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Abstract
We introduce a variation on the prime divisor function B(n) of Alladi and Erdős, a
close relative of the sum of proper divisors function s(n). After proving some basic
properties regarding these functions, we study the dynamics of their iterates and
discover behavior that is reminiscent of the aliquot sequences generated by s(n).
In particular, we show that for iterates of B(n), no unbounded sequences occur,
analogous to the Catalan-Dickson conjecture. We also discuss possible directions
for further investigation, motivated by numerical observations.

1. Introduction

Let n be a positive integer with prime factorization n = pr1
1 . . . prk

k . Consider the
sum of prime divisors function

B(n) =
kX

i=1

ripi

and the sum of distinct prime divisors function

�(n) =
kX

i=1

pi.

They can be viewed as variants of the sum of proper divisors function

s(n) =
X

d|n
d<n

d,



INTEGERS: 20 (2020) 2

which has been studied since Pythagoras. On the other hand, the arithmetic prop-
erties of B(n) were studied by Alladi and Erdős [1], and those of �(n) were studied
by Hall [7] in the 1970s. These are both large additive functions in the sense that
they have the same average order as the largest prime factor of n, which is expected
by the well-known result of Hardy and Ramanujan that ⌦(n) and !(n) have the
same average order of log log n, where ⌦(n) and !(n) denote the number of total
and distinct prime divisors of n, respectively.

In this paper, we introduce variations of �(n) and B(n) by shifting the values of
these functions at fixed points. Clearly B(n) = �(n) = n if n is prime. We then
define for a fixed positive integer a the function

Ba(n) =

(
n + a, if n is prime,
B(n), otherwise.

We also define �a(n) analogously. These new functions are no longer additive, but
still bear similarities to the original functions, as we shall see.

The main motivation for introducing these functions lies in their iterates, and
the relation to classical conjectures on the behavior of s(n). The aliquot sequence
n, s(n), s(s(n)), . . . is known to stop at either primes, or cycles of length two (ami-
cable pairs) or longer (sociable numbers). Iterating Ba(n) and �a(n), we encounter
similar phenomena. We find that for fixed a only a handful of cycles are observed,
suggesting a variant of the Catalan-Dickson conjecture, which states that there do
not exist unbounded aliquot sequences (or, alternatively, the Guy-Selfridge counter-
conjecture [6] which gives certain candidate counterexamples). Let us define the
iterates by B2

a(n) = Ba(Ba(n)), and similarly for �a(n). It is obvious that for a = 0
the iterates Bk

0 (n) and �k
0 (n) eventually reach a fixed point, but for general a there

may a priori be cases in which the sequences are unbounded. In support of this, we
note that the celebrated Green-Tao theorem guarantees that there exists integers n
and a such that

n < Ba(n) < · · · < Bk
a(n), and n < �a(n) < · · · < �k

a(n)

for any k > 0 [5]. This is the analogue of a result of Lenstra, later improved by
Erdős [2], that for every k > 0 there is an integer n for which

n < s(n) < · · · < sk(n).

Nonetheless, we shall show that in fact no unbounded sequences occur, which is the
principal result of this paper.

Theorem 1. Let a 2 N. Then there exist finitely many cycles generated by iterates
of Ba(n), and for any n 2 N, Ba(n) iterates to one of these cycles.

Finally, in Section 3, we provide numerical data that lead us to pose questions
regarding the behavior of Ba(n).
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2. Iterates

We consider the dynamics of iterates of Ba(n) and �a(n), for a nonnegative integer
a. While most of the results below concern Ba(n), many of them can be carried over
to �a(n) without di�culty, which we leave to the interested reader. Throughout
we will also raise several problems regarding the iterates Bk

a(n), which can also be
posed for �k

a(n).

2.1. Cycles

We call n a periodic point if Bk
a(n) = Ba(n) for some positive integer k, and eventu-

ally periodic if Bl
a(n) is periodic for some positive integer l. Define a cycle to be the

orbit of a periodic point n. We will sometimes refer to the fixed points Ba(n) = n
as trivial cycles.

Lemma 1. For any a 2 N, we have that Ba(n) = n if and only if n = 4.

Proof. Primes are not fixed points by definition. So the only possible fixed points
are those of B(n) for n composite, which is n = 4, as we see that B(n) < n for any
composite n > 4.

We then have the following result for a = 1.

Proposition 1. Bk
1 (n) is eventually periodic for all n 2 N, with cycles (1), (4) and

(5, 6).

Proof. For small n, say n  6, this can be checked directly, so we may assume that
n > 6. For fixed n, define the stopping time for Ba to be the integer

ta(n) = inf{k : Bk
a(n) < n}.

