
27, 32, 37, 42, . . .
19, 22, 25, 28, . . .
7, 8, 9, 10, . . .
7, 8, 9, 10, . . .

We prove that there are only certain sub-collections of consecutive progressions
of S(a0, d0) whose leading terms follow the symmetricity property. A grouping of
S(a0, d0) is a maximal sub-collection of consecutive progressions with respect to
a common di↵erence property (see Section 2.2 for the formal definition of group-
ing and illustrations). We prove that symmetricity happens only within groupings.
Further, we establish a connection between the number of groupings of S(a0, d0)
with symmetricity and the quotient sequence of the Euclidean algorithm. The con-
nection yields a polynomial time algorithm for computing the number of groupings
of S(a0, d0) with symmetricity. This (quick) algorithm enables us to conduct ex-
periments concerning symmetricity and obtain empirical data on the size of

T (d0, k) = {a0 : S(a0, d0) has k groupings with symmetricity},

for k � 1. One important observation from the data is that the number of groupings
of S(a0, d0) with symmetricity is at most 2 for any pair (a0, d0) with 1  a0 < d0 
106. In other words, the observation is that |T (d0, k)| = 0 for k � 3. Our other
observations are reported in Section 5. We are able to provide only partial answers
toward proving the sizes. The observations are left as open issues.

The rest of the paper is organized as follows. In Section 2, we prove the main
properties of S(a0, d0), which will be used for proving the main results of the paper.
In Section 3, we study the size of S(a0, d0) and establish a connection between
S(a0, d0) and the Euclidean algorithm. In Section 4, we derive a necessary and
su�cient condition for the symmetricity property and present combinatorial results
on the property. In Section 5, we give some open combinatorial issues on the
symmetricity property based on our empirical data.

2. Properties of S(a0, d0)

We first establish the existence and uniqueness of the sequence S(a0, d0) by proving
Theorem 1.
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2.1. Proof of Theorem 1

The congruence property (Property P) can be rewritten as

(�d)(a0 + id0) ⌘ 1 (mod a + (i + 1)d).

From this, we obtain

zi =
(a0 + id0)d + 1
a + (i + 1)d

is an integer.

So, for any i � 1,

zi+1 � zi =
Cd

(a + id)(a + (i + 1)d)
is an integer

where C = a0d + dd0 � ad0 � 1. Since a, d, a + id and a + (i + 1)d are pair-wise
co-prime, we have C divisible by a+ id for any i � 1. This implies that C = 0. The
expression for C can be rewritten as follows:

a0 = d0 +
ad0 � 1

d
. (1)

In the above formula, a0 is an integer only when ad0�1
d is an integer. For d > 1,

ad0�1
d is an integer only when d0 is the multiplicative inverse of a (mod d). There

exists only one value for d0 which is less than d. When d = 1, we have d0 = 1 and
a0 = a. So, the progression A(a0, d0) is unique if 1  d0  d. 2

We reiterate that the above result allows us to construct inductively, from a given
progression A(a0, d0), a unique sequence of arithmetic progressions S(a0, d0). The
formal definition of the sequence is as follows.

Definition 1. S(a0, d0) is the sequence of distinct arithmetic progressions

hA(a0, d0), A(a1, d1), A(a2, d2), . . .i,

where the terms of any two consecutive progressions of the sequence satisfy Property
P, i.e.,

(ai + jdi)(ai+1 + jdi+1) ⌘ 1 (mod ai + (j + 1)di), i, j � 0

and the common di↵erences of the progressions satisfy the condition di � di+1 � 1.

By Equation (1), leading terms ai and common di↵erences di satisfy the property:

di+1 ⌘ a�1
i (mod di),

ai+1 = di+1 +
aidi+1 � 1

di
. (2)

We note that the definition of S(a0, d0) captures the sequence to contain a progres-
sion with common di↵erence 1 as its last progression. As remarked in the beginning
of Section 1.1, we assume the condition that 1  a0 < d0 throughout the paper.
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2.2. Groupings of S(a0, d0)

A sub-collection G of consecutive progressions of S(a0, d0) is called a grouping if it
satisfies the following two properties.

• The di↵erence between the common di↵erences of any two consecutive pro-
gressions in G is the same.

• G is maximal.

We refer to the di↵erence between the consecutive common di↵erences as the second
common di↵erence corresponding to G. The size of G is the number of progressions
in it, and is denoted by |G|. Note that any two consecutive groupings share an
arithmetic progression.

