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Abstract
In this work, we investigate the fewest number of colors needed to guarantee a

rainbow solution to the equation x1 + x2 = kx3 in Zn. This value is called the
rainbow number and is denoted by rb(Zn, k) for positive integer values of n and
k. We find that rb(Zp, 1) = 4 for all primes greater than 3 and that rb(Zn, 1) can
be determined from the prime factorization of n. Furthermore, when k is prime,
rb(Zn, k) can be determined from the prime factorization of n.
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1. Introduction

Let Zn be the cyclic group of order n, and let an r-coloring of Zn be a function
c : Zn ! [r] where [r] := {1, ..., r}. In this paper, we assume that each r-coloring is
exact (surjective). Given an exact r-coloring, we define r color classes Ci = {x 2
Zn | c(x) = i} for 1  i  r. Occasionally, when convenient, we will use R, G,
B, and Y to denote the colors or the color classes red, green, blue, and yellow,
respectively. Furthermore, we will use im(c) to denote the set of colors used by c.

Fix an integer k. Let a triple (x1, x2, x3) be any three elements in Zn which
are a solution to x1 + x2 ⌘ kx3 mod n. When k = 1, we will call these triples
Schur triples. Such a triple is called a rainbow triple under a coloring c when
c(x1) 6= c(x2), c(x1) 6= c(x3), and c(x2) 6= c(x3). Consequently, a coloring will be
called rainbow-free when there does not exist a rainbow triple in Zn under c.

The rainbow number of Zn given x1+x2 = kx3, denoted rb(Zn, k), is the smallest
positive integer r such that any r-coloring of Zn admits a rainbow triple. By
convention, if such an integer does not exist, we set rb(Zn, k) = n + 1. A maximum
coloring is a rainbow-free r-coloring of Zn where r = rb(Zn, k)� 1.

For a coloring c of Zst, the ith residue class modulo t is the set of all the elements
in Zst which are congruent to i mod t. Denote each residue class as Ri = {j 2
Zst|j ⌘ i mod t}. We say the ith residue palette modulo t is the set of colors which
appear in the ith residue class, and we will denote each palette as Pi = {c(j)|j ⌘ i
mod t}.

Rainbow numbers for the equation x1 + x2 = 2x3, for which the solutions are
3-term arithmetic progressions, have been studied in [1], [2], [3], and [5]. These
problems are historically rooted in Roth’s Theorem, Szemerédi’s Theorem, and van
der Waerden’s Theorem. The first half of our paper explores the rainbow numbers
of Zn given the Schur equation, x1 + x2 = x3. We rely on the work of Llano and
Montenjano in [4], Jungić et al. in [3], and Butler et al. in [2] to prove exact values
for rb(Zn, 1) in terms of the prime factorization of n. Our results are an extension
to the results in [1], [3], and [5].

The motivation for our results is captured in the idea that the rainbow number
of Zn given x1 + x2 = kx3 to the prime factors of n. Theorems 1 and 2 confirm
that rainbow numbers of depend on the prime factorization.

Theorem 1. For a prime p � 5, rb(Zp, 1) = 4.

Remark 1. It can be deduced through inspection that rb(Z2, 1) = rb(Z3, 1) = 3.

Theorem 1 gives exact values for rb(Zp, 1) where p is prime. Therefore, Theorems
1 and 2 give exact values for rb(Zn, 1). The proof for Theorem 2 is at the end of
Section 2.3.
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Theorem 2. For a positive integer n with prime factorization n = p↵1
1 ·p↵2

2 · · · p↵m
m ,

rb(Zn, 1) = 2 +
mX

i=1

⇣
↵i(rb(Zpi , 1)� 2)

⌘
.

We continue by considering the equation x1 + x2 = px3 for any prime p. Many
of the techniques for the k = 1 case generalize. However, there are complications.
If we let the prime factorization of n be n = p↵ · q↵1

1 · · · q↵m
m , then we can produce a

recursive formula for rb(Zn, p) detailed in Theorem 5. To obtain exact results from
the recursive formula, we need to know the value of rb(Zq, p) for prime p and q.
These values are determined in Theorems 3 and 4.

