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Abstract
We use the p-adic logarithm to express the binomial coe�cient

�2p�1
p�1

�
in terms of

harmonic sums, where p is an odd prime. We use the same logarithmic method on
norms of cyclotomic integers to obtain several congruences. For example, we show:

p�1X

k=1

(�1)k�1 1
k

✓
2k
k

◆
⌘

(1� L2
p)(L2

p � 3)
2p

mod p2,

where Lp is a the p-th Lucas number.

1. Introduction

In 1862, Joseph Wolstenholme [10] proved the following theorem:

Theorem 1. For any prime p � 5 we have:
✓

2p� 1
p� 1

◆
⌘ 1 mod p3, (1)

p�1X

k=1

1
k
⌘ 0 mod p2, (2)

p�1X

k=1

1
k2
⌘ 0 mod p. (3)

Let us set H(i)
n =

Pn
k=1

1
ki and Hn = H(1)

n . So Wolstenholme’s theorem says
Hp�1 ⌘ 0 mod p2 and H(2)

p�1 ⌘ 0 mod p. Over the years many generalizations of
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this theorem have been investigated. For a nice survey, see the article [3]. One
generalization is to consider

�2p�1
p�1

�
modulo higher powers of p and express it in

terms of harmonic sums H(i)
p�1, see for example [8, 4]. This leads to statements such

as ([3], p. 6):
✓

2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 + 2p2 (Hp�1)
2 (4)

+
4
3
p4Hp�1H

(3)
p�1 +

2
5
p5H(5)

p�1 mod p9.

In the article [1], the author used the p-adic logarithm and exponential functions
to study congruence conditions for binomial coe�cients. In the present article we
will show that many Wolstenholme type theorems such as (4) can be proven in
a uniform manner by using the properties of the p-adic logarithm and the p-adic
exponential function. Using this method we can extend identities such as (4) to
arbitrary high powers of p. This leads to Theorem 2 below. As an application, in
Corollary 1 we prove the following congruence:

✓
2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 +
2
5
p5H(5)

p�1 +
2
7
p7H(7)

p�1

+
2
9
p9H(9)

p�1 + 2p2 (Hp�1)
2 +

2
9
p6
⇣
H(3)

p�1

⌘2

+
4
3
p4Hp�1H

(3)
p�1 +

4
5
p6Hp�1H

(5)
p�1

+
4
3
p3 (Hp�1)

3 +
4
3
p5 (Hp�1)

2 H(3)
p�1 mod p12.

Following the article [2], we call a prime p a Wolstenholme prime if it satisfies�2p�1
p�1

�
⌘ 1 mod p4. The author shows that the primes 16843 and 2124679 are the

only two Wolstenholme primes smaller than 109. Moreover he conjectured there
are infinitely many Wolstenholme primes. Using the p-adic logarithm, we obtain
characterisations of Wolstenholme primes in terms of harmonic sums. This leads to
a characterisation of Wolstenholme primes modulo p12 in Theorem 4. Thereby we
confirm a conjecture from [3] (Remark 24), which says that a prime p is Wolsten-
holme if and only if it satisfies

✓
2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3Hp�1 +

2
5
p5H(5)

p�1 mod p8.

In the second part of this article we apply the logarithmic method of the first
part to norms of integers of cyclotomic fields. The analog of Lemma 2 is given by
Theorem 5. As an application, in Proposition 1 we prove the congruence

p�1X

k=1
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✓
2k
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◆
⌘ 0 mod p2.
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This is the weaker, modulo p2 version of a result from [8]. Moreover, in Theorem 6,
we get the congruence

p�1X

k=1

(�1)k�1 1
k

✓
2k
k

◆
⌘

(1� L2
p)(L2

p � 3)
2p

mod p2,

where Lp is the p-th Lucas number. This improves on a result in [7]. Finally we
find a congruence involving the integers of the sequence A092765 of the OEIS.

2. Logarithms and Binomial Coe�cients

2.1. Properties of the p-adic Logarithm and Exponential

First we will collect the properties of the p-adic logarithm that we need for our
purpose. As a reference see for example [9], page 50. Let p be an odd prime, and
let Qp be the field of p-adic numbers. For x 2 Qp we denote by ⌫p(x) the p-adic
valuation of x. If x 2 Qp satisfies x ⌘ 1 mod p, i.e. ⌫p(x� 1) � 1, then

logp(x) := �
X

i�1

(1� x)i

i
.