Example 1. Consider the sequence S(11, 25). Let us pay attention to the com-
mon di↵erences of the progressions: (25, 16, 7, 5, 3, 1). With respect to the above
definition of grouping, the common di↵erences can be partitioned into two sets. So,
the sequence S(11, 25) has two groupings:

G1 = h(11, 25), A(23, 16), A(17, 7)i,
G2 = hA(17, 7), A(17, 5), A(13, 3), A(5, 1)i.

The second common di↵erence corresponding to G1 is 9. The second common dif-
ference corresponding to G2 is 2. The groupings share the progression A(17, 7). The
sizes of G1 and G2 are 3 and 4, respectively.

Example 2. The sequence S(17, 37) has two groupings:

G1 = hA(17, 37), A(35, 24), A(27, 11)i,
G2 = hA(27, 11), A(31, 9), A(31, 7), A(27, 5), A(19, 3), A(7, 1)i.

The second common di↵erence corresponding to G1 is 13. The second common
di↵erence corresponding to G2 is 2. The size of G1 is 3. The size of G2 is 6. The
progression A(27, 11) belongs to the two groupings.

2.3. Properties of Terms Within a Grouping

Let G be a grouping of S(a0, d0) consisting of progressions

A(a↵, d↵), A(a↵+1, d↵+1), . . . , A(a� , d�),

for some 0  ↵ < �. Let 4 be the second common di↵erence corresponding to G.
By the definition of grouping, 4 = dr � dr+1, ↵  r  � � 1.

We derive a defining equation satisfied by leading terms of the progressions in G.
The equation is derived though the following two lemmas.
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Lemma 1. ai+14+1
di+1

= ai4+1
di

+4, ↵  i  � � 1.

Proof. From Equation (2), aidi+1 + didi+1 � ai+1di � 1 = 0, ↵  i < �. Thus,

ai+14+ 1
di+1

� ai4+ 1
di

= 4
✓

ai+1di � aidi+1 + 1
didi+1

◆

= 4.

Lemma 2. For ↵  i  � � 1, ai+1 � ai = (↵ + � � 1� 2i)4+ d� � z↵, where

z↵ =
a↵4+ 1

d↵
.

Proof. By introducing the terms ai+1di+1 + (�ai+1di+1) and d2
i+1 + (�d2

i+1) in the
equation aidi+1 + didi+1 � ai+1di � 1 = 0, we obtain

ai+1 � ai = �ai+14+ 1
di+1

+4+ di+1

= �ai+14+ 1
di+1

+4+ (d� + (� � i� 1)4)

= �(z↵ + (i + 1� ↵)4) + d� + (� � i)4
= (↵ + � � 1� 2i)4+ d� � z↵.

Corollary 1. ai = a↵ +4(� � i)(i� ↵) + (i� ↵)(d� � z↵), ↵  i  �.

Proof. From Lemma 2,

ai � a↵ =
i�1X

j=↵

(aj+1 � aj)

=
i�1X

j=↵

�
4(↵ + � � 1� 2j) + d� � z↵

�

= 4(� � i)(i� ↵) + (i� ↵)(d� � z↵).

The above result shows that leading terms of the progressions (in G) are evalua-
tions of a polynomial f(x) = ax2 + bx + c at integer values, where a, b, c are some
constants specific to G. Since a < 0, f(x) defines an inverted parabola. This indi-
cates that there is a chance of some leading terms appearing more than once. This
behavior of leading terms essentially gives rise to a mirror image symmetry, which
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has been observed for the example sequences S(11, 25), S(17, 23) and S(17, 37) in
Section 1.1.

For the same example sequences, one can verify that the ratio of the leading
term of a progression to its common di↵erence gives the position (or index) of
that progression in the sequence. This ratio property is inferred from the fact that
the same holds within any grouping of S(a0, d0). The following lemma proves the
property for grouping G.

Lemma 3. For any ↵  i  �,
j

ai
di

k
=

j
a↵
d↵

k
+ i� ↵.

Proof. From Lemma 1, we have ai4+1
di

= a↵4+1
d↵

+ (i� ↵)4.

The ratio property is formally stated as follows.

Property 1. For a given sequence S(a0, d0) consisting of progressions

hA(a0, d0), A(a1, d1), . . . , A(al, dl)i,

we have
j

aj

dj

k
= j, for 0  j  l.

3. Size of S(a0, d0)

In this section, we consider the following three issues.