We would like to note that Theorem 3 resembles Theorem 3.5 in [3]. In essence,
we use the ideas from Theorem 3.5 in [3] to construct a lower bound. The upper
bound is obtained by using structural information from Theorem 2 in [4], which we
restate as Theorem 6.

Theorem 3. Let p, q be distinct and prime. Then rb(Zq, p) = 4 if and only if p, q
do not satisfy either of the following conditions:

1. p generates Z⇤
q,

2. |p| = (q � 1)/2 in Z⇤
q and (q � 1)/2 is odd.

Otherwise, rb(Zq, p) = 3.

Theorem 4. For p � 3 prime and ↵ � 1,

rb(Zp↵ , p) =

8
><

>:

3 p = 3,↵ = 1
4 p = 3,↵ � 2
p+1
2 + 1 p � 5

.

The values for rb(Z2↵ , 2) are resolved in [1]. In conjunction with Theorems 3 and
4, Theorem 5 determines exact values for rb(Zn, p). The proof for Theorem 5 is at
the end of Section 3.4.

Theorem 5. Let n be a positive integer, and let p be prime. Let n have prime
factorization n = p↵ · q↵1

1 · · · q↵m
m . Then

rb(Zn, p) = rb(Zp↵ , p) +
mX

i=1

⇣
↵i(rb(Zqi , p)� 2)

⌘
.

2. Schur Triples

Section 1 is dedicated to proving Theorem 2. In Section 2.1 we introduce the
idea of a dominant color to describe the structural properties of colorings of Zp.
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Additionally, we prove Proposition 1, the Schur triple counterpart of Theorem 3.2
in [3]. We use Proposition 1 to prove Theorem 1, concluding Section 1.1. In
Section 2.2 we show that the lower bound of rb(Zn, 1) can be determined by the
prime factorization of n. The equivalent upper bound is proved in 2.3. Combining
Sections 2.2 and 2.3 proves Theorem 2.

2.1. Schur Triples in Zp, p Prime

Let c be a coloring of Zn. We say a sequence S1, S2, . . . , Sk of colors appears at
position i if c(i) = S1, c(i+1) = S2, . . . , c(i+k�1) = Sk. A sequence is bichromatic
if it contains exactly two colors. A color R is dominant if for S = {c(x) : i  x 
j, i < j}, |S| = 2 implies R 2 S. That is, R appears in every bichromatic string.
Using dominant colors to derive a contradiction is used in [3]. We also use this idea
to describe the structure of rainbow-free colorings of Zp. However, we must show
that a dominant color exists.

Lemma 1. There exists a dominant color in every rainbow-free coloring of Zn.
Furthermore, c(1) is dominant.

Proof. Let c be a rainbow-free coloring of Zn. Note that (1, i, i+1) is a Schur triple
for all i 62 {0, 1}. Since c is rainbow-free, either c(i) = c(i + 1), c(1) = c(i), or
c(1) = c(i + 1). Thus, if c(i) 6= c(i + 1), then c(1) must appear on either i or i + 1.
This implies that c(1) is dominant.

An immediate result from this lemma is that any color which doesn’t appear on
1 must be adjacent to itself or the dominant color. Now we can relate the structure
of our coloring to the presence of a rainbow triple. Without loss of generality, let
c(1) = R be dominant.

Lemma 2. Let c be an r-coloring of Zn with r � 3. If BB and GG appears in c,
then there exists a rainbow Schur triple in c.

Proof. Let c be an r-coloring of Zn with r � 3 such that BB and GG appears in
c. Without loss of generality, assume R is dominant, and c contains BB and GG.
Then, the sequence BBR must appear at some position i and the sequence GGR
must appear at some position j.