We first claim that Bk
1 (n) has stopping time t1(n) = 2 if n is prime, otherwise

t1(n) = 1. It su�ces to check this for n = p. To do so, set p + 1 = 2m. Then we
have that

B2
1(p) = B1(p + 1) = 2 + B1(m)  3 + m < p.

It follows from the claim that Bk
1 (n) < n for all k > 1, thus B2k

1 (n) is strictly
decreasing until it reaches the cycle (5, 6).

We observe that the proof above fails for a > 1, since p + a may be prime if a
is even, while the final inequality 2 + m < p is no longer guaranteed if a is odd.
Nonetheless, we can ask the following question: do all primes above 3 occur in some
2-cycle for some a? We can answer this in the a�rmative.

Proposition 2. Every p > 3 occurs in a 2-cycle (p,Ba(p)) for some a 2 N.
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Proof. We have to produce an a such that Ba(p + a) = p. This forces p + a to be
composite, so it su�ces to show that B0(p+a) = p for some a. Let n be a composite
solution to B0(n) = p. Then setting a = n � p, we have that Ba : p 7! n 7! p as
desired.

It remains to show that B0(n) = p always has a composite solution. Let q be the
largest prime less than p. If p� q is prime, then choose n = q(p� q). If not, then
let a be a prime dividing p� q, and write p� q = ab. Then choose n = qab, and the
claim follows.

Remark 2. Observe that if a was chosen to be the largest prime dividing p�q, then
the construction will in fact produce the smallest composite solution n.

How many kinds of cycles appear for a fixed a? We find that up to a  200
there are at most 4 distinct nontrivial cycles. For example, at a = 39 we have the
following cycles:

(43, 82), (13, 52, 17, 56), (7, 46, 25, 10), (5, 44, 15, 8, 6).

Note that from this example, we see that di↵erent k-cycles can occur for fixed k
and a. Also, a = 21 has distinct 5-cycles (5, 26, 15, 8, 6) and (7, 28, 11, 32, 10).

It is natural then to consider the following variant of the Catalan-Dickson conjec-
ture for s(n): Are the iterates Bk

a(n) unbounded as k tends to infinity? Heuristically,
the average order Ba(n) is (⇡2n)/(6 log n). We can express this as follows.

Lemma 2. We have X

nx

Ba(n) ⇠ ⇡2x2

12 log x
,

and also with Ba(n) replaced by �a(n).

Proof. This follows simply from the fact that
X

nx

Ba(n) =
X

nx

B(n) + a
X

px

1,

and similarly for �a(n), then applying the corollaries to [1, Theorem 1.1]. The
additional sum over p is a⇡(x), which gives a smaller error ax/ log x.

This suggests that an unbounded sequence of iterates should not exist, in contrast
to s(n)/n which is slightly greater than 1 on average. We can now turn to the proof
of the main theorem.

Proof of Theorem 1. The case a = 1 is covered by Proposition 1, so we may assume
that a > 1. We shall first show that given n large enough, the smallest integer
k such that Bk�1

a (n) is composite, whence Bk
a(n) < Bk�1

a (n), will in fact be such
that Bk(n) < n. In other words, iterating the function Ba starting at n, its orbit
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eventually reaches an integer less than n. Certainly this is true if n is composite,
since Ba(n) < n, so we may as well assume that n is equal to some prime p.

Now let s be the smallest prime that does not divide a, which is less than 2a
by Bertrand’s postulate. Then it follows that a mod s is nonzero, hence relatively
prime to it. On the other hand, at least one of p + a, p + 2a, . . . , p + sa is divisible
by s as a consequence of the pigeonhole principle, and therefore composite. Thus,
iterating Ba at p reaches a composite number after at most s iterates.

On the other hand, we claim that for composite n, we have

Ba(n)  2 +
n

2
, (2.1)

with equality when n is twice a prime. Since n is composite, it su�ces to prove
(2.1) for a = 0. Let n = pmq where p is the smallest prime factor of n and q coprime
to p. If q = 1, then B(pm) = mp and we are done. On the other hand, if q � 1,
then by additivity we have

B(n) = mp + B(q)
 mp + q

 2 +
⇣pm

2
� 1

⌘
q + q

= 2 +
n

2
,

where the last inequality follows since

pm  2 +
⇣pm

2
� 1

⌘
q

and q > 1. This proves the claim.
Now to prove the theorem, it su�ces to show that for any shift a, there exists

a constant C(a) such that iterating Ba from any starting point n eventually enters
into a cycle contained within the interval [1, C(a)]. Let us assume first that such
a constant exists. Then given n > C(a), it follows from (2.1) and s < 2a that we
can iterate Ba starting at n until Bk

a(n)  C(a) for some k. Suppose now that
n  C(a). Then if n is composite, then Ba(n) < C(a), while on the other hand if
n is equal to a prime p, then we see that there exists some k such that

Ba(p + ka)  2 +
p + sa

2
< C(a).