1. Computing N (a0, d0), the total number of progressions of S(a0, d0).

2. Establishing a connection between S(a0, d0) and the Euclidean algorithm.

3. Estimating the average value of N (a0, d0).

3.1. Computing N (a0, d0)

The quantity N (a0, d0) can be computed by inductively generating the leading
terms and common di↵erences of the progressions of S(a0, d0) using Equation (2).
This inductive procedure is ine�cient as it involves one inverse computation and
division operations in each step (see Equation (2)). A much faster method would
be to evaluate the formula for N (a0, d0) given below.

Let G1, G2, . . ., Gm be the groupings of S(a0, d0) with corresponding second
common di↵erences41,42, . . .,4m. Let jr denote the index of the first progression
of Gr in S(a0, d0), 1  r  m. Let djr be the common di↵erence of the first
progression of Gr. Then, we have

N (a0, d0) = 1�m +
mX

r=1

⇠
djr

4r

⇡
.
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The above identity holds true, since the size of Gr is
l

djr
4r

m
and any two consecutive

groupings share an arithmetic progression.
The main idea of evaluating the formula for N (a0, d0) is to compute the sizes of

groupings of S(a0, d0). The size of a grouping can be calculated without actually
computing all leading terms of its progressions. This quick calculation is possible
due to a relation between second common di↵erences of successive groupings, which
we observe below.

Let d0, d1, . . . , dl be the common di↵erences of the progressions of S(a0, d0),
and let a0, a1, . . . , al be the corresponding leading terms of the progressions. Here,
l = N(a0, d0) � 1, which we want to compute. A jump is the di↵erence between
consecutive common di↵erences. We count the number of common di↵erences that
are involved in the same jump2. The same approach is followed to get the formula
for N (a0, d0). But, here the common di↵erences that are involved in two jumps are
accounted for in the count corresponding to the smaller jump.

To illustrate the above rule, consider the common di↵erences d↵, d↵+1, . . ., d��1,
d� , d�+1, . . ., d� . Let 4 = di � di+1, ↵  i  � � 1, and let 40 = di � di+1,
�  i  � � 1. Then, the count corresponding to 4 is bd↵/4c and the count
corresponding to 40 is bd�/40c. The common di↵erence d� will be accounted for
in the count corresponding to the jump that comes after 40. The following lemma
shows that bd�/40c can be expressed in terms of d↵ and 4.

Lemma 4. d� ⌘ d↵ (mod 4), and 40 ⌘ 4 (mod d�).

Proof. It is easy to verify that d� ⌘ d↵ (mod 4). We prove the second congruence
relation. From the proven properties of terms in Section 2.3, it is known that a�4+1

d�

is an integer. This implies that 4 ⌘ �a�1
� (mod d�). By Equation (2), d�+1 ⌘ a�1

�

(mod d�). Thus, 4 ⌘ d� � d�+1 ⌘ 40 (mod d�).

The proven relation (above) results in a fast algorithm (given as Algorithm 1) for
computing N (a0, d0) and yields a connection between S(a0, d0) and the Euclidean
algorithm (given as Algorithm 2). The two congruences in the result reflect the two
modular reduction steps (Steps 8 and 9) of Algorithm 1. Note that the algorithm
replaces the ceiling function by the floor function in the formula for N (a0, d0) and
thereby removes the additive term 1�m.
Notation. The following notation is used in the descriptions of Algorithm 1 and
Algorithm 2.

• u v means the value of v is assigned to u.

• x  y (mod z) means the unique remainder resulting from the division of y
by z is assigned to x.

2Note that the common di↵erences that are involved in the same jump belong to the same
grouping. So, the count of such common di↵erences gives the size of the grouping
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For example, if y = 12 and z = 5, then the value of x will be 2.

Algorithm 1 : Algorithm for computing N (a0, d0)
Input : a0, d0 with d0 > a0 � 1
Output : N (a0, d0), the number of progressions of S(a0, d0)
1: b a�1

0 (mod d0)
2: 4 d0 � b
3: d d0

4: n 0
5: while d > 1 do
6: n n + b d

4c
7: If 4  1, break the loop
8: d d (mod 4)
9: 4 4 (mod d)

10: end while
11: n n + 1
12: Return n

3.2. Connection With the Euclidean Algorithm

In addition to computing N (a0, d0), Algorithm 1 computes the greatest common
divisor (gcd) of two numbers. The final value of d gives the gcd of d0 and 4, where
4 is the quantity computed in Step 2 of the algorithm. Since our d0 and 4 are
co-prime, the gcd will be 1. Instead of setting 4 to d0 � b in Step 2, if 4 is chosen
to be a random value < d0, then the algorithm computes gcd(d0,4). Algorithm 2
is the standard Euclidean algorithm for computing the gcd of two numbers.

