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Abstract
A classical result due to Deshouillers, Dress and Tenenbaum asserts that, on average,
the distribution of the divisors of the integers follows the arcsine law. In this paper,
we investigate the distribution of friable divisors of the integers, that is, those
divisors which are free of large prime factors. We show that, on average, these
divisors are distributed according to a probability law that we will describe.

1. Introduction

Let n > 1 be an integer. We denote by P(n) the largest prime divisor of n > 2 and
we set P(1) = 1. Let y €]1,400[ be a real number. Consider the set of y-friable
divisors of n, that is, those divisors of n which are free of prime factors exceeding
y:

D,y := {d|n: P(d) <y},
and denote by 7(n,y) its cardinality. For each integer n > 1 and for each real
number y > 1, we define the random variable

Xy 1 Dny — [0,1],

which takes the values logd/logn with uniform probability 1/7(n,y), and for v €
[0, 1], its distribution function

1
Fn v): =P )(n7 < v)= ;
7y( ) ( Y ) T(n)y> dn’dggp(d)gy
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It is easy to see that the sequence (F}, 4 )n>1 does not converge pointwise in [0,1].
We consider its mean in the interval [1,z], > 2,

n<x n<x

The aim of this paper is to show that this mean converges to a distribution function
which will be described. Deshouillers, Dress and Tenenbaum [4] studied the ana-
logue of this question by considering all divisors of n, that is, without constraint on
the size of their prime factors. Denote by X,, the analogue of the random variable
X,y defined on the set of all divisors of n, they showed that

1 2 . 1
- Z P(X, <v) = - arcsin(y/v) + O (\/ﬁ) (2)

nLx

uniformly for z > 2 and v € [0, 1]. This arcsin law is a Dirichlet law in one dimension
with parameter equal to (1/2,1/2). Studying the distribution law of couples of
divisors, the authors of the present paper showed that they are distributed according
to a two-dimensional Dirichet Law [8] . The method works in higher dimensions
but becomes very technical. De La Bretéeche and Tenenbaum [2] also studied the
distribution law of couples of divisors by using a probabilistic model that preserves
the equiprobability of the first marginal law and allowed them to deduce the second
marginal law. They also obtained a Dirichlet law.

Recently, Basquin [1] studied the question of the distribution law of divisors of
friable integers n. This question is naturally connected to the de Bruijn function:

U(z,y) :==t{n<z:P(n) <y}

The asymptotic behavior of de Bruijn’s function is known in a large range of the
zy-plane. It is connected to Dickman’s function p, which is the continuous solution
in |0, 400 to the differential-difference equation with initial conditions:

up'(w) + plw—1)=0, (w>1)
plw) =1, (O<w<1)
p(UO =0, (w < 0%

for which the asymptotic behavior is well-known. For example, we have [7]
log p(w) = —=(14+0(1)wlogw, (w — +00).

Before quoting Basquin’s result and formulate the behavior of W(x,y), let us
introduce some notations that will be maintained throughout the rest of this paper.
For 1 <y < z, we set

log x
=

" logy
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and we denote by (H.) the subset of R? defined by the conditions
x> z0(€), exp ((log logx)§+€> <y< o,

where zg(€) > 0 is a sufficiently large constant depending on ¢ > 0. Here, it is
sufficient to quote the following asymptotic formula for ¥(xz,y) due to Hildebrand
[6] and valid in the range (H.)

U(z,y) = zp(u) (1 +0 (M)) .

logy

Let us introduce the functions py for k& €]0,+00[. Each function py is the con-
tinuous solution to the differential-difference equation with initial conditions:

WPl () + (1~ K)py(a) + kpu(w —1) =0, (> 1)
pr(w) = FLk)w’“_l, O<w<1)
pr(w) =0, (w<0)

In particular, we have p; = p. The function pj is the k-th fractional convolution
power of p — see Hensley’s work [5]. Its asymptotic behavior is well-known — see in
particular Smida’s papers [9] and [10], where the properties of this function, as well
as its connection to the asymptotic behavior of Dickman’s function p, are given. In
particular, we have the formula [9)]:

pr() = KOG p(u), - (u — +00).