Consider the Schur triple (i, j + 2, i + j + 2). Since c(i) = B, and c(j + 2) = R,
then either c contains a rainbow Schur triple, or c(i + j + 2) is R or B. Assume the
second case, and consider the Schur triple (i+2, j, i+j +2). Since c(i+2) = R, and
c(j) = G then either c contains a rainbow Schur triple or c(i + j + 2) is R. Again,
assume the second case, and finally consider the triple (i + 1, j + 1, i + j + 2). Since
c(i + 1) = B, c(j + 1) = G, and c(i + j + 2) = R, this triple is rainbow. Therefore,
c contains a rainbow Schur triple.
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Therefore, if c is a rainbow-free coloring of Zn with R dominant, either GG or
BB can appear in c, but not both. Next we show that there are ways to re-order
colorings while maintaining whether or not Schur triples are rainbow.

Lemma 3. Let c be an r-coloring of Zn. If m is relatively prime to n, then c has
a rainbow Schur triple if and only if ĉ(x) := c(mx) contains a rainbow Schur triple.
Additionally, the cardinality of each color class will be maintained.

Proof. Let (x1, x2, x3) be a triple in c. By definition, x1+x2 = x3 in Zn is equivalent
to

x1 + x2 = sn + r

x3 = tn + r,

as equations in the integers for some s, t 2 Z. Multiply both equations by m to get

mx1 + mx2 = msn + mr

mx3 = mtn + mr

Therefore, mx1 +mx2 ⌘ mr mod n, and mx3 ⌘ mr mod n, so mx1 +mx2 ⌘ mx3

mod n. Thus, (mx1,mx2,mx3) is rainbow in ĉ if and only if (x1, x2, x3) is rainbow
in c.

Finally, the last statement of Lemma 3 follows from the fact that if m is relatively
prime to n, then the map F : x 7! mx is a bijection.

Our next result is the Schur equation counterpart to Theorem 3.2 in [3].

Proposition 1. Let p be prime. Then every 3-coloring c of Zp with
min(|R|, |G|, |B|) > 1 contains a rainbow Schur triple.

Proof. For the sake of contradiction, assume that c is a rainbow-free 3-coloring
of Zp and min(|R|, |G|, |B|) > 1. Without loss of generality, assume that |R| =
min(|R|, |G|, |B|). Since there are at least two elements of Zp colored R, there
exists a minimal element 1  i  p � 1 such that c(i) = R. Because p is prime,
i is relatively prime to p and i has a multiplicative inverse. Let ĉ(x) := c(ix) so
that ĉ(1) = R. Therefore, by Lemma 1, R is dominant in ĉ. By Lemma 2, BB
and GG cannot both appear in ĉ. Without loss of generality, assume that GG does
not appear in ĉ. Because R is dominant, R must follow each G, so |R| � |G|.
Furthermore, BR must appear in ĉ. This implies that |R| � |G| + 1 in ĉ which
implies |R| � |G| + 1 in c by Lemma 3. This contradicts our assumption that
|R| = min(|R|, |G|, |B|).

Lemma 4. If c is a rainbow-free r-coloring of Zp for a prime p with r > 2, then
c(x) = c(�x).
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Proof. Let c be a rainbow-free r-coloring of Zp. For the sake of contradiction,
assume that there exists i,�i with c(i) 6= c(�i). Without loss of generality, let
c(i) = R and c(�i) = G. Now, let ĉ(x) := c(ix) and let c̄(x) := c(�ix). By Lemma
3, ĉ and c̄ are both rainbow-free. Since ĉ(1) = c(i) = R and c̄(1) = c(�i) = G, R is
dominant in ĉ, and G is dominant in c̄. Notice that ĉ(x) = c̄(�x), so if two colors
are adjacent at some position in ĉ, then they are also adjacent at some position in c̄.
Thus, since G is dominant in c̄, G must also appear in every bichromatic sequence
in ĉ, and, consequently, G is also dominant in ĉ. If both R and G are dominant in
ĉ, then ĉ must only contain R and G, and r = 2; this is a contradiction.