Algorithm 2 : Euclidean algorithm
Input : 4, d with d > 4 � 1
Output : gcd(4, d)
1: while 4 � 1 do
2: temp 4
3: 4 d (mod 4)
4: d temp
5: end while
6: Return d

By observing the steps of the two algorithms, we find that Algorithm 1 is just a
minor modification of the Euclidean algorithm. Essentially, we prove the following
connection.

Lemma 5. The modular reduction steps of two consecutive iterations of Algorithm
2 are wrapped in a single iteration of Algorithm 1.
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Proof. Suppose (d,4) assume the values (r0, r1), (r1, r2), (r2, r3), . . . , (rx, rx+1)
in successive iterations of Algorithm 2 respectively staring from the first iteration.
This means that there exist integers qi, 1  i  x, such that ri�1 = qiri + ri+1.
Here, qi are quotients in successive Euclidean divisions3.

Suppose (d,4) = (r0, r1) in the first iteration of Algorithm 1. Since there are two
modular reduction steps in each iteration, it can be verified that (d,4) = (r2, r3)
in the second iteration. In general, in the ith iteration, (d,4) = (r2i�2, r2i�1). This
proves the claim.

Illustration. Let us look at how Algorithm 1 computes the total number of pro-
gressions of S(11, 25). Suppose the input to Algorithm 1 is (a0, d0) = (11, 25). Step
2 of the algorithm computes 4 = d0 � b = d0 � a�1

0 (mod d0) = 9. Notice that
9 is the second common di↵erence of the first grouping of S(11, 25). Suppose the
input to the Euclidean algorithm (Algorithm 2) is (4, d) = (9, 25). Then during the
while loop execution of the algorithm, the values of (4, d) change as shown in the
following table. Notice that the alternating pairs (9, 25) and (2, 7) correspond to the

Iteration number of while loop 1 2 3 4
(Algorithm 2)

(4, d) (9,25) (7,9) (2,7) (1,2)
Quotient (b d

4c) 2 1 3 1

Table 1: Algorithm 2 on input pair (9, 25)

defining parameters of the first and the second grouping of S(11, 25), respectively.

• 9 is the second common di↵erence of G1, 25 is the common di↵erence of the
first progression of G1 and thus

⌃
25
9

⌥
gives the size of G1.

• 2 is the second common di↵erence of G2, 7 is the common di↵erence of the
first progression of G2 and thus

⌃
7
2

⌥
gives the size of G2.

The quotient sequence of the Euclidean algorithm is (2, 1, 3, 1), of which the al-
ternating quotients, (2, 3), when incremented by one, correspond to the sizes of
groupings of S(11, 25).

With the above illustration, we now formally state a property of the quotient
sequence of the Euclidean algorithm on co-prime input pairs.

Property 2. Suppose the quotient sequence of the Euclidean algorithm on co-prime
input pair (d0,4) with d0 > 4 is Q = (q1, q2, q3, . . . , ql�1, ql). Then, the quotient

3The Euclidean division of an integer y by an integer x (6= 0) gives two integers q, r such that
y = qx + r, where 0  r < |x|. The integer r is called the remainder. The integer q is called the
quotient of the division operation.
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sequence of Algorithm 1, on input pair (a0, d0) with a0 ⌘ d0 �4�1 (mod d0), will
be

Q0 = (q1, q3, q5, . . .).

Further,

• The size of the ith grouping of S(a0, d0) is q2i�1 + Bi

• N (a0, d0) = B +
P

1idl/2e q2i�1

Here, Bi = 1, for 1  i  dl/2e � 1, and

B = Bdl/2e =
⇢

0 if 4dl/2e = 1
1 if 4dl/2e > 1

4dl/2e is the second common di↵erence corresponding to the last grouping of S(a0, d0).

The average case analysis of the Euclidean algorithm is studied in [1, 3, 4, 5].
These results show that the average number of iterations of the Euclidean algorithm
on co-prime input pair (4, d0), with 4 < d0, is about

12 log 2
⇡2

log d0 + C + O(d0
�1/6 + ✏),

where C is the Porter’s constant [5], whose value is approximately 1.4670. Thus,
the average number of iterations of the Euclidean algorithm is about 0.842 log d0.
Hence, the average number of groupings of S(a0, d0) is about 0.421 log d0.