The function logp takes on values in Qp. In general the p-adic logarithm can be ex-
tended to the whole of Qp, but we will not need this. We will drop the subscript and
just write log instead of logp to ease the notation. Just like the normal logarithm,
the p-adic logarithm satisfies

log(xy) = log(x) + log(y)

when both x and y are congruent to 1 modulo p.
For x ⌘ 0 mod p, the p-adic exponential function is defined by

expp(x) = exp(x) :=
X

i�0

xi

i!
.

If both ⌫p(x), ⌫p(y) � 1 then we have exp(xy) = exp(x) + exp(y). Moreover, if
⌫p(x) � 1 then log(expx) = x and exp(log(1 + x)) = 1 + x.

We will also need the following lemma.

Lemma 1. Let x 2 Qp satisfy x ⌘ 1 mod p, and let 0 < k < p� 2. Then

x ⌘
kX

i=0

(log(x))i

i!
mod pr(k+1)

if and only if x ⌘ 1 mod pr.
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Proof. We have x ⌘ 1 mod pr if and only if log(x) ⌘ 0 mod pr. Moreover, we
have

x = exp log(x) =
X

i�0

(log(x))i

i!
,

so it is enough to show that for any y ⌘ 1 mod p we have

X

i�k+1

yi

i!
⌘ 0 mod pr(k+1)

if and only if y ⌘ 1 mod pr. This amounts to showing that ⌫p

⇣
yi

i!

⌘
> ⌫p

⇣
yk+1

(k+1)!

⌘
,

because then we have ⌫p

⇣P
i�k+1

yi

i!

⌘
= ⌫p

⇣
yk+1

(k+1)!

⌘
. But ⌫p

⇣
yk+2

(k+2)!

⌘
> ⌫p

⇣
yk+1

(k+1)!

⌘

follows from the fact that k < p� 2, whilst for i > k + 2 the claim is obvious.

2.2. Wolstenholme-type Theorems

Our main tool will be the next lemma.

Lemma 2. In Qp we have the following three identities:

1X

i=1

pi

i
H(i)

p�1 = 0, (5)

1X

i=1

(�1)i�1 pi

i
H(i)

p�1 = log
✓

2p� 1
p� 1

◆
, (6)

2
1X

i=1

p2i�1

(2i� 1)
H(2i�1)

p�1 = log
✓

2p� 1
p� 1

◆
. (7)

Proof. Note that, since p is odd, 1 =
Qp�1

k=1
k�p

k . Hence we get:

0 = � logp(1) = �
p�1X

k=1

logp(1�
p

k
)

=
p�1X

k=1

1X

i=1

pi

kii
=

1X

i=1

pi

i
H(i)

p�1.

For the second identity, we note
�2p�1

p�1

�
=
Qp�1

k=1
p+k

k ⌘ 1 mod p, which allows
us to proceed in exactly the same manner as for the first identity. Finally, the third
identity is obtained by adding the first two to each other.

The following lemma is useful for simplifying some of the expressions we will
obtain.
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Lemma 3. For any i 2 N we have:

H(i)
p�1 ⌘

(
0 mod p, if p� 1 - i

�1 mod p, if p� 1 | i.

If i is odd, then:

H(i)
p�1 ⌘

(
0 mod p2, if p� 1 - i + 1
ip
2 mod p2, if p� 1 | i + 1.

Proof. The first claim follows easily from the existence of a primitive root modulo
p. For the second claim, note that we have

p�1X

k=1

1
ki

=
(p�1)/2X

k=1

ki + (p� k)i

ki(p� k)i

⌘
(p�1)/2X

k=1

ki + (�k)i + ip(�k)i�1

ki(p� k)i
mod p2.

So, if i is odd, we see that

H(i)
p�1 ⌘ �ip

(p�1)/2X

k=1

1
ki+1

⌘ � ip

2
H(i+1)

p�1 mod p2.