Basquin showed that

1 Ouv p;(S)Pl(u_S)dS <10g(u+ 1) 1 )
P(X, <v) = = 2 +0 + ,
U(z,y) 2. H ) logy Viogy

n<ax

P(n)<y

uniformly for v € [0,1] and (z,y) € (H.), and he deduced that as u — o0,
the distribution function converges to the normal distribution. More precisely, he
showed that

N /Ow,ogs)ﬂg(“ Cyds—a <u\/M(u - %)) 40 (%) ,

p(u)

where &'(u) ~ 1/u as u — +oo, and

O(w) = % /_1:0 e dt

is the normal distribution function.
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2. Statements of the Results

To state our results, let us introduce the Buchstab function w. This function dis-
covered by Bushstab comes from the study of the uncanceled elements in the sieve
of Eratosthenes — see de Bruijn’s beautiful article [3]. It is the unique continuous
solution for v > 1 to the differential-difference equation, with initial conditions:

w'(v) +w) —wlv—1)=0, (v>2)

w(v)z%, (1<v<?2)

wv)=0, v<l.

Its asymptotic behavior is known — see de Bruijn [3] and Tenenbaum’s book [11,
chap. IIL.6]. In particular for v > 1, we have

wv)=e74+0 (p(v)eﬁ) ) (3)

where 7 is the Euler constant and c is a positive constant. In the first theorem below,
we show the convergence of the mean of distribution functions (1) to a distribution
function. In the second one, we describe the limit law as u — 400 and in the third
one we give, as an example, expressions of the limit law for 1 < u < 2.

Theorem 2.1. Uniformly for v € [0,1] and (z,y) in (H.), we have
LY Py <0) = o (o py(@hwu— s = 2)dz) py(s) ds

+ iy (s) py (u—s)ds

+ O(log(u+1)+

logy

1
\/logy) ’

We notice that for y = x, that is to say v = 1, the formula of Theorem 2.1 is
reduced to formula (2) obtained in [4]. Indeed, the first integral vanishes because
p1(z) =0 for 2 <0 and

[ os@s-nas=2 [7 2 =2 wrcsin(i)
1(s)p1(1—8)ds =~ ——— = —arcsin(y/v).
o FH0 wlo VB w
Let us denote
uv u—s—1 uv
F(u,v):/ (/ p;(z)w(u—s—z)dz) p%(s)ds—i—/ pi(s)py(u—s)ds.
0 0 0

We then have

Theorem 2.2. For v € [0,1] and as u — +00, we uniformly have

Fluo) = [ p3(ods + 0 (palu).

where v is the Euler constant.
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Theorem 2.3. 1. Forv € [0,“=!] and 1 < u < 2, we have

F(u,v) = %arcsin(\/ﬂ) + %bg(u(l —v)) arcsin ( ulﬁ)l) - %log(l — ).

2. Forve [ Y and 1 <u <2, we have

u ’u

2 1
F(u,v) = = arcsin(y/v) + 5 log u.
m

3. Forve[11] and 1 <u <2, we have

F(u,v) = %arcsin(\/ﬁ) + %log(uv) arcsin < %) — %log(v)

Let us set
S("E, Y, U) = anz P(Xn,y < ’U) = anz ﬁ Zd|n,d<nv,P(d)<y 1
- 51(337?477))—52(%9’“),
with
SYETTES S S SR D DD ppeee
ngm d n d<av d<zv,P(d)<y m<a:/d y

(d)<y

and
1

d|n,n? <d<zv
P(d)<y

We will show that the main contribution to Theorem 2.1 comes from the estimation
of Sy (z,y,v). The proof rests on the estimation of

1
nzgz 7(dn,y)

for (x,y) in (H.) and d > 1, y-friable.