For 1  a0 < d0, the maximum value for the number of groupings of S(a0, d0) is
attained when

d0 = Fi,

a0 ⌘ �F�1
i�1 (mod d0). (3)

Here, Fi, Fi�1 are the ith and (i � 1)th Fibonacci numbers, respectively. The
number of iterations of the Euclidean algorithm on input pair (Fi, Fi�1) will be
i�2. So, the number of iterations of Algorithm 1 on the input pair (a0, d0) defined
in Equation (3) will be

⌅
i�2
2

⇧
. The ith Fibonacci number is Fi = (�i�(�1)i��i)p

5
,

where � =
p

5+1
2 . The number Fi is approximately �i

p
5

for large i. Hence, we have
the following property.

Property 3. The maximum number of groupings of S(a0, d0) is less than log�

p
5d0�2

2 .

3.3. Expected Value of N (a0, d0)

For a co-prime pair (a0, d0) with 1  a0 < d0, we have 2  N (a0, d0)  d0. The
smallest value of N (a0, d0) occurs at a0 = 1, and the greatest value occurs at
a0 = d0 � 1. Here, we estimate the average value of N(a0, d0).
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By Property 3.2, N (a0, d0) is the sum of alternating quotients in the quotient
sequence of the Euclidean algorithm on input pair (d0,4), where 4 ⌘ �a�1

0

(mod d0). We work with the sum of all quotients (of the Euclidean algorithm) in
estimating the average value of N (a0, d0), with the assumption that a0 is uniformly
randomly chosen from [1, d0 � 1].

Suppose the number of iterations of the Euclidean algorithm on co-prime pair
(d0,4) is l. Suppose the divisor in the ith iteration of the algorithm reduces by ki

bits. In other words, the quotient qi in the ith Euclidean division contains ki binary
bits. By its size, 2ki�1  qi  2ki � 1. Then, we have

Pl
i=1 ki = blog2 d0c and

1
2

lX

i=1

2ki 
lX

i=1

qi 
lX

i=1

(2ki � 1).

It is known that the expected value of l is 0.842 log d0 ⇡ 0.583 log2 d0. The expected
value of l indicates that in each iteration of the Euclidean algorithm the numbers
are likely to decrease by at most two bits most of the time. So the quotients
qi 2 {1, 2, 3, 4} occur more often. The behavior of the quotients is precisely stated
in the following result from [2].

Result (Theorem 1.3.4 in [2]). The probability P (q) that a Euclidean quotient
is equal to q is P (q) = log2(u/(u� 1)), where u = (q + 1)2.

From the above result, the quotients 1, 2, 3 and 4 occur with corresponding
probabilities about 0.415, 0.169, 0.093 and 0.0589. Further,

P
1q50 P (q) = 0.97.

This result suggests that the expected value of the sum of all quotients is O(log d0),
and so is the average value of N(a0, d0) for uniformly randomly chosen (a0, d0).

However, there exist a0 for which N(a0, d0) is much bigger than log d0. For ex-
ample, for (a0, d0), the size of the first grouping is d0�r

4 , where4 = �a�1
0 (mod d0)

is the second common di↵erence of the first grouping and r ⌘ d0 (mod 4). For
small 4, d0�r

4 is O(d0). However, the number of of such a0 is a small fraction of
�(d0), where �(.) is Euler’s totient function.

4. Symmetricity Property

In this section, we address the main question: when will leading terms of consecu-
tive progressions of S(a0, d0) exhibit the symmetricity property? In answering the
question, we first prove that symmetricity happens only within groupings. We then
derive a necessary and su�cient condition for the symmetricity property to happen
in a given grouping. Using this condition, we prove some combinatorial results on
the property.

Lemma 6. Symmetricity happens only within a grouping.
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Proof. Suppose leading terms of progressions belonging to two successive groupings
G and G0 follow symmetricity. Since consecutive groupings share a progression, the
number of leading terms involved in symmetricity should be at least 3. Let d be
the common di↵erence of the progression shared by both G and G0. Let L be the
leading term of the progression with common di↵erence d +4. Then, by Property
2.3,

�
L

d +4

⌫
+ 2 =

�
L

d�40

⌫
, (4)

where 4 and 40 are the second common di↵erences of G and G0, respectively. Since
40 < d < 4, we have

j
L

d+4

k
< L

2d and L
d <

j
L

d�40

k
, which together contradict

Equation (4).

Corollary 2. The maximum number of occurrences of symmetricity is at most
log�

p
5d0�2

2 .

Proof. Since symmetricity happens within a grouping, the result follows from Prop-
erty 3.2.

