#A49 INTEGERS 20 (2020)

A REMARK ON PERIODS OF PERIODIC SEQUENCES
MODULO m

Shoji Yokura
Graduate School of Science and Engineering, Kagoshima University,
Kagoshima, Japan
yokura@sci.kagoshima-u.ac. jp

Received: 10/12/19, Accepted: 6/13/20, Published: 6/18/20

Abstract
Let {G,} be a periodic sequence of integers modulo m and let {SG,,} be the partial
sum sequence defined by SG,, := Y ;_, Gy (mod m). We give a formula for the
period of {SG,}. We also show that for a generalized Fibonacci sequence F'(a, b),,
such that F'(a,b)g = a and F(a,b); = b, we have

) - +1 n-+1
TP (a,b)y = ST (4, b)pas — [ _
S*F(a,b) S (a,b)nr2 (z _2>a <z _ 1)b

where S?F(a, b),, is the i-th partial sum sequence successively defined by S*F(a, b),, :=
> oS F(a,b)k. This is a generalized version of the well-known formula

ZFk =Fho—1
k=0

of the Fibonacci sequence F,.

1. Introduction

We denote a sequence {a,} simply by a,, without brackets, unless some confusion
is possible. Given a sequence a,,, its partial sum sequence Sa,, is defined by

n
Sa, = E ar.
k=0

The Fibonacci sequence {F,} is defined by Fy = 0,F4 = 1,F, = F,_1 +
Fn,Q (’ﬂ Z 2)1 :

0,1,1,2,3,5,8,13,21,34, 55,89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, . . ..

1Sometimes the Fibonacci sequence is defined to start at n = 1 instead of at n = 0, namely,
defined by Fy = Fo =1 and F,, = Fy,—1 + Fr—2 (n > 3), e.g., see [1, Example 4.27].
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It is well-known (e.g., see [3, 6, 7, 8, 9]) that, for any integer m > 2, the Fibonacci
sequence F;, modulo m is a periodic sequence. For example, for m = 2 and m = 6,
the Fibonacci sequences F,, modulo 2 and 6, and the partial sum sequences SF,,
modulo 2 and 6 are the following:

F,:011 011 011 O11,-+----
N

SF, : 010 010 010 010,,------
N~

The periods of F,, modulo 2 and SF,, modulo 2 are the same number, 3, and also
the periods of F;,, modulo 6 and SF,, modulo 6 are the same number, 24. In fact,
this holds for any integer m > 2, as we will see. Furthermore, if we consider
S?F, := S(SF,) (which will be discussed in Section 4), then the period of S%F, is
not necessarily the same as that of F,.

Now, let us consider the following same periodic sequence G, modulo m =
2,3,4,5,6,7,8 (its period is 3):

Gp:011 011 011 ------
=N
Then its partial sum sequence SG,, becomes as follows:
1. m=2:5G,: 010 010 010 010 ---; periodis 3 =3 x 1
S

2. m=3:5G, :012201120012201120012201120012201120- - - ; period is 9 =
3 x 3.

3. m=4:5G, :012230012230012230012230 - - - ; period is 6 = 3 x 2.
S——

4. m=5:5G, :012234401123340012234401123340 - - - ; period is 15 = 3 x 5.

5. m==6:5G, : 012234450 012234450 012234450 - - - ; period is 9 = 3 x 3.

6. m=7:5G, :012234456601123345560 - - - ; period is 21 =3 x 7.

7. m=28:5G, 012234456670 012234456670 - - - ; period is 12 = 3 x 4.

In this note, given any periodic sequence G,, modulo m (not necessarily the Fi-
bonacci sequence modulo m), we give a formula of the period of the partial sum
sequence SG, in terms of the period of the original sequence G,,.
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Theorem 1. Let p be the period of a periodic sequence G,, modulo m. Then the
period of the partial sum sequence SG,, modulo m is equal to

p X ord(SGp_l mod m),

where ord(x) denotes the order of an element x of Z,,. In particular, if m is a
prime, then the period of the partial sum sequence SG,, modulo m is equal to

P if SGp—1 =0 mod m,
pxm if SGp,—1 #0 mod m.