3. Preparatory Lemmas and Proof of Theorem 2.1

3.1. Lemmas
Let us introduce some notations which will be used in the sequel. For each fixed

integer d > 1, we define the multiplicative function

_ 7(d)
Pyd(n) - W7
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where 7 is the divisor function. For each prime number p, we denote by v,(d) the

p-adic valuation of d. We have
) __ Up(d) + 1
7a(p%) = vp(d) +a+1

We consider the Dirichlet series of v4(n)

ye= Y2 ) > 1),

n>1

We note that Fj(s) = €2 (s)Gq(s) in the half-plane R(s) > 1, where ( is the Riemann

zeta function and

L % vp(d)+1
Ga(s) = Hp (1 - %) (Zazo _(vp(d)-l—oz-i-l)po‘s)
= B(s)Ka(s),
with
1
1)2 1
s T1(1- 1) (105
. p Silat+lp
and
—1
B+1
Kas) =[] 14> 2 | [ 14D —
e = (B+a+1)p = (a+1)p

For each fixed integer d > 1, we define Dirichlet series

Kalo) = Y20 pi = 3 M Gy = Y 20,

s
n>1

n>=1

Then we obtain

and
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Lemma 3.1. Let d > 1 be a fized integer. There exists a real number 0 <n < 1/3

such that the series
ha(n)
Y=
n>1

is absolutely convergent in the half-plane R(s) = 0 > 1 —n and for d > 1 we
uniformly have

n>1 p\d

The result of this lemma can be deduced from a general study developed in [4].
Indeed, by Lemma 1 of [4], the series

> ba(n) _ Ka(s)

ns
n=1

is absolutely convergent in the half-plane R(s) = o > 1 — 7, and satisfies

Z|5d <<,7H1+ (6)

n>1 pld

Lemma 2 of [4] applies to the series

S ),

ns
n>=1

with the exponent oo = 1/2 and ¢(n) = 1/7(n). We obtain

5 Pl [b(n

n>1 P

7)) <51 (7)

in the half-plane R(s) = o > 1 — n. Lemma 3.1 follows from (5), (6) and (7). O

We set
2

pl=n

Mn,d = H(l +

pld

).

From the Equation (4) we define a mutiplicative function hg by the convolution
identity v4 = T1 % hq. By Lemma 3.1, its Dirichlet series satisfies the conditions
(1.18) of Theorem 3 of [10], since we have

|ha(n)] 1 |ha(n |ha(n My,a
P D D= (n/2 tn/2zn1 (n/2 <o Zz

n>t n>t
P(d)<y P(d)<y
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The proof of Theorem 3 of [10] works and we obtain the first result of Lemma
3.2 below. The second result is a consequence of Theorem T of [4] applied to the
function 1/7(n) and the fact that for 0 < u < 1

_ 1 _ Vlogy -
N NN N

Lemma 3.2. 1. let  €]0,3[ and let € > 0 be fized . For d > 1 and (z,y) in
(H.), we uniformly have

5 =g 0 s ()

n<x

P(n)<y

(u) (®)

p

1
2

[N

2. Forl1 <ax <y andd > 1, we uniformly have

> ) = o oy ) (Gatt) + 0 (124 ).

logy

n<a

P(n)<y

Basquin [2] obtained the first result of this lemma by using another convolution
identity and by applying a general result of Tenenbaum and Wu [12].

We set the multiplicative function

O Ky(1) 1 1 B
o) =0 =T grarim | | S arim

pBld \a=0

For R(s) > 1, we have

M) _ iy 2

ns ’
n>1 nz=1

where 3 is a multiplicative function satisfying g = Tk 5. We have

wo =S (- 1) (2

n>1 p a>0

i)

For later use, note that
Ga(1) = Kq(1)B(1) = 7(d)g(d) B(1). ()

Lemma 2 of [4] applies to the series H(s) with exponent & = 1/2 and the function
¥(n) = g(n). It follows that the series H(s) is absolutely convegent in the half-plane
R(s) =0 >1—n and we have

Z WT(LZN

n>1

<y 1.
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The conditions (1.18) of application of Theorem 3 of [10] are satisfied and we obtain
the first result of the following Lemma 3.3. The second result is an immediate
consequence of lemma 3 of [4] and the relation (8) above.

Lemma 3.3. 1. Uniformly in the range (H.), we have

3 g(n) = H(1) ——— py (u) (1+O<10g1(§g;;1)+\/1i@>>'

n<a

P(n)<y

=
o
o2
<

N|=

2. For 1 < x <y, we have

Zg(n) = lfg Py (1 o (10;76)) .

n<T

Remark 3.1. We set

M, 4
N — n.a .
D=
The function N is multiplicative, positive, satisfies
1
N(p)=14+0(—), N(p*) <« 1.
(p) ( \/ﬁ) (")

So, from [1, Lemma 3.1], a partial summation yields

Z %d) <, Vl1ogy

d<z
P(d)<y

uniformly in (H,).
Lemma 3.4. We have B(1)H(1) = 1.