Through the following two main results (Theorem 2 and Theorem 3), we derive
two di↵erent conditions which should meet simultaneously for symmetricity to occur
in a grouping. The conditions seldom meet together. This shows that the bound
given in Corollary 2 is trivial and unrefined. But the proven conditions do not
provide any hint about a refined upper-bound.

Theorem 2. Let G be a grouping of S(a0, d0) that consists of progressions

A(a↵, d↵), A(a↵+1, d↵+1), . . . , A(a� , d�),

for some 0  ↵ < �. Let 4 be the second common di↵erence of G. If 4 divides d2
↵�

1, then the number of leading terms of the progressions in G that follow symmetricity
is |G|� ↵.

Proof. By Corollary 1, leading terms of the progressions in G satisfy the equation:

ai = a↵ +4(� � i)(i� ↵) + (i� ↵)(d� � z↵), ↵  i  �.

Here,

z↵ =
a↵4+ 1

d↵
=

�
a↵

d↵

⌫
4+

�
d�1

� (mod 4)
�
.

Since 4 divides d2
↵ � 1, d2

� ⌘ 1 (mod 4) and thus d� is a self-invertible element
(mod 4). So z↵ = ba↵/d↵c + d� . By substituting the value of z↵ in the leading
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term equation, we obtain

ai = a↵ +4(i� ↵)
�
� � i�

�
a↵

d↵

⌫ �
.

The size of G is � � ↵ + 1 = dd↵
4 e. By substituting the value of � in the above

equation, we obtain

ai = a↵ +4(i� ↵)
�
� � i), (5)

where � = ↵ +
l

d↵
4

m
�

j
a↵
d↵

k
� 1. It can be verified that a↵+j = a��j , 0  j 

l
d↵
4

m
�

j
a↵
d↵

k
� 1. Thus, the number of leading terms satisfying symmetricity is

equal to
l

d↵
4

m
�

j
a↵
d↵

k
. We have |G| =

l
d↵
4

m
and by Property 2.3,

j
a↵
d↵

k
= ↵.

From the above result we observe the following for a grouping G with symmetric-
ity.

• If G is the first grouping, the number of leading terms (in G) satisfying the
symmetricity property will be equal to |G|, since the leading term a↵ is less
than the common di↵erence d↵.

• If G is not the first grouping, then the leading term a↵ is greater than the
common di↵erence d↵. Thus, the number of leading terms satisfying the
symmetricity property will be less than |G|.

For example, all leading terms in the first grouping of S(17, 23) satisfy the sym-
metricity property. On the other hand, only two leading terms in the second group-
ing of S(11, 25) satisfy symmetricity; only four leading terms in the second grouping
of S(11, 37) satisfy symmetricity.

Theorem 3. Let G be the grouping as defined in Theorem 2. Let G1, G2, . . ., Gm

be the groupings of S(a0, d0) that precede G. The leading terms of the progressions
in G follow symmetricity if and only if 4 divides d2

↵ � 1, and

|G| �
mX

i=1

|Gi|�m + 2. (6)

Proof. By definition, G has symmetricity only when at least one leading term in
it appears twice, which is equivalent to the condition |G| � ↵ � 2. Since any two
consecutive groupings share a progression, we have |G1|+ |G2|+ . . .+ |Gm| = ↵+m.
This completes the proof.

In the rest of the paper, we refer to the condition that 4 divides d2
↵ � 1 as the

divisibility condition, and the condition given in Equation (6) as the sum condition.
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The sum condition on the size of groupings can be converted into an equivalent
condition on the quotient sequence of Algorithm 1. We know that each iteration
of Algorithm 1 corresponds to a grouping. Suppose q is the quotient arising in
the iteration corresponding to grouping G, and qi is the quotient in the iteration
corresponding to grouping Gi, 1  i  m. Then, we have q = |G|�c and qi = |Gi|�1.
Thus, the sum condition can be expressed as

q � 2� c +
mX

i=1

qi. (7)

By Property 3.2, c = 0 if G is the last grouping of S(a0, d0), and c = 1 otherwise.
By Theorem 3, the number of groupings of S(a0, d0) with symmetricity is equal

to the number of quotients q =
j

d
4

k
arising in Algorithm 1 (on input (a0, d0)), where

4 divides d2 � 1 and q is greater than the sum of all quotients that arise before
q in the algorithm. Thus one can determine the number of groupings of S(a0, d0)
with symmetricity just by verifying the two conditions on the quotients in each
iteration of Algorithm 1. The running time of the algorithm remains O(log2 d0).
We refer to the algorithm for computing the number of groupings with symmetricity
as Algorithm 3. We have run the algorithm and obtained empirical data on the
number of groupings with symmetricity. Our observations from the empirical data
are reported in Section 5.

