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Abstract
In this paper, we state and prove some congruence properties for the trinomial
coe�cients, one of which is similar to Wolstenholme’s theorem.

1. Introduction

In 1819, Babbage [4] showed for any odd prime p,
✓

2p� 1
p� 1

◆
⌘ 1 (mod p2). (1)

In 1862, Wolstenholme [21] proved that the above congruence holds modulo p3 for
any prime p � 5, i.e.,
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which is known as Wolstenholme’s theorem. It is well-known that Wolstenholme’s
theorem is a fundamental congruence in combinatorial number theory. We refer to
[14] for various extensions of Wolstenholme’s theorem.

In the past few years, (q-)congruences for sums of binomial coe�cients have
attracted the attention of many researchers (see, for instance, [2, 3, 6, 7, 8, 9, 10,
11, 19, 20]). In 2011, Sun and Tauraso [20] proved that for any prime p � 5,
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where
⇣

·
p

⌘
denotes the Legendre symbol. Note that

�2k
k

�
1

k+1 is the n-th Catalan
number Cn, which plays an important role in various counting problems. Extensions
of (3) and (4) have been established in [3, 10].

In 2018, the first author [2] conjectured two congruences on sums of the super
Catalan numbers (named by Gessel [5]):
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which were confirmed by the second author [11].
In this paper, we will study the congruence properties for the trinomial coe�-

cients. Here we consider the coe�cients of the trinomial

(1 + x + x�1)n =
nX
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Two immediate consequences of this definition are
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We have the following multinomial theorem (see [18, page 17]):

(x + y + z)n =
X

a+b+c=n

n!
a!b!c!

xaybzc. (5)

Letting y = 1 and z = 1/x in (5), we get
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We first prove a congruence for the trinomial coe�cients, which is similar to
Wolstenholme’s theorem.
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Theorem 1. For any prime p � 5, we have
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where Bn(x) is the Bernoulli polynomial of order n.

The second result consists of the following two congruences on single sums of
trinomial coe�cients.

Theorem 2. For any prime p � 5, we have
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The third aim of the paper is to establish a congruence on double sums of trino-
mial coe�cients.

Theorem 3. For any prime p � 5 and integer j with 0 < j < p, we have
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The rest of this paper is organized as follows. We shall prove Theorems 1, 2 and
3 in Sections 2, 3 and 4, respectively. An open problem on q-congruence is proposed
in the last section for further research.

2. Proof of Theorem 1

By (2) and (6), we have
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Let Hk denote the k-th harmonic number:

Hk =
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j
.

For any integer s and 0  k  p� 1, we have
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Substituting (15) and (16) into (12) gives

✓✓
2p
p

◆◆
⌘ 2 + p

p�1
2X

k=1

�2k
k

�
(pH2k�1 � 1)

k(1 + pHk)
(mod p3). (17)

Note that

pH2k�1 � 1
1 + pHk

⌘ �1 + (Hk + H2k�1)p (mod p2). (18)

Combining (17) and (18), we arrive at
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Using the following congruence [12, (2.8)]:
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We have the following two congruences (see [12, (1.1)] and [13, page 156]):
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Finally, combining (19)–(21), we complete the proof of (7).

3. Proof of Theorem 2

Proof of (8). We begin with the following identity, which is A027914 of the Online
Encyclopedia of Integer Sequences [17]:
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Letting n = p in the above gives
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We have the following congruence [15, (1.6)]:
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Proof of (9). Letting n = p� 1 in (22), we obtain
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Then the proof of (9) follows from (3) and (23).
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4. Proof of Theorem 3

Proof of (10). Exchanging the summation order, we get
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where we have utilized the identity (proved by induction):
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Proof of (11). By (10), we have
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Remark. Theorems 2 and 3 can also be established by using the method of the
first author and Zeilberger [3].

5. Concluding Remarks

We have three q-analogs corresponding to the trinomial coe�cients as given in [16],
namely,

T1(n, j, q) :=
nX

k=0

qk(k+j)

✓
n

k

◆

q

✓
n� k

k + j

◆

q

,

T2(n, j, q) :=
nX

k=0

(�1)k

✓
n

k

◆

q2

✓
2n� 2k

n� k � j

◆

q

,

T3(n, j, q) :=
nX

k=0

(�q)k

✓
n

k

◆

q2

✓
2n� 2k

n� k � j

◆

q

,

where the q-binomial coe�cients
�n

k

�
q

are defined as

✓
n

k

◆

q

=

8
><

>:

(1� qn)(1� qn�1) · · · (1� qn�k+1)
(1� q)(1� q2) · · · (1� qk)

, if 0 6 k 6 n,

0, otherwise.

It is not hard to prove the following q-congruences.

Proposition 1. For any odd prime p and integer 1  s  3, we have
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Ts(p, j, q) ⌘ 1 (mod [p]q),

where the q-integers are given by [n]q = (1� qn)/(1� q).
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The proof of Proposition 1 is trivial and left to the interested reader.
In 1999, Andrews [1] established an interesting q-analog of Babbage’s congruence

(1):
✓

2p� 1
p� 1

◆

q

⌘ q
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for any odd prime p. It is natural to ask whether the congruence (7) possesses a
q-analog. For convenience sake, let
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n
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q
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Numerical calculation suggests the following q-congruence, and we propose this
conjecture for further research.

Conjecture 1. For any prime p � 5, we have
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where bxc denotes the integral part of real x.
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