Proof. We have

1?2 1 )2 g(p®)
B(l)_H(l——) > 7 H(1):H<1——) —

. P = (j+1)pI . P Sop

and
—1
g(p%) _ 1 1

= S\= (a+j+ 1)p>ti = (4 +1)pi

Therfore

1
2\ Larir e

a0 \ ;>0
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By noticing that for 0 < |z| < 1,
ﬂ _ 1 /1 ot qt
at+j+1  xf, ’

we get
atji+1)] xfy A—t)2 1-2
U

Let us denote by P_(n) the smallest prime factor of n > 1 and set P_(1) = +o0.

The function
O(z,y) = Z 1

n<a

P_(n)>y
has been studied by de Bruijn [3]. By [11, II1.6. Cor 6.14] and Mertens’ Formula
we readily obtain the following lemma which is sufficient for our purpose.

Lemma 3.5. In the range (H.) we uniformly have
®(z,y) = — +0 .
(@) logy  logy (logy)?

Lemma 3.6. Uniformly for each integer d > 1 such that P(d) <y and (z,y) in
(H.) we have

T Gq4 u—1
Socorim = v S5 (5 @elu—2) dz + py (w)

My.q [ = log(u+1) x .
o (S (=gt + w55

Proof. We write n = ab with P(a) < y and P_(b) > y. Then for d y-friable, we
have

+

7(dn,y) = 7(dab,y) = 7(da),

SO

1 1 T
Ty(z,y) == Z Ty Z (da) ‘P(aay)-

n<xr

First, we consider the range

exp ((loglogx)gJ”) <y < d , x> xoe).
a
Write
Syt X et X - T+ Tue)
= 7(dn,y) = 7(da) P4 it 7(da) = aY A\ Y)-

P(a)<y P(a)<y
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Lemma 3.2 gives

NN My (xlogutl) =z
Ta(x,y) = Tl(d) \/@pé(uHO(T(d;( (logy)? +1°gy>)'

To study Ty(z,y) we apply Lemma 3.5:

T z, = o agaz ;wu—bga +O( agax ;)
d( y) logy EPéz)/gyy at(da) ( logy) log? y ZP(ga)gy at(da)
— Li+0 (bg . Lg)

log Yy

We first study L;. Partial summation and Lemma 3.2 give

z/ o
L, = -,—(d)f Yy 10§f,)d(za<w(a)<y7d(a)>

= 3 flx/y (Zpaft W(q)) (t%w(u - logy) +w'(u— llf:g;)tg ljj)gy) dt

Lo(u —

= Vg 7@ h (t

M,.q rx/y [ log(122L+1) 1 log ¢ logt\ dt

My.a /Yy log(%-&-l) 1 / logt logty dt
+ O (T(d) fl < (logy)% + log y |’ (u — 1Ogy)|p%(1ogy)t10gy

log ¢ 1 log t
logy) er( lggy)tlogy) p%(lggy)dt

+ 0 (M)

By the change of variable z = = gy, we obtain

|>~
|

Ly = \/Eci‘?f))f Py u—Z)dz+O<T(d) <1+—(1°gu2>).

log y)

We now estimate Lo. In the same way, Lemma 3.2 and partial summation give

M u
Ly < +/logy ”’d/ p1(2)
7(d) Jo
We get our result in the considered range from these different estimates. In the
range £ < y < x we have ®(z/a,y) = 1. The result follows immediately from
O

logy

Lemma 3.2.
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Lemma 3.7. Sete, = }ggi Uniformly for (z,y) in (H.)
and 0 < v < €, we have

Sz, y,v) :0(\/126@)

Proof. The condition on v implies d = 1. By Lemma 3.6 with d = 1 we get

1 1 f”
v =2 gy 2 S Ty < Vo

n<w d|n,d<n?,P(d)<y n<w

O

log 2

loer - Uniformly for (z,y) in (H) and e, < v < 1, we have

X
SZ(‘T7ya’U) =0 (@) :