4.1. Symmetricity of Higher Terms

For the example sequence S(17, 23) we have observed that the symmetricity prop-
erty is exhibited by some higher terms of progressions also. The same can be
observed for S(11, 37). The number of higher terms (of the progressions in G) sat-
isfying symmetricity is dependent on the width of symmetricity of leading terms,
i.e., |G| � ↵ (the quantity established in Theorem 2). The following result proves
this fact. The proof of the result is just an extension of the proof of Theorem 2.

Lemma 7. Suppose G is a grouping as defined in Theorem 2. If 4 divides d2
↵ � 1,

then the number of jth (j � 1) terms of the progressions in G that follow symmetric-
ity is |G|� ↵� j + 1.

Proof. If 4 divides d2
↵�1, then we obtain Equation (5). Using the equation, it can

be verified that, for 0  i  � � ↵ and 0  j  � � ↵� i,

a↵+i + jd↵+i = a��i�j + jd��i�j .

For a fixed value of j, the number of possible values for i for which the above
equality holds is � � ↵� j + 2 = |G|� ↵� j + 1.
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4.2. Number of Symmetric Numbers for d0

Recall the definition that a0 is a symmetric number for d0 if leading terms of the
initial progressions of S(a0, d0) satisfy the symmetricity property. By Lemma 6,
symmetricity occurs within a grouping of S(a0, d0). Thus the symmetric numbers
for d0 are connected to the first grouping of S(a0, d0). As a corollary to Theorem
2, we have following result.

Corollary 3. The number of symmetric numbers for d0 is �0(d
2
0�1)
2 . Here, �0(x)

denotes the number of divisors of integer x.

Proof. For the first grouping, the sum condition (i.e., Equation (7)) is already met.
Thus, by Theorem 3, a0 is a symmetric number for d0 if and only if the second
common di↵erence of the first grouping 4 divides d2

0� 1. For each divisor 4(< d0)
of d2

0 � 1, there is a corresponding symmetric number a0 ⌘ �4�1 (mod d0). The
result follows.

For example, leading terms of the progressions in the first grouping of S(17, 23)
display symmetricity. So, 17 is a symmetric number for 23. This fact can be verified
from the above result as the second common di↵erence of the first grouping of the
sequence 4 = 23�17�1 (mod 23) = 4 is a divisor of 232�1. In general, symmetric
numbers of 23 can be computed from A = {1, 2, 3, 4, 6, 8, 11, 12, 16, 22}, the set of
all divisors 4 of 232� 1 with 4 < 23. For each 4 2 A, a0 = 23�4�1 (mod 23) is
a symmetric number for 23. The set B = {1, 2, 11, 15, 17, 19, 20, 21, 22} comprises
of all symmetric numbers for 23.

4.3. Symmetricity in Later Groupings

We have established a result in Corollary 3 on the number of a0 (< d0) for which
the first grouping of S(a0, d0) has symmetricity. It is of interest to ask: what is
the count of a0 for which later groupings of S(a0, d0) have symmetricity? Being
motivated by the question, we define the following set for a given d0:

Si(d0) = {a0 : ith grouping of S(a0, d0) has symmetricity}.

We have proved that |S1(d0)| = 1
2�0(d2

0 � 1). Other than the result on S1(d0), we
lack a proper understanding of Si(d0) for i > 1. Lemma 8 provides only a partial
answer on the size of S2(d0).

In what follows, ⌧(n; z) = #{x 2 (0, n
2z+1 ] : x|n2 � z2, z|n� x}. In other words,

⌧(n; z) is the number of divisors x of n2�z2, with x falling in the interval
⇣
0, n

2z+1

i

and such that z divides n� x.
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Lemma 8. The number of a0, with a�1
0 (mod d0) < d0

2 , such that the second
grouping of S(a0, d0) has symmetricity, is equal to

Pb
p

d0c�1
z=1 ⌧(d0; z).