For example, in the above examples, SG2 modm is equal to 2 for each m, and
the order ord(SG,_1 modm) is as follows:

1. m=2 ord(SG2 mod2) = 1.
2. m=3; ord(SGg mod 3) = 3.
d
d

ord(
ord(

5. m = 6; ord(SG2mod 6) = 3.
ord(
ord(SGamod 8) = 4.

2. General Fibonacci Sequence F'(a,b),, Modulo m

In this section we observe that the Fibonacci sequence F;,, modulo m and its partial
sum sequence SF, modulo m have the same period.

Definition 1. A sequence F), satisfying

Fn:Fn—1+ﬁn—2 (n22)
is called a general Fibonacci sequence.

For such a general Fibonacci sequence Fn, 130 =aand I} = b can be any integers.
Therefore, we denote such a general Fibonacci sequence F,, by F (a,b)n. In [4] it
is denoted by G(a,b,n), and the sequence F'(2,1),, is the Lucas sequence and is
denoted by L,,.

For a positive integer m > 2, a general Fibonacci sequence modulo m is defined
as follows.
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Definition 2. Let a,b € Z,, = {0,1,2,---m — 1}. The sequence F), is defined by
° ﬁo =a, ﬁl =10
° ﬁn = ﬁn_l + ﬁn_g mod m for all n > 2.

Such a sequence modulo m may be denoted by F(a,b), (mod m), but to avoid

messy notation, we use the same symbol F'(a,b),. The following periodicity of a
general Fibonacci sequence modulo m is well-known (e.g., see [6, 7, 8, 9].)

Theorem 2. For any integer m > 2, a general Fibonacci sequence F(a,b),, modulo
m is a periodic sequence.

The period of a general Fibonacci sequence F(a,b),, modulo m shall be denoted
by II(F(a,b),, m). For the Fibonacci sequence F,, modulo m, the period II(F,,, m)
is called the Pisano® period of m and is denoted by 7(m). For some interesting
results of the Pisano period 7(m), see, e.g., [6]. For example, one can see a list of
the periods m(m) for 2 < m < 2001; for instance,

m(10) = 60, 7(25) = 100, 7(98) = 336, 7(250) = 1500, 7(500) = 1500,
m(625) = 2500, 7(750) = 3000, 7(987) = 32, w(1250) = 7500,
m(1991) = 90, 7(2000) = 3000, 7 (2001) = 336.
As to relations between m(m) and m, the following are known.
Theorem 3 (Freyd and Brown [2]). The following hold:
1. w(m) < 6m with equality if and only if m =2 x 5¥(k =1,2,3,---).
2. For the Lucas number Ly, II(L,,m) < 4m with equality if and only if m = 6.

Given a sequence a,, the partial sum sequence b,, defined by b, := ZZ:O ak
shall be called the first derived sequence, instead of “partial sum sequence”. The
first derived sequence of a general Fibonacci sequence F'(a, b),, shall be denoted by
SF(a,b)n :=> p_o F(a,b)y.

Lemma 1. For a general Fibonacci sequence F(a,b), the following holds:
SF(a,b), = F(a,b)p+2 — . (3)
Proof. We have SF(a,b)o = F(a,b)o = F(a,b)2 — F(a,b)1 = F(a,b)2 — b. So, we
suppose that SF(a,b), = F(a,b),+2 —b. Then
SF(a,b)pnt1 = SF(a,b), + F(a,b)ni1

= F(a,b)n12 — b+ F(a,b)ni1

= F(CL, b)n+2 + F(a, b)n+1 —-b

= F(a,b)p13—0b

= F(a, b)(n+1)+2 —b.