Lemma 3.8. Let e, =

Proof. We have

1
Sz(x,y,v)ZZT ) Z 1< Z Z dm )

n
n<z (n,y d|n,nv<d<zv,P(d)<y d<z?,P(d)<y m<a1—v

If 1 — e, <v <1, then 'Y < 2. In this case, we have

1 T T
SQ(I,y,’U) < Z D pl( ) < .
d<o Py 7(d) Viogy Viogy

Now suppose that €, < v < 1 —¢,. For y < min{z?, 217"}, Lemmas 3.6 and 3.3,
give

Sa(z,y,v) < 2 (o(l_v)u_lp

T (2)ol(1 )= 2)dz + py (1~ v))

1
2

G
ng.ﬂ’ P(d)<y Td(gl)

1—wv

< Ty Ldsar, Pay<y 9(9)

< logyp 1 (uw) < logw

since uv > 1 and (1 —v)u > 1. For 217Y < y < 2Y, the inner sum is

1—v

1 1 x 1—w
> dmyy) > Tam) < <

m<al—v m<xl-v (1 - U) IOgJ}




INTEGERS: 20 (2020) 13

from Lemma 3.2. We apply Lemma 3.3 to the outer sum and obtain

52('7:71/7’0) <

T T
——p1 () € —-
Viogy' 2 Vogy

1—v 1—v

The case ¥ < y < '~V is similar. Lastly for y > max{z

v !/
,xV}, we set €}, = T

and consider three cases ¢, <v<e, , e, <v<1l—€e etl—€ <v<1—-¢. In
each situation, we have ﬁ < +/logz. By applying Lemmas 3.2 and 3.3 we
v —v
get
T 1 T

< < :
logz /v(1 —v) Vlog x

SZ(J:7 Y, ’U)

3.2. Proof of Theorem 2.1

Taking into account Lemmas 3.7 and 3.8, it remains to estimate Si(z,y,v) for
€z < v < 1. We consider the two following situations: €, < v < 1 — ¢, and
1—€; < v < 1. First, suppose that 1 —€, < v < 1. In this case x/2 < V. We write

_ 1 1
Si(z,yv) = X g 2m<a/d T(@my) T ng@;é;v Y m<a/d T@mg)

= §1 + §2.
Let us study S,. Since x/2 < d then m = 1. Hence

~ 1 1 x x
S, = ) < > < pi(u) € ——-
epz<acmp@<y T acapiey @ Viesy'? viogy

The evaluation of §1 is similar to the evaluation of Si(x,y,v) under the comple-
mentary condition €, < v < 1 — ¢, since /2 = z17%. Let us study S;(x,y,v)
under the condition €, < v < 1 — €,. First, consider (z,y) in the range

exp ((loglogx)%+5) Sy<z/d, x>=ux0(e).

Write
S1(@,y,v) = Cpcs 7y dimaser L= Yacor payy Some<a/d Tamg)
P(d)<y
= Da<av,P(a)<y Ld(G:Y)
and set

B logd
logy

Ug = U
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By Lemma 3.6 we get S1(z,y,v) = S1.1 + O(S1,2), where

G = 3 Ga(1) (/Mlp (2)w(ug — 2) dz + pa (u ))
1= 1 d— 1(Ugd
b Viogy d<ar Pld)<y dr(d) \Jy 2 2

1 log(u + 1)> M, 4 ( 1 log(u + 1))
Sio:i==x + <Lz + )
b2 <10gy (logy)2 2 , 47(d) Viogy logy

d<a? P(d)<

by Remark 3.1. It remains to estimate S; ;. From (9) and partial summation we
get

x ug—1
St = ity BO) Cacon ey "2 (Jo oy (2l — 2) dz + py (ua))

= Bt () (o) ((lfv)ufz)dz+p1((1fv)u)>><

=

(Engx”,P(n)<y ) ‘/10gy ><

ff (ant,P(n)gyg(n)> d (% ( Ou”_l p%(z)w(ut —2)dz+ p%(ut))>
= Ry — Rs.