Proof. Let G1, G2 be the first and the second grouping of S(a0, d0) with correspond-
ing second common di↵erences 41 and 42. If 41 ⌘ d0 � a�1

0 (mod d0) is greater
than d0

2 , then d1 = d0�41 is the common di↵erence of first progression of G2. For
41 2

⇣
(z�1)d0

z , zd0
z+1

⌘
, with z � 2, it can be verified that 42 = d0� zd1. It is known

that symmetricity occurs in G2 when (i) 42|d2
1 � 1 (divisibility condition) and (ii)

d1/42 � 2 (sum condition). The divisibility condition implies that

z2 ⌘ (zd1)2 ⌘ d2
0 (mod 42).

Thus, 42 should be a divisor of d2
0 � z2, where d1 = d0�42

z is an integer. By the
sum condition, d0�42

z42
� 2, which is equivalent to the condition 42  d0

2z+1 .

For a0, with a�1
0 (mod d0) > d0

2 , the size of the first grouping of S(a0, d0) is
at least 2 (bigger for some a0) and thus the probability that the sum condition is
met diminishes. With this observation, the number of a0, with a�1

0 (mod d0) > d0
2 ,

such that the second grouping of S(a0, d0) has symmetricity, will be less than the
sum

Pb
p

d0c�1
z=1 ⌧(d0; z). We thus have

|S2(d0)| < 2
b
p

d0c�1X

z=1

⌧(d0; z).

By the average behavior of the divisor function, the expected value of the sum
will be about

p
d0 log d0. The actual value will be much less as the numbers in

⌧(d0; z) need to obey two other conditions (by the definition of ⌧). Further, the
sum attains the maximum value when it gets highly composite numbers. From

[6], for a highly composite number t, �0(t) is about 2
log t

log log t +O
⇣

log t

(log log t)2

⌘

. However,
the number of highly composite numbers at most x is less than (log x)c for some
constant c. The conclusion that we draw from the discussion is that even with
presence of highly composite numbers the value of the sum will be much less thanp

d0 log d0. Hence, |S2(d0)| will be much less than 2
p

d0 log d0.

5. Open Combinatorial Issues

In studying the symmetricity property in general, we have investigated the size of
the following set:

T (d0, k) = {a0 : S(a0, d0) has k groupings with symmetricity},
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for di↵erent values of k.
Using Algorithm 3 as a subroutine, we have computed the size of T (d0, k) for

each d0  105 and also for some random d0 > 105. Our empirical observations are
summarized as follows:

|T (d0, 1)| = cd0 ⇥
�(d0)
log d0

(8)

|T (d0, 2)| = c0d0
⇥ �(d0)

log2 d0

. (9)

In the above, �(d0) is the count of numbers co-prime to d0. From the data, it is
observed that both cd0 , c0d0

decrease with increasing d0.
The case k � 3 requires a special mention, as the size of T (d0, k) drops to zero.

It is expected that the size of T (d0, k) decreases as k increases. But the sudden
fall from a large value of about �(d0)/ log2(d0) (when k = 2) to 0 (when k = 3) is
surprising. Even for randomly chosen d0 2 (106, 1050), we did not encounter any
value of a0 for which the number of groupings of S(a0, d0) with symmetricity is
� 3. This observation motivates us to put forth the following conjecture.

Conjecture 1. The number of groupings of S(a0, d0) with symmetricity is  2.

The conjecture predicts that
P2

k=0 |T (d0, k)| = �(d0), for any d0 � 2. By Property
3.2, the conjecture can be stated in terms of the quotient sequence of the Euclidean
algorithm on co-prime input pairs.

5.1. Remarks on |T (d0, k)|, for k = 1, 2

We firstly note that a0 2 Si(d0)) a0 2 T (d0, k) for some k. We have proved that
|S1(d0)| = 1

2�0(d2
0 � 1). As the expected value of �0(x) is log x, the contribution

of S1(d0) toward T (d0, k) is very small compared to the observed magnitudes of
|T (d0, k)| for k = 1, 2. From the discussion after Lemma 8, it is known that |S2(d0)|
will be much less than 2

p
d0 log(d0). The conclusion from these observations is

that the combined contribution of both S1(d0) and S2(d0) toward |T (d0, k)| is very
small. This clearly indicates that the combined contribution from Si(d0), i � 3, will
be much more. Proving the sizes of the sets is beyond our present understanding.

5.2. Remarks on Conjecture 1

For a given quotient sequence Q = (q1, q2, q3, . . . , ql), there exist infinitely many
co-prime pairs (a0, d0) such that the sequence S(a0, d0) has two properties: (i) the
number of groupings of the sequence is l and (ii) the size of the ith grouping is ql.
The proof of the statement involves reversing the steps of Algorithm 1. Thus, if the
conjecture is false, there exist infinitely many counter-examples.
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