2Pisano is another name for Fibonacci (cf. Wikipedia [10]).
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O

Equation (3) is a generalized version of the following well-known formula of the
Fibonacci sequence [5]:

> Fp=Fua—1.
k=0

From Equation (3), we get the following

Corollary 1. For any positive integer m > 2, a general Fibonacci sequence F(a,b),
modulo m and its first derived Fibonacci sequence SF(a,b), modulo m have the
same period:

II(F(a,b)n,m) =(SF(a,b),,m).

Lemma 2. IfII(F(a,b),, m) = p, then we have

p—1
SF(a,b)p—1 = ZF(cc,b);C =0 modm. (4)
k=0

Proof. There are two ways to prove this.

(I) It follows from Lemma 1 that SF(a,b),—1 = F(a,b)p+1 — b. Since the period
of the general Fibonacci sequence F'(a,b), modulo m is p, we have F'(a,b)p+1 =
F(a,b);. Hence,

SF(CL, b)p,1 = F(CL, b)p+1 —b
= F(a,b); —b=0 modm.

(II) By Corollary 1 II(SF(a,b),, m) = p. Hence, SF(a,b)o = SF(a,b),, namely,

p p—1
F(a,b)o =Y F(a,b)k = > F(a,b) + F(a,b),.
k=0 k=0

Since F(a,b)o = F(a,b), mod m, we get
p—1

SF,_1 = ZF(a,b)k =0 mod m.
k=0

Indeed, in the following examples we do see the above mod formula (4).

Example 5. For the Fibonacci sequence F,, modulo m
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2. m=3: w(3) =8. 01120221 01120221 01120221 01120221 - - - - - -
—_—

3. m=4: w(4) =6. 011231011231011231011231------
S——

4. m=5: w(5) = 20. 0112303314044320224101123033140443202241 - - - - - -

5. m=6: m(6) = 24. 011235213415055431453251 011235213415055431453251 - - -

6. m =T 7(7) = 16. 01123516066542610112351606654261 0112351606654261 - - -

7. m=8: m(8) =12. 011235055271 011235055271 011235055271 011235055271 - - -

3. Periods of Periodic Sequences Modulo m

The first derived sequence SF'(a,b),, modulo m of a general Fibonacci sequence
F(a,b) modulo m is periodic and has the same period as that of the general Fi-
bonacci sequence F'(a,b) modulo m. As seen in the introduction, it is not the case
for an arbitrary periodic sequence modulo m. So, in this section we consider periods
of the first derived sequence of a periodic sequence modulo m.

Proposition 1. Let G, be a periodic sequence modulo m with period p. If SGp,_1 =
0 modm, then for any n we have SG,, = SG,4p, modm.

Proof. The period of G, is p, thus Gy = G,. Since SGy = Gg, we have SGy =
G, modm. Since SG,_1 = Y¥_1 Gy = 0 mod m,

SGo = SGp—1 + Gp = SG, modm.
So, suppose that for n we have SG,, = SG,,4p. Then

SGp41 = SG, + Gy modm
= SGpn4p + Gni14p modm (since Gp11 = Gpi14p modm)

= 5Gp414p modm.
Hence, by induction, we get the statement of the proposition. O

Here it should be noticed that from Proposition 1 one cannot automatically claim
that the period of the first derived sequence SG,, modulo m is p; one can claim only
that the period of SG,, is a divisor of the period of the original sequence G.,:

II(SG,m) |II(G,, m).

In fact, we can show
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Theorem 4. Let G,, be a periodic sequence modulo m with period p. If SGp_1 =
0 mod m, then II(SG,,m) = II(G,, m).