From Lemmas 3.3 and 3.4,

R < ip%(uv) (1+p%((1— v)u )) L ——=

log y logy

where the last upper bound is proved in the same way as in the proof of Lemma
3.8. Now consider Ry. We have

d (1 (/Out_l py(2)wlun — ) dz + p%(ut)>) — D, + Ds,

with
ur—1 dt
Dy :=— pi(2)w(ur = 2) dz + py (ur) o)
0
and

Dy = %d (/OUH py(2)wlu — ) dz + p%(ut)> .

Write Ry = R2’1 + R2$2, with

Roy = i B(1) /j g(n) | Dy
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and

v

RQ_’Q = \/@ B(].) /1 Z g(n) D2.

n<t, P(n)<y

To evaluate Rp 1 we apply Lemmas 3.3 and 3.4. We get

T z¥ o ur—1
Roy =~ 7 oy () (o™t py ()l — 2)dz + py () )

log(fogy +1) 1 dt
(1 + o ( llogz + \/logy) ) T

logt .
ogy S1ves

The change of variable s =

Ry1 = —=x Ouv p%(s) ( O“_S_l p1 (2)w(u—s—2z)dz + p1 (u— s)) X
log(s+1) 1
(1 40 (7%% + Tgy)) ds

= -z [ pi(s) (fou ot pi(z)w(u—s—z) dz) ds —

uv

T Jy p% (S)p

1
2

z log(u-+1
(U_S)d8+0< liéy )+\/1(g§ﬂ>.

Now consider Ry 2. An easy calculation gives
1
D, = —m ( o p1(z)w(ue — 2) dz) dt
us—1
— myeey (BT e () e — ) dz) dr

1
t2(ur—1)logy ( 0

- @ P'% (ue)

= Do1+ Do+ Do3z+ Doy
Thus

R272 = \/ﬁﬂB(l) X

flzv (ant,p(n)gy 9(”)) (D21 + D22+ Doz + Day) dt
= 51+52+53+1~74,
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where

U

Di = VIogy B) /1 2. g | Dag

n<t, P(n)<y

for ¢ € {1,2,3,4}. By the same method as previously we get

_ T uv p;(S) u—s—1
D 2
1<<10gy/0 u—s—l(/o P

Fors>u—2 wu—s—2)=0since0<2<u—s—1<1and for s <u-—2
u—3s—1>1. It follows that

_ T u—2 u—1 T
D d d —_—

The study of 52 , 53 and 54 is similar by using propreties of o/, and w’ and gives
2

N

(2)w(u — s — 2) dz) ds.

the same result. We omit details. Assembling these estimates we get our result
in the considered range. In the complementary range x/d < y < z, the proof is
similar, we omit it. O

4. Preparatory Lemmas and Proof of Theorem 2.2
4.1. Lemmas
We need a weak form of the following lemma.

Lemma 4.1. For each fized integer N > land for w > 1 we uniformly have

o al p1(w)
/ pé(t)dt:ZZ(w—kk)pé(w—i—N)—FO< - )

w k=1
Proof. Set
I(w) ::/ pi(t)dt.

w

The change of variable z = t 4+ 1 and the differerential equation satisfied by p 1 give

Iw) =[50y = Dde = =2 [, 2, (2)dz =[5, py(2)dz
—2J(w) — I(w+1),

(10)

with
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An integration by parts gives

J(w) =—(w+1)pi(w+1) - /0:1 pi(2)dz = —(w+1)pr(w+1) = I(w+1).
Inserting in (10) we obtain
I(w) = I(w+1) =2(w+ 1)py (w+1). (11)

After replacing w by w + k — 1 we obtain for every integer k > 1
Iw+k—1)—I(w+k)=2(w+k)ps(w+k)

Summing these inequalities, we obtain
I(w) =2(w+Dp(w+1)+2> (w+k)p
k=2

(w+k).

1
2

The lemma follows from the preceding formula and the bound [9]

%(w+k) O(p%w(:))>,

uniformly for w > 1 and k > 0. O

Lemma 4.2. Forv € [0,1] and u — oo we uniformly have

Hlu,0) = & /(/ p(w )dw) py (s = / 0y (w)dw+0 (up(u))

where v is Euler’s constant.