Lemma 3 covers parts (2) and (3) of Wolstenholme’s theorem 1. Note that the
equivalence of (2) and (3) also follows from our Lemma 2 by looking at equation (5)
modulo p3, after knowing that H(3)

p�1 ⌘ 0 mod p. The equivalence between (1) and
the other two parts of Wolstenholme’s theorem follows by looking at (7) modulo p3.

For p = 3 we have
�5
3

�
= 1 + 32 and by Wolstenholme’s theorem, for p � 5

we have
�2p�1

p�1

�
⌘ 1 mod p3 for p � 5. Therefore, by the general properties of the

p-adic logarithm and exponential we know that exp log
�2p�1

p�1

�
=
�2p�1

p�1

�
. Combined

with Lemma 2, this allows us to express
�2p�1

p�1

�
in terms of harmonic sums.

Theorem 2. Let p be an odd prime. In Qp we have the identity:

✓
2p� 1
p� 1

◆
=
X

n�0

1
n!

0

@2
X

i�1

p2i�1

2i� 1
H(2i�1)

p�1

1

A
n

. (8)

Proof. The proof follows immediately from the combination of Lemma 2 and the
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definition of the exponential function:
✓

2p� 1
p� 1

◆
= exp log

✓
2p� 1
p� 1

◆

=
X

n�0

1
n!

✓
log
✓

2p� 1
p� 1

◆◆n

=
X

n�0

1
n!

0

@2
X

i�1

p2i�1

2i� 1
H(2i�1)

p�1

1

A
n

.

By looking modulo a specific power pk, and using Lemma 3 to eliminate the
terms which are congruent to 0 modulo pk, we can obtain previously known results,
such as the following.

Corollary 1. For any prime p � 11 we have the congruence:
✓

2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 +
2
5
p5H(5)

p�1 +
2
7
p7H(7)

p�1

+
2
9
p9H(9)

p�1 + 2p2 (Hp�1)
2 +

2
9
p6
⇣
H(3)

p�1

⌘2

+
4
3
p4Hp�1H

(3)
p�1 +

4
5
p6Hp�1H

(5)
p�1

+
4
3
p3 (Hp�1)

3 +
4
3
p5 (Hp�1)

2 H(3)
p�1 mod p12.

Proof. By Lemma 3, H(2i�1)
p�1 ⌘ 0 mod p for all odd primes p and i � 1. Also, for

p � 5 we see that pHp�1 ⌘ 0 mod p3. Hence, if we look at equation (8) modulo
p12, we only need to consider n  3. So we find:

✓
2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 + · · · + 2
9
p9H(9)

p�1

+
1
2

✓
2pHp�1 +

2
3
p3H(3)

p�1 + · · · + 2
9
p9H(9)

p�1

◆2

+
1
6

✓
2pHp�1 +

2
3
p3H(3)

p�1 + · · · + 2
9
p9H(9)

p�1

◆3

mod p12.

Expanding the square and the cube, and using Lemma 3 to eliminate the terms
that are congruent to 0 modulo p12, we end up with the statement of the corollary
for primes p � 11. For smaller primes p, there will be some extra terms, but we will
not give those formulas here.
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Remark 1. Looking modulo p6 we obtain for all primes p � 5:
✓

2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 mod p6.

This was originally proved in [8]. Looking modulo p9 we get the congruence men-
tioned in the introduction, i.e., for all primes p � 7:

✓
2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 +
2
5
p5H(5)

p�1

+ 2p2 (Hp�1)
2 +

4
3
p4Hp�1H

(3)
p�1 mod p9.

2.3. Wolstenholme Primes

By using Lemma 2, one can quickly prove the following well-known fact.

Theorem 3. For any prime p the following are equivalent:
✓

2p� 1
p� 1

◆
⌘ 1 mod p4, (9)

Hp�1 ⌘ 0 mod p3, (10)

H(2)
p�1 ⌘ 0 mod p2. (11)

Proof. From Lemma 1, we know that, for p > 3,
�2p�1

p�1

�
⌘ 1 mod p4 if and only

if log
�2p�1

p�1

�
⌘ 0 mod p4. Looking at (7) modulo p4, we see that this happens

if and only if Hp�1 ⌘ 0 mod p3. Finally, looking at (6) modulo p4 we see that
Hp�1 ⌘ p

2H(2)
p�1 mod p3, which proves the theorem.