Proof. Suppose that II(SG,,,m) # II(G,, m), namely II(SG,,, m) is a proper divisor
of p =1I(G,, m). Let d =TI(SG,,,m) < p and d|p. Thus, we have that for alln > 0

SG, = SG,1q mod m. (6)
We have that SGy = SG4 mod m implies G; + -+ - + G4 =0 mod m, thus
G =—(Ga+ -+ Gy) mod m.
Now, SG1 = SG14q mod m implies Go + -+ - + G4 + G114 = 0 mod m, thus
Gi4a=—(Ga+ -+ Gq) mod m.

Therefore we get
G1 = G144 mod m.

Let p = d X pg. Continuing this procedure, we get the following congruences:

o G1 =G144=Gry2d = Giy(po—1)a mod m.
o Gy =Gotqg =Gaqaqg- = G2+(p0—1)d mod m.
® G3=Gs4a = Gsy2a- = G (pp—1)a mod m.
o Gy_1 =Gaq-1 =G34-1-+- = Gpya—1 mod m.
0 Gg=Gry=G3g=-=Gpyqg =G, mod m.
Since Gy = G, mod m, the final congruences Gy = Gag = G3q¢ = -+ = Gpyqa =

G, mod m become
¢ Go=G3=G2q=G3g=---=G, mod m.
Hence II(G,, m) = d < p, which contradicts the fact that II(G,, m) = p. O

As in the proof (II) of Lemma 2, if II(G,,, m) = II(SG,,m) = p, then we have
SGp—1 =0 mod m. Therefore we get the following

Corollary 2. Let G, be a periodic sequence modulo m with period p. Then we have
SGp—1 =0 mod m if and only if II(SG,, m) = II(Gp, m).

Next, we consider the case when SGp—1 # 0 modm.
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Theorem 5. Let G,, be a periodic sequence modulo m with period p. If SGp_1 #
0 mod m, then
II(SG,,m) = s x (G, m),

where s is the order of SG,_1(mod m) in Zy,, i.e., s is the smallest non-zero integer
such that
s x 8Gp—1 =0 mod m.

Proof. First we observe that for all i > 2
SGip—1 = SG(i—1)p—1 + SGp—1 mod m
from which we obtain that for all ¢ > 1
SGip—1 =i x SG,—1 mod m

Indeed, the first p-tuple is {SGo, SG1,--- ,SGp_1} and the second p-tuple is
{8G,,SGp11,- -+ ,SGop_1}, which is, modulo m, the same as

{8Gp_1+ SGo,SGp—1 +SG1,--- ,8G,_1 + SGp_1}.

Hence, SGop—1 = SGp—1 + SGp—1 mod m, thus we get

SGop_1 =2 x SGp_1 mod m. (7)
The third p-tuple {SGap, SGop+1,- -, SGsp—1} is, modulo m, the same as

{8Gap_1+ SGo, SGop_1 + SG1, -+ ,8Gop_1 + SGp_1}.

Hence, SG3,—1 = SGap—1 + SGp_1, thus from Equation (7) we get

SGsp—1 =3 x SGp—1 mod m.
Now, let us suppose that

SGjp—1 =Jj x SGp—1 mod m. (8)

We see that the (j 4 1)-th p-tuple {SG},, SGjpi1,---,SG(j41)p—1} is, modulo m,
the same as

{8Gjp—1+ S8Go,SGjp—1+ SG1, -+ ,5Gjp—1 + SGp_1}.
Hence, SG(j41)p—1 = SGjp—1+SG,-1 mod m, and thus from Equation (8) we get
SG(j+1)p—1 = (j +1) x SGp—1 mod m..
Hence, by induction, we have that for all i > 1

SGip—1 =1 x SGp—1 mod m.
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Since s x SGp—1 =0 mod m, we have

ps—1

SGps—1 = Z Gr =0 mod m.
k=0

As in the proof of Proposition 1, we see that for any n
SG,, = SGpyps mod m.

Hence the period of SG,, is a divisor of ps. Suppose that such a divisor is a proper
one, denoted by 6. Then, as in the proof of Theorem 4, we have

Gp = Gpis mod m.