N\»—A

Proof. We have

H(u,v) = % [ < O+°° pi(w)dw — [ Py (w)dw) p1(s)ds
= \/167 I pa(s)ds — & [ (f;isf1 p1 (w)dw) pi(s)ds,

since by using Laplace transform, we have [11, I11.5]

—+o0
.
0

Lemma 4.1 in a weak version yields

H(u,v) = \/gf sds—i—O(uf p%(u—s)ds)
L 0y () + Oluptu),

(w)dw = 57 (0) = ((0))"/* = Ver.

N|=

since

[ s oy < [ oy s)ds = (oy xpy)0) < ol
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4.2. Proof of Theorem 2.2
We have

Fan) = [ ([ oyt - 21d2) oy 51 s + Ot

and
I ( Ou_s_l pi(2)w(u—s—z) dz) s)ds = \/5 Jo " pa(s)ds —
\/ET f (qujs_l PL (z)dz) ds +

O(fomj PL (fou o % p(u—s—z)dz> dS)'
By formula (3) and Lemma 4.2, we get

B (s oyl — s = 2)dz) py () ds =

1
2

& o pa(s) (fou_s ' pi(z )dz) ds +

(fowpl (fou Loy (2)p(u— s — 2)dz) ds )

= o= Jo " py(s)ds + Olup(u)) + O (pa(u))
== Jo pi(s)ds+ 0 (p2(u))
0" 03 (8) (o7 Py (Rdplu— s — 2)dz) ds <
Jo" p1(s)(ps * p)(u—s)ds < (py * py * p)(u)
< (p*p)(u) < p2(u)
and up(u) < pa(u). O

5. Preparatory Lemmas and Proof of Theorem 2.3
5.1. Lemmas

Lemma 5.1. For 0 < &£ <1 we have

/ /75 +¢ ds’ sz/ — — “log(1 — &)-
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Proof. We use the change of variables (s',2') — (w,r) = (ﬁlz,,s’ + 2’). Then
ds'dz’ = rdwdr and

R(¢) = (% /Olw—%a—w)-% dw) (/j(l—w—l dr> — log(1 - )

since

Lemma 5.2. For0 <A <1— % and u > 1 we have
163 *SJFI*% dsdz
lo (Jo VeIV

= % (log(u) +log(1 — ) ) arcsin ( u“—f;) —log(1 — B3)-

Al

S(8) =

Proof. We write S(8) = I — I with

h= i/ (/+ e z))

= %/ﬁ </+ e z)) |

From Lemma 5.1, I; = R(1 — ) =log(u). Let us study I5. By using the change of
variables (s',2') — (s,2) = (s’ + (3,2') we obtain

1 s —s' 1= B ds' dz’
L=~ :
2 7r/0 /0 \/s’—l—ﬁ\/?(l—s’—ﬁ—z’)
Now we put the change of variables (r,w) — (s',2') = (rw— 8,r(1 —w) — 3). Then

ds'dz’ = rdwdr and
o 1/1 dw =3 ar
P r e Voi-wls 1o

and

Since

the change of variable t = \/w, yields

— arcsin
T

1t dw _g/l it _ 2 ud |
s uu__ﬁl\/E\/lfw_ﬁ \/g\/l,tz_ u—1
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Finally,

u—1

S(B) = %(log(u) + log(1 — 3)) arcsin (\/ uu_ﬂ1> —log(1 — B).

Lemma 5.3. For 0 < w <1,

I, = (log(u) 4+ log(1 —3) ) (1 _ %arcsin ( uf3 >> .

Hence

(w) = —
SN

and for 1 < w < 2,
(w) = I log(vw +vw—1)
\/7?\/@ \/7?\/’11] '

Proof. The first formula is the definition of p 1 for 0 < w < 1 and the second one
follows from the differential equation satisfied by py pour I <w < 2. O

p

Nl=

Let us consider the integral

= /Ou </Ou+1 oy (2)eo(u— s — 2) dz) py(s)ds

for 1 < u < 2. We notice that on one hand for s > u —1

u—s—1
/ pi(z)w(u—s—2z)dz =0,
0

since p%(z) = 0 pour z < 0 and then we can restrict the study of the integral
on s to the interval [0, M] where M = min{u — 1,uv} < 1. On the other hand, if
0<z<u—s—1thenl<u—s—z<u—s<u<2andw(u—s—z)=1/(u—s—2z2).