As in the article [2], we call a prime satisfying any of these conditions a Wolsten-
holme prime. The two known Wolstenholme primes are 16843 and 2124679. We can
use the methods of the previous section to give characterisations of Wolstenholme
primes in terms of harmonic sums.

Theorem 4. A prime p is Wolstenholme if and only if:
✓

2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3H(3)

p�1 +
2
5
p5H(5)

p�1 +
2
7
p7H(7)

p�1

+
2
9
p9H(9)

p�1 + 2p2H2
p�1 +

4
3
p4Hp�1H

(3)
p�1

+
4
5
p6Hp�1H

(5)
p�1 +

2
9
p6
⇣
H(3)

p�1

⌘2
mod p12.

Proof. By Lemma 1 we know that p is Wolstenholme if and only if
✓

2p� 1
p� 1

◆
⌘ 1 + log

✓
2p� 1
p� 1

◆
+

1
2

✓
log
✓

2p� 1
p� 1

◆◆2

mod p12.
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Now we substitute the expression (7) we obtained for the logarithm. We obtain the
result of the theorem after eliminating the terms which are 0 modulo p12 by using
Lemma 3 and Theorem 3, exactly like we did in the proof of Corollary 1. Since
the first primes are not Wolstenholme, we do not need to concern ourselves with a
lower bound for p like we did in that corollary.

Remark 2. By looking modulo p8 we obtain that p is a Wolstenholme prime if and
only if ✓

2p� 1
p� 1

◆
⌘ 1 + 2pHp�1 +

2
3
p3Hp�1 +

2
5
p5H(5)

p�1 mod p8.

This is congruence (49) of [3], which is also given in Proposition 1.1 of [5]. In
Remark 24 of that article, the author asks whether this congruence characterizes
Wolstenholme primes. The theorem above proves that this is indeed the case.

Of course, for prime p such that
�2p�1

p�1

�
⌘ 1 mod p5 we could do the same

procedure to obtain congruences that characterize these primes. However, in [2]
the author conjectures that there are infinitely many Wolstenholme primes, but no
primes p such that

�2p�1
p�1

�
⌘ 1 mod p5. Therefore, we do not give the corresponding

congruences in this article.

3. Logarithms and Cyclotomic Integers

Let p be an odd prime, ⇣ = ⇣p a primitive p-th root of unity, K = Q(⇣) the p-th
cyclotomic field and OK = Z[⇣] its ring of integers. The ideal (p) is totally ramified
in K/Q, in fact we have pOK = ⇡p�1OK where ⇡ = 1� ⇣. We denote the elements
of Gal(K/Q) by �j , j = 1, . . . , p� 1, where �j is defined by �j(⇣) = ⇣j . Denote by
NK/Q = N the norm of K and by TrK/Q = Tr the trace, so N(x) =

Qp�1
j=1 �j(x) and

Tr(x) =
Pp�1

j=1 �j(x).
In exactly the same way as we did for binomial coe�cients modulo p, we can use

the p-adic logarithm to obtain congruence relations for norms of elements of OK .
We need an extension of the p-adic logarithm to the field Qp(⇣). We will denote
by ⌫⇡ the valuation with respect to the prime ideal ⇡OK . For our purposes it is
enough to know that if ⌫⇡(x� 1) � 1, then

log(x) = �
X

i�1

(1� x)i

i
,

and if x ⌘ y ⌘ 1 mod ⇡, then log(xy) = log(x) + log(y). The analog of Lemma 2
is given by the following theorem.
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Theorem 5. Let ↵ 2 OK be such that ⌫⇡(↵) � 1. Then we have, in Qp:

1X

k=1

1
k

Tr(↵k) = � log N(1� ↵). (12)

If moreover we know that 1� ↵ is a unit, then

1X

k=1

1
k

Tr(↵k) = 0, (13)

�2
1X

k=1

Tr(↵2k�1)
2k � 1

= log N(1 + ↵), (14)

and in particular we get:

p�1X

k=1

1
k

Tr(↵k) ⌘ 0 mod p⌫⇡(↵). (15)

Proof. Applying the p-adic logarithm to N(1� ↵) we see:

log(N(1� ↵)) =
p�1X

j=1

log(1� �j(↵))

= �
p�1X

j=1

1X

k=1

�j(↵k)
i

= �
1X

k=1

1
k

Tr(↵k),

which gives the first identity. If 1 � ↵ is a unit, then we have N(1 � ↵) = 1 so
log N(1� ↵) = 0. For the third identity, note that we have

log(N(1 + ↵)) =
X

i�1

(�1)i+1

i
Tr(↵i).