Since the period of G, is p, 6 has to be a multiple of p, thus § = wp for some non-
zero integer w. Since d = wp is a proper divisor of ps, w is a proper divisor of s, in
particular w < s. Then, as in the proof (II) of Lemma 2, SG,, = GSp+y,p mod m

implies that
wp—1

GSup—1 = Z G =0 mod m.
k=0

In other words
wx SGp—1 =0 mod m.

This contradicts the fact that s is the smallest non-zero integer such that s x
SGp—1 =0 mod m. Hence the period ¢ of SG,, has to be exactly ps, i.e.,

II(SGp,m) = s x II(Gy, m).

Therefore we get the following theorem:

Theorem 6. Let p be the period of a periodic sequence G,, modulo m. Then the
period of the partial sum sequence SG,, modulo m is equal to

ord(SGp—1 modm) x p,

where ord(x) denotes the order of an element x of Z,.
In particular, if m is a prime, then the period of the partial sum sequence SG,
modulo m s equal to

P if SGp—1 =0 mod m,
mxp if SGp,—1 #0 mod m.
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We note that for an element n € Z,,, the order ord(n) of the element n is given
by
LCM
ord(n) = LCM(n, m)
n

where LCM(n,m) is the least common multiple of n and m.

Example 9. Let us consider the following periodic sequence G, in Z,, with m =
15, 30, 36
Gy, : 20190823 20190823 20190823 - - - - - - .
—_—

Then II(G,,, m) = 8 for any m and we have that 2+0+1+9+0+8+2+ 3 = 25.
1

=

SG,15) = 8 x KM _ gy 15 g 3= 24.

(
(SG,,30) = 8 x LEME30) _ g 150 _ g5 § = 48,
(

)
=

3. TI(SG,,36) = 8 x LOMZ836) _ g 2536 _ g 36 = 288.

4. Higher Derived General Fibonacci Sequences S*F(a,b),

Given a sequence A, for a non-negative integer i we define the i-th derived sequence
inductively as follows:
n
SiAn =) ST A, i>1
k=0

where S04, .= A,,.

Thus for a general Fibonacci sequence F'(a, b),,, we can consider the i-th derived
sequence SF(a,b),. By tedious computation we can show the following formulas,
which are further extensions of Lemma 1.

Proposition 2. For all integers a,b and n > 0, the following formulas hold.
1. S?F(a,b), = SF(a,b)n+2 —a— (n+ 2)b.
(n+2)(n+3)

2. $°F(a,b)n = S*F(a,b)ns2 — (n+ 3)a — 5 0
3. S*F(a,b), = S®F(a,b)nya — (n+ 3)2(n + 4)a ~(n+ 2)(721 j(— g)(n +4) b.

These formulas are re-expressed as follows:

S2F(a,b)n = SF(a,b)nis — (” 3 2)@ _ (" 71L 2>b

n+2 n+2
= SF(a,b)pi2 — (22)a— (2 1)1).
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SF(a,b)n = S2F(a,b)y2 — (" N 3)a - (” : 3)b
+3 n—+3
— S2F — (" - .
S7F(a,b)p+2 (32>a <31>b
4 4
S*F(a,b)n = SPF(a,b)nis — ("‘; >a _ (”‘; >b
n—+

So, by these re-expressions, it is natural to think that the following general formula
would hold and it turns out that it is the case, i.e., we have the following result.

Theorem 7. Fori > 1 we have

SF(a,b)n = S F(a,b)nso — (7;:’21)@ - (?jf) b. (10)

When i = 1 we set (?f;) = (”_*11) =0.