Note that this lemma shows that the coloring from 1 to p�1 must be symmetric
in a rainbow-free coloring of Zp.

Remark 2. For any prime p � 5, Zp can be colored with three colors by coloring
zero uniquely and coloring 1 to p� 1 with two colors in any way such that c(x) =
c(�x) for all x. This coloring is rainbow-free since any three group elements which
witness three colors must contain 0, and in order to make a Schur triple of three
distinct elements where one of the elements is 0 the other two elements must be x
and �x for some x (see also Corollary 2 in [4]).

Now we have enough information about the structure of rainbow-free colorings
to prove Theorem 1. A color class C is singleton if |C| = 1.

Proof of Theorem 1. For the sake of contradiction, suppose that r+1 = rb(Zp, 1) >
4 for a prime p � 5, and let c be a rainbow-free r-coloring of Zp with r > 3. Note
that since c is rainbow-free, at least one of the color classes in c must contain more
than one element. Partition the color classes of c into three sets to define ĉ, an
exact 3-coloring of Zp. We use the union of the color classes within each part of
the partition as the color classes for ĉ. Since we are concatenating colors, ĉ is
also rainbow-free. By Proposition 1, regardless of how the color classes of c are
partitioned, there exists some color class in ĉ with exactly one element. If r � 5,
then there exists a partition of the five or more color classes such that each color
class has more than one element. Therefore, r = 4.

Furthermore, if two or more color classes are not singleton, then there would exist
a partition of the color classes that yields no singleton color classes in ĉ. Therefore,
all but one of the four color classes in c must be singleton.

If there are three singleton color classes in c, then there exists an x 6= 0 such that
c(x) 6= c(�x). This contradicts Lemma 4, and c cannot be rainbow-free.

Thus, there does not exist an exact rainbow-free r-coloring of Zp for r > 3 and
p � 5.
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2.2. Lower Bound

In order to prove the lower bound for rb(Zn, 1), we examine the relationship between
Schur triples in Zn and Z n

m
where m divides n.

Lemma 5. If there exists a Schur triple of the form (x1, x2, x3) in Zn where
m|x1, x2, x3 for some m|n, m,n 2 Z, then there exists a Schur triple of the form
(x1/m, x2/m, x3/m) in Z n

m
.

Proof. By definition, x1 + x2 = x3 in Zn implies that in the integers

x1 + x2 = qn + r

x3 = tn + r,

for some q, t 2 Z. Divide both equations by m to get

x1

m
+

x2

m
= q

n

m
+

r

m
x3

m
= t

n

m
+

r

m
.

Now we must check that r
m is an integer. Since m|(x1 + x2 � qn), we know m|r.

By definition, this means that there exists a Schur triple of the form
(x1/m, x2/m, x3/m) in Z n

m
.

This shows that Schur triples can be “projected” from the cyclic group Zn to a
subgroup Z n

m
. Next, we will show another property of Schur triples related to the

divisibility of a triple’s elements by a prime.

Lemma 6. For a positive integer n and a prime p, if x1 + x2 ⌘ x3 mod np, then
p cannot divide exactly two of (x1, x2, x3).

Proof. If x1 + x2 ⌘ x3 mod np, then there exist integers c1, c2, and r0 such that
x1 + x2 = c1np + r0 and x3 = c2np + r0.