= %/OM (/ ) 12)

We will give two expessions of I. By the change of variable ¢ = /2 in the inner
integral (12) we get

Hence

I =

2 /M log(vu —s++vVu—s—1) ds, (13)
0

7 Vv —s
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and by the change of variables (s, 2) — (s,2) = (us’,uz’) and by puting

M = % = min{l — %71;} in (13), we obtain

I l/M’ /—s/+1—% ds' dz' . (14
m™Jo Jo V'V (1 — s —2)
By using the notation of Lemma 5.2, we rewrite (13) and (14) in the form:
SA-1)y if M=u-1,
{ S(v) it M=uv.

Now, we study the integral

/ pi(s)pi(u—s)ds, (1<u<2).
0

Lemma 5.4. Forv € [0, “~1] with 1 < u < 2 we have

/"U p1(s)pr(u—s)ds= % arcsin(y/v) — %S(v).
0

Proof. For v € [0, “T_l] we have uv < v — 1 and therefore 0 < s <ww <u—-1<1
and 1 < u — s < 2. Applying Lemma 5.3 we get

s 1 —¢ —s5—
By oy () pylu—s)ds = L[t oL [ el D) g
= Jl_JQ.

By the change of variable t = /s, we get

2 (VP 2
Jy = —/ at__ - arcsin(v/v).
0

From (15) we have J, = 5(v). This completes the proof. O

Lemma 5.5. Forv € [“T_l, %] with 1 < u < 2 we have

/uv pi(s)py(u—s)ds= %arcsin(\/ﬂ) — %S(l - l)
0

u

Proof. For v € [“1 1] we have u — 1 < uv < 1. We write

u u
uv

/Ouu p1(s) ps(u—s)ds = /Ou_l p1(s)py(u—s) d8+/u pi(s)p

-1

(u—s)ds = Jy+Ja-

1
2
Consider J;. As in the previous lemma, we have

1 puel g L pu—1 log(va=s+va=5=T)
o= 1)y ma= b Jovi=s ds

= Zarcsin(y/%1) — 151 - 1).
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Now consider J;. We have v — 1 < s <wuwv < 1 and u(l —v) < u— s < 1. Hence

2 -1
arcsin(y/v) — = arcsin( 4

1 S
;/u_l \/E\/u—s_; T U )
This completes the proof. O

Lemma 5.6. Forv € [+,1] with 1 < u <2, we have
| os0) oy u—s)ds = =350 - 1)+ Zaresin(v) + 51 - 0)
1(8)pr(u—s)ds=—= — 2) 4+ Zarcsin(yv/v —v).
0 P35I Py 2 U s
Proof. Asu < 2, wehave—lg%<v<landthereforeu—léuvéu. We write

uv u—1
/ pi(s)py(u—s)ds = / p
0 0

The integral J; has been studied in lemma 5.5. It remains to calculate J. As % < v,
that is to say, uv > 1, we write

uv

() pylu-s)dst [ py()p

u—1

(u—s)ds = Jy+Ja-

1
2

Nf=

1 uv
ng/ p%(s)p%(ufs)ds+/ p1(s)pr(u—s)ds:=Jz1+ Joo.
u—1 1

1 ds 2 .1 2 . u—1
arcsin(—=) — — arcsin(

1
J2’1:;/u_17\/§\/7u—szg Vo T

=T s

A= T M v

We have 5 5 )
Jy = - arcsin(y/v) — - arcsin(ﬁ).

Now it remains to study j; We put the change of variable s’ = u — s. We get

7 1/“1 log(vVu — 8 ++vVu—s —1)
2 u(l—v) \/yvu—sl

As v > 1 we have u(1 —v) <u—1 < 1. Therefore, by using notations in (13), (14)
and (15) as well as Lemmas 5.1 and 5.2 we obtain

ds'.

—~ 1 1 1
T =58(1= )= 3S(1—v).

u

We complete the proof by grouping different estimates above. O
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5.2.

Proof of Theorem 2.3

Theorem 2.3 follows from (15) and different lemmas of Section 5. g

Acknowledgement. We are very grateful to the referee for useful remarks and
suggestions.
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