From this we see that it su�ces to take C(a) = 2a2 + 10 for the bound to hold. It
follows then that once the orbit of n under Ba enters into the range [1, C(a)], it will
remain bounded within the same interval.
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3. Further Directions

In this section, we discuss some possible directions for further investigation, mo-
tivated by numerical observations and analogous properties of s(n). We first note
that there is a natural extension of Ba(n) to Z�0 by setting B(1) = 1 and B(0) = 0,
and to negative integers by setting B(�n) = B(n). We may also extend �a(n) in a
similar manner. Thus iterating our functions can be viewed as studying dynamics
on Z itself. It is also possible to extend to Q by defining B(x

y ) := B(x)�B(y) for
reduced fractions x

y , analogous to the logarithm, though upon iterating once we re-
turn to Z, and from there Z�0; another possible way of producing more interesting
extensions is by setting B(�n) = �B(n), and B(x

y ) = B(x)/B(y).

3.1. Cycle Length

What are the lengths of cycles, and how do they depend on a and n? What are the
stopping times ta(n)? We have not studied this question in detail, but numerical
experiments suggest that both are small relative to s(n). For example, Table 1
below lists the distinct nontrivial cycles found for small a and checking n up to 106.

a cycles a cycles

1 (5, 6) 11 (5, 15, 8, 6)
2 (5, 7, 9, 6) 12 (5, 17, 29, 41, 53, 65, 18, 8, 6)
3 (5, 8, 6), (7, 10) 13 (5, 16, 8, 6)
4 (5, 9, 6) 14 (5, 19, 33, 14, 9, 6), (7, 21, 10)
5 (7, 12) 15 (5, 20, 9, 6), (19, 34)
6 (7, 13, 19, 25, 10) 16 (7, 23, 39, 16, 8, 6, 5, 21, 10)
7 (5, 12, 7, 14, 9, 6) 17 (7, 24, 9, 6, 5, 22, 13, 30, 10), (11, 28)
8 (5, 13, 21, 10, 7, 15, 8, 6) 18 (5, 23, 41, 59, 77, 18, 8, 6), (7, 25, 10)
9 (5, 15, 9, 6), (13, 22) 19 (5, 24, 9, 6)
10 (5, 15, 8, 6) 20 (5, 25, 10, 7, 27, 9, 6)

Table 1: Nontrivial cycles for n  106.

3.2. Sign Patterns

Any k-cycle (n,Ba(n), . . . , Bk
a(n)) can be ordered so that n is the least term in the

sequence, making n prime and Bk
a(n) composite. We adopt the following notation:

we will assign either + or � to denote in a cycle whether a number is prime or
composite. For example, the cycle (5, 7, 9, 6) in a = 2 has sign pattern (+,+,�,�).

We can now pose the following question: what are the possible sign patterns
allowed in a k-cycle? All non-trivial cycles of length k > 2 must have sign patterns
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of the form (+, . . . ,�). Do all combinations occur in between? For example, with
k = 3 we find that both combinations (+,+,�) and (+,�,�) to occur.

3.3. Prime-divisor Fibres

A question related to cycles is: For fixed a and p, what is the cardinality of the set
of solutions to the equation Ba(n) = p? The solution sets are the same for every
a, except possibly the pre-image {p� a}, which will be counted if it is prime. Note
that the proof of Theorem 2 provides the smallest composite solution.

If a is prime, the solutions to Ba(n) = m for a fixed m are given by the prime
partitions (m) of m, as was already observed in [8, Theoren 2.7], and there is
at least one composite solution for all n � 5. From this fact we can immediately
deduce from [4, VIII.26] the asymptotic

log(#{n : Ba(n) = m}) ⇠ 2⇡
r

m

3 log m

as m!1.
Indeed, one even has a recursive definition for (n) in terms of �(n),

(n) =
1
n

�
�(n) +

n�1X

i=1

(n� i)�(i)
�
,

with the initial condition (1) = 0. In other words, the number solutions of B(n) =
m are determined by the values of �(i) for i  m. More generally, this question
can be phrased in terms of prime-divisor sum fibres, with reference to [9]: Let
A ⇢ N be a set of asymptotic density zero (for example, the set of prime numbers).
Erdős, Granville, Pomerance, and Spiro [3] then conjecture that the fibre s�1(A)
has asymptotic density zero. What is the preimage B�1

a (A) for a fixed a?
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