Adding this to the second we get

log(N(1 + ↵)) =
X

i�1

(�1) + (�1)i+1

i
Tr(↵i) = �2

X

i�1

Tr(↵2k�1)
2k � 1

.

Now we investigate the p-adic valuation of 1
kTr(↵k). We know that ⌫⇡(Tr(x)) �

⌫⇡(x) so we find:

⌫⇡

✓
1
k

Tr(↵k)
◆
� k⌫⇡(↵)� ⌫⇡(k).
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If p - k, then of course ⌫⇡

�
1
kTr(↵k)

�
� k⌫⇡(↵). When ⌫p(k) = t � 1, then, using

Bernouilli’s inequality, one gets

k⌫⇡(↵)� ⌫⇡(k) � pt⌫⇡(↵)� t(p� 1)
� (1 + t(p� 1)) ⌫⇡(↵)� t(p� 1)
� ⌫⇡(↵) + t(p� 1)(⌫⇡(↵)� 1).

In particular, we see that for any k � p one has

⌫⇡

✓
1
k

Tr(↵k)
◆

> (p� 1)(⌫⇡(↵)� 1),

and since 1
kTr(↵k) is a rational number, this means that

⌫p

✓
1
k

Tr(↵k)
◆
� ⌫⇡(↵).

The congruence (15) then follows from equality (13).

The discrete Fourier transform will be useful for calculating the trace of an ele-
ment:

Lemma 4. Let p be an odd prime and for j = 0, p� 1, let fj be a complex number.
If gi =

Pp�1
j=0 fj⇣ij then fj = 1

p

Pp�1
i=0 gi⇣�ij.

Proof. This is a simple calculation:

p�1X

i=0

gi⇣
�ij =

p�1X

i=0

 
p�1X

k=0

fk⇣ik

!

⇣�ij =
p�1X

k=0

fk

 
p�1X

i=0

⇣i(k�j)

!

= pfj .

We are now ready to apply this to specific units.

Proposition 1. For any prime p � 5 we have

p�1X

k=1

1
k

✓
2k
k

◆
⌘ 0 mod p2.

Proof. Consider the element ⇣ � 1 + ⇣�1 = 1 + ⇣�1(1� ⇣)2, so that in this case we
have ↵ = �⇣�1(1� ⇣)2. Note that for p > 3 we have

⇣(⇣ � 1 + ⇣�1)(⇣ + 1) = ⇣3 + 1 =
1� ⇣6

1� ⇣3
,
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so 1� ↵ is indeed a unit. We will calculate the trace of ↵k. We know

(1� ⇣i)2k =
1X

r=�1

✓
2k
r

◆
(�1)r⇣ir =

p�1X

j=0

0

@
X

r⌘j mod p

(�1)r

✓
2k
r

◆1

A ⇣ij .

Now we can apply Lemma 4 with gi = (1� ⇣i)2k to get

X

r⌘j mod p

(�1)r

✓
2k
r

◆
=

1
p

p�1X

i=1

(1� ⇣i)2k⇣�ij =
1
p
Tr(⇣�j(1� ⇣)2k).

In particular we have

Tr(↵k) = p
X

r⌘k mod p

(�1)k+r

✓
2k
r

◆
,

and for 0 < k < p this means

Tr(↵k) = p

✓
2k
k

◆
.

Because ⌫⇡(↵) = 2, (15) immediately gives us that

p
p�1X

k=1

1
k

✓
2k
k

◆
=

p�1X

k=1

1
k

Tr(↵k) ⌘ 0 mod p2.