Assume that p divides x1 and x2. Then there exist integers c3 and c4 such that
x1 = c3p and x2 = c4p. We know there exist integers c5 and r1 with 0  r1 < p
such that x3 = c5p + r1, so we want to show r1 = 0. Immediately, we see that
c3p + c4p = c1np + r0 and c5p + r1 = c2np + r0, which, after substituting for r0,
shows us c3p + c4p = c1np + c5p + r1 � c2np. Solving for r1 gives us

r1 = c3p + c4p� c1np� c5p + c2np

= p(c3 + c4 � c1n� c5 + c2n)

This means that p divides r1, forcing r1 = 0. Thus, p divides x3.
Now assume p divides x1 and x3, i.e. there exist integers c6 and c7 such that

x1 = c6p and x3 = c7p. We know there exist integers c8 and r2 with 0  r2 < p
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such that x2 = c8p + r2, so we want to show r2 = 0. Immediately, we see that
c6p + c8p + r2 = c1np + r0 and c7p = c2np + r0, which, after substituting for r0,
shows us c6p + c8p + r2 = c1np + c7p� c2np. Solving for r2 gives us

r2 = c1np + c7p� c2np� c6p� c8p

= p(c1n + c7 � c2n� c6 � c8).

This means that p divides r2, forcing r2 = 0. Thus, p divides x2. By symmetry,
this case is identical to the case where p divides x2 and x3.

Therefore, we can see that if p divides two elements in (x1, x2, x3), then p must
also divide the third.

Lemma 7. Let p, t be positive integers with p prime. If there exists a rainbow-free
r-coloring of Zt, then there exists a rainbow-free r + rb(Zp, 1)� 2-coloring of Zpt.

Proof. Let t, p be positive integers such that p is a prime. Assume ĉ is a rainbow-
free r-coloring of Zt. Then let c be an exact (r + rb(Zp, 1)� 2)-coloring (if p = 2 or
p = 3, then c is an exact (r + 1)-coloring. Otherwise, c is an exact r + 2 coloring)
of Zpt as follows:

c(x) :=

8
><

>:

ĉ(x/p) x ⌘ 0 mod p

r + 1 x ⌘ 1 or p� 1 mod p

r + 2 otherwise
.

Notice that if (x1, x2, x3) is a Schur triple in Zpt, then there are three cases by
Lemma 6: p divides exactly one of (x1, x2, x3), p divides each of (x1, x2, x3), or p
divides none of (x1, x2, x3).

Case 1: The two terms xi, xj where i, j 2 {1, 2, 3} that are not divisible by p are
either additive inverses modulo p or are equal modulo p. Thus, c(xi) = c(xj) and
(x1, x2, x3) does not form a triple.

Case 2: The coloring of each xi is inherited from ĉ. Since ĉ does not admit rainbow
triples, we know that this triple will not be rainbow by Lemma 5.

Case 3: The three integers in the triple will be colored from {r + 1, r + 2}, so the
triple will not be rainbow. In each case, c is a rainbow-free r+rb(Zp, 1)�2-coloring
of Zpt.

Proposition 2. For any positive integer n = p↵1
1 · · · p↵m

m ,

rb(Zn, 1) � 2 +
mX

i=1

⇣
↵i(rb(Zpi , 1)� 2)

⌘
.
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Proof. If n is prime, there is nothing to show. Suppose that the claim holds true
for n where n has N prime factors.

Assume that n = p↵1
1 · · · p↵m

m where ↵1 + · · · + ↵m = N + 1. By the induction
hypothesis, there exists a rainbow-free r-coloring of Zn/p1 where

r = 1 +
mX

i=1

⇣
↵i(rb(Zpi , 1)� 2)

⌘
� rb(Zp1 , 1) + 2.

Therefore, by Lemma 7, there exists a rainbow-free r + rb(Zp1 , 1) � 2 coloring of
Zn. Thus, by induction

rb(Zn, 1) � 2 +
mX

i=1

⇣
↵i(rb(Zpi , 1)� 2)

⌘
.

2.3. Upper Bound

To establish the upper bound for rb(Zn, 1), we consider residue classes and their
corresponding residue palettes under c. Lemma 8 lets us create a well-defined
reduction of a coloring of Zst to a coloring of Zt. We use the coloring described in
Lemma 9 to prove an upper bound for rb(Zst, 1).