Proof. The proof is by induction. Since the formula is already proved in the cases
when i = 1,2, 3,4 as above, we suppose that the above formula (10) holds for ¢ = j:

j _ qi-1 _(n+g\  (nt+]
STF(a,b), = S" " F(a,b)n42 (jZ)a (jl)b (11)

and we show the formula for ¢ = j 4 1:

; . )+ 1 )+ 1
STHLE(a,b) = STF(a, )y — <” jf? )a _ (”*j + )b. (12)

First we have
SITLE(a,b),,

S9F(a,b), (by the definition of ST F(a,b), )

{Si—lj_l«“(a,b)k+2 - (k +j>a - (k +j>b} (by Equation (11))

[
[M]=

=~
Il
<

kz:% i—2 J—1
:ZSj’lF(a,b)k.i.z*Z (fj;)az (jji)b
P =0 k=0
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n+2 )
= (Z ST F(a,b), — S771F(a,b)o — S 1 F(a, b)1>

k=0
20200
o M 2 par Uil
— STF(a,b)nys — ST F(a,b)o — S F(a, b)) — kznjo (kfé a— zn: (k +j)b.
Here we observe that for all j > 1 we have S7~!F(a,b)o = a, which is obvious, and
SI7 F(a,b); = (j — )a +b. (13)

Equation (13) can be seen by induction as follows. If j = 1, then S7='F(a,b); =
S°F(a,b); = F(a,b); = b. So, suppose that S7='F(a,b); = (j — 1)a + b holds and
we show that S7F(a,b); = ja + b. Indeed,

SIF(a.b); = ST F(a,b)o + ST F(a,b); (by the definition of S7 F(a.b))
=a+(j—1)a+b (by the above)
= ja +b.

Hence we have

SITLE (a,b),,
= S7F(a,b)nt2 —a—{(j —1a+b} — Z (H‘;) kz_o (ljfi)

= 87 F(a,b)nt2 — {J+Z(f+;>} {szio< +i>}

We want to show

P05
HEGI)-1)

To show these, we recall the following formula (Pascal’s Rule):

() ()= ()
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Then we have

k=0

)20
— +Z(

(1 P 2+k
(7 J Jj+1 j+2 j+n
()65 ) () G
—_——
_(i+1 j+1 j+2 Jjtmn : ;
_( ) )+( 5 )+ 4 >-|— +<2+n) (using Pascal’s Rule)
(7 +1 j+1 j+2 j+n
(3 )5 ) () =+ (10
(i (P2 | [(i+3 jtmn
(37 (1) (57) -+ G1)

e T I I A (using Pascal’s Rule Step by Step )

Thus we get Equation (14). Similarly, using Pascal’s Rule step by step we get
1 =1
RV M

=)+ () (2057 -+ ()

Thus we get Equation (15).

13
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Example 16. For each case of the above Example 5

1. In the case when m = 2:
F,:
SF, :

011 011 011 011
=S =

010 010 010 010 010

NN N

S%F, : 01110001110001110001110Q - - - - - -
e N N N

S3F, : 010111101000010111101000010111101000010111101000 - - - - - -

S4F, : 011010110000011010110000011010110000011010110000 - - - - - -

2. In the case when m = 3:

F, : 01120221011202210112022101120221 - - - - -
—_—
SF,: 01211020012110200121102001211020 - - - - - -
—_—
S?F, : 010122111212002220201100010122111212002220201100- - - - - -

S3F, : 011210120202221022112000011210120202221022112000 - - - - - -

S4F, : 0121220221102122101211111202001002210200212022222201011211002101102010000- - -

From Theorem 6 we get the following.

Theorem 8. We let p; = H(SiF(a,b)n,m) with pg = H(F(a,b)n,m). Then we

have
H(S”lF(a7 b)n, m) = ord(SiF(a, b)p,—1 mod m) X H(SiF(a, b)n, m).
In particular, if m is a prime, we have

H(SiF(a,b)n,m) if S'F(a,b)y,—1 =0 mod m,

H(Si“F(a,b)n,m) = , .
m X H(SZF(a, b)n,m) if S*F(a,b)p,—1 0 mod m.
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