We can easily get the result modulo p2 by using the fact that, for k > p, one has
⌫⇡(↵k

k ) � 2(p + 1), and thus 1
kTr(↵k) ⌘ 0 mod p3. This means that we have

p�1X

k=1

1
k

Tr(↵k) ⌘ �1
p
Tr(↵p) = �

X

r⌘0 mod p

(�1)p+r

✓
2p
r

◆

= �
✓✓

2p
p

◆
� 2
◆
⌘ 0 mod p3,

by Wolstenholme’s theorem.

Remark 3. These trace calculations can be used to find some identities on their
own. For example we can write ↵ = �⇣(1 � ⇣)2 from Proposition 1 also as ↵ =
(1� ⇣)(1� ⇣�1). Doing the trace calculation in the second form we get

Tr(↵k) = p
X

r⌘s mod p

(�1)r+s

✓
k

r

◆✓
k

s

◆
.

If k < p the only solution for r ⌘ s mod p is r = s. Combining this with the
expression we found for Tr(↵k) in Proposition 1 we find

✓
2k
k

◆
=

kX

r=0

✓
k

r

◆2

(which is also an easy consequence of Vandermonde’s identity).
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Remark 4. In [8] the author shows via a di↵erent method that in fact we have

p�1X

k=1

1
k

✓
2k
k

◆
⌘ �8

3
Hp�1 ⌘ �

2
3

✓✓
2p
p

◆
� 2
◆

mod p4.

So far we have been using the fact that the norm of a unit is equal to 1, so it
was not necessary to calculate norms. If the element we are dealing with is not a
unit, we can sometimes still calculate the norm in terms of recurrence sequences.

Lemma 5. Let a, b, c 2 Q such that a(b + c + 1) 6= 0. Define a recurrence sequence
(Gk)k2N by G0 = 2

b+c+1 , G1 = �b
b+c+1 and

Gk+2 = � b

a
Gk+1 �

c

a
Gk.

Then we have:
N(a⇣2 + b⇣ + c) = ap�1(cp + 1�Gp).

Proof. We define ! = �b+
p

b2�4ac
2a and ! = �b�

p
b2�4ac
2a so that we have ax2 + bx +

c = a(x� !)(x� !), !! = c and ! + ! = �b. Then we see:

N(a⇣2 + b⇣ + c) =
p�1Y

j=1

�
a⇣2j + b⇣j + c

�

= ap�1
p�1Y

j=1

(⇣j � !)(⇣j � !)

= ap�1 !p � 1
! � 1

!p � 1
! � 1

= ap�1 !p!p � !p � !p + 1
!! � ! � ! + 1

= ap�1 cp + 1� (!p + !p)
c + b + 1

.

Finally notice that the numbers !p+!p

c+b+1 give exactly the recurrence sequence we
defined.

As an application of this we have the following theorem.

Theorem 6. Let p be an odd prime and let Lp be the p-th Lucas number, i.e.
L0 = 2, L1 = 1 and Lk+2 = Lk+1 + Lk. Then we have:

p�1X

k=1

(�1)k�1 1
k

✓
2k
k

◆
⌘

(1� L2
p)(L2

p � 3)
2p

mod p2.
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Proof. Again let ↵ = �⇣�1(1 � ⇣)2 as in the previous proposition. Then 1 + ↵ =
3� ⇣ � ⇣�1. Note that we have

(⇣2 � ⇣ � 1)(⇣�2 � ⇣�1 � 1) = 3� ⇣2 � ⇣�2

and therefore N(1 + ↵) = N(⇣2 � ⇣ � 1)2. By using Lemma 5 we see that N(⇣2 �
⇣ � 1) = Lp. So N(1 + ↵) = L2

p and we can use this to calculate log(N(1 + ↵)). We
find:

log(N(1 + ↵)) ⌘ N(1 + ↵)� 1� 1
2

(N(1 + ↵)� 1)2

⌘ L2
p � 1� 1

2
�
L2

p � 1
�2

⌘
(1� L2

p)(L2
p � 3)

2
mod p3.

On the other hand, in the previous proposition we saw that Tr(↵)k ⌘ 0 mod p3

for k � p, and thus (12) tells us that

log(N(1 + ↵)) ⌘
p�1X

k=1

(�1)k�1 1
k

Tr(↵k) ⌘ p
p�1X

k=1

(�1)k�1 1
k

✓
2k
k

◆
mod p3.

Together these give the desired result.

Remark 5. In the article [7], the authors show that
p�1X

k=1

(�1)k�1 1
k

✓
2k
k

◆
⌘ 5

Fp�( p
5 )

p
mod p.

Here Fk is the k-th Fibonacci number. Using the fact Fp�( p
5 ) ⌘ L2

p � 1 mod p it
is easy to see that Theorem 6 reduces to this result modulo p.

A prime p for which Fp�( p
5 ) ⌘ 0 mod p2 is called a Wall-Sun-Sun prime. It has

been shown that if the first case of Fermat’s last theorem fails, then p must be a
Wall-Sun-Sun prime. It is interesting to compare this with the case of Wolstenholme
primes. It has been shown that if the first case of Fermat’s last theorem fails, then
p must divide the Bernoulli number Bp�3 which happens if and only if

�2p�1
p�1

�
⌘ 1

mod p4.

Now we apply our results to a di↵erent element ↵. The result we obtain is
concerned with the following sequence. For k � 0, define

ak :=
kX

s=0

✓
k

s

◆✓
k

2k � 3s

◆
.

This is sequence A092765 of the OEIS [6], starting with

1, 0, 4, 6, 36, 100, 430, 1470, 5796, . . .



INTEGERS: 20 (2020) 14

Proposition 2. For a prime p � 7 we have

(p�1)/2X

k=1

(�1)k ak

k
⌘ 0 mod p.

Proof. Consider the element ↵ = �⇣2 + ⇣ + ⇣�1� ⇣�2 = �⇣�2(1� ⇣)(1� ⇣3). Then

1� ↵ = ⇣2 � ⇣ + 1� ⇣�1 + ⇣�2 = ⇣�2 1 + ⇣5

1 + ⇣

is indeed a unit. To calculate the trace we use the same trick as in the previous
example:

(1� ⇣i)k(1� ⇣3i)k =

 1X

r=�1

✓
k

r

◆
(�1)r⇣ir

! 1X

s=�1

✓
k

s

◆
(�1)s⇣3is

!

=
1X

r,s=�1
(�1)r+s

✓
k

r

◆✓
k

s

◆
⇣i(3s+r)

=
p�1X

j=0

0

@
X

3s+r⌘j mod p

(�1)r+s

✓
k

r

◆✓
k

s

◆1

A ⇣ij .

By Lemma 4 we get

X

3s+r⌘j mod p

(�1)r+s

✓
k

r

◆✓
k

s

◆
=

1
p

p�1X

i=1

(1� ⇣i)k(1� ⇣3i)k⇣�ij

=
1
p
Tr(⇣�j(1� ⇣)k(1� ⇣3)k).

Because ⌫⇡(↵) = 2 we know that ⌫⇡

�
1
kTr(↵k)

�
> p � 1 for k > p�1

2 , and thus
⌫⇡

�
1
kTr(↵k)

�
> 1. Now Theorem 5 tells us that

(p�1)/2X

k=1

1
k

Tr(↵k) ⌘ 0 mod p2.

For 0  k  p�1
2 and 0  r, s  k, the only solution to 3s + r ⌘ 2k mod p is

r = 2k � 3s. Thus we find

0 ⌘
(p�1)/2X

k=1

1
k

Tr(↵k) ⌘ p

(p�1)/2X

k=1

1
k

0

@
X

3s+r⌘2k mod p

(�1)k+r+s

✓
k

r

◆✓
k

s

◆1

A

⌘ p

(p�1)/2X

k=1

(�1)k

k

 
kX

s=0

✓
k

s

◆✓
k

2k � 3s

◆!

mod p2.
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The previous results were all obtained by starting with an element of the cyclo-
tomic field, calculating its norm and trace, and then using the logarithm to obtain
a congruence. Clearly one can get many more results in this way. However, a more
interesting problem is the inverse problem. Suppose there is a congruence one would
like to prove, is there a corresponding cyclotomic element that does the trick? Also
it would be interesting to see if there are other, known identities that can be proved
or improved using the logarithmic method.
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