Lemma 8. Let R0, R1, . . . , Rt�1 be the residue classes modulo t for Zst, and let
P0, P1, · · · , Pt�1 be the corresponding residue palettes under rainbow-free c. Then
|Pi \ P0|  1 for 1  i  t� 1.

Proof. Assume that |Pi \ P0| � 2. Then Ri must contain at least two elements
which receive colors that do not appear in P0. Without loss of generality, let G and
B denote two colors in Pi \ P0. Then there exists two integers m and n such that
c(mt+ i) = G and c(nt+ i) = B. Consider the Schur triple (mt�nt, nt+ i,mt+ i).
Notice that mt�nt ⌘ 0 mod t, c(mt�nt) 6= G,B. Thus, we have a rainbow triple
under c in Zst, which is a contradiction. Therefore, |Pi\P0|  1 for 1  i  t�1.

Lemma 9. Let s and t be positive integers. Let R0, R1, . . . , Rt�1 be the residue
classes modulo t for Zst with corresponding residue palettes Pi. Suppose c is a
coloring of Zst where |Pi \ P0|  1. Let ĉ be a coloring of Zt given by

ĉ(i) :=

(
Pi \ P0 if |Pi \ P0| = 1
↵ otherwise

where ↵ 62 Pi for 0  i  t. If ĉ contains a rainbow Schur triple, then c contains a
rainbow Schur triple.
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Proof. Suppose (x1, x2, x3) is a rainbow Schur triple in ĉ. Then, at least two of
x1, x2, x3 must receive a color other than ↵. We consider the following two cases.

Case 1: Neither x1 nor x2 receive color ↵.
Without loss of generality, assume that c(x1) = G and C(x2) = B. This implies

that there exist n,m such that c(nt+x1) = G and c(mt+x2) = B. There is a Schur
triple of the form (nt+x1,mt+x2, (n+m)t+(x1 +x2)) in Zst. Since x1 +x2 ⌘ x3

mod t, (n + m)t + (x1 + x2) is in the residue class Rx3 . As ĉ(x3) 6= G,B, we have
G,B /2 Px3 . Therefore, the triple (nt+x1,mt+x2, (n+m)t+(x1 +x2)) is rainbow.

Case 2: One of x1 or x2 is colored ↵.
Without loss of generality, assume that c(x1) = ↵, c(x2) = B, and c(x3) = G.

Then c(nt + x2) = B for some n, and c(mt+ x3) = G for some m. There is a Schur
triple of the form ((m�n)t+(x3�x2), nt+x2,mt+x3) in Zst. Since x1 +x2 ⌘ x3

mod t, (m � n)t + (x3 � x2) is in the residue class Rx1 . As ĉ(x1) = ↵, we have
G,B /2 Px1 . Therefore, the triple ((m�n)t+(x3�x2), nt+x2,mt+x3) is rainbow.

Hence, if ĉ has a rainbow Schur triple, then c has a rainbow Schur triple.

Proposition 3. Let s and t be positive integers. Then rb(Zst, 1)  rb(Zs, 1) +
rb(Zt, 1)� 2.

Proof. Let c be an exact r-coloring of Zst, and let ĉ be a coloring constructed from
c as in Lemma 9. Notice that the set of colors used in c is comprised of the colors
in R0 and each color used in ĉ other than ↵. Thus, r = |P0| + |ĉ| � 1, where |ĉ| is
the number of colors appearing in ĉ. If c is a rainbow-free coloring of Zst, then R0

is a rainbow-free coloring of Zs. Thus, |P0|  rb(Zs, 1)�1. Also, ĉ is a rainbow-free
coloring of Zt, so |ĉ|  rb(Zt, 1)� 1. Thus, r  rb(Zs, 1) + rb(Zt, 1)� 3. If we let c
be the maximum rainbow-free coloring of Zst, then r = rb(Zst, 1)� 1. This shows
that rb(Zst, 1)  rb(Zs, 1) + rb(Zt, 1)� 2.

Using both the upper bound we just established and the lower bound established
in Proposition 2 of Section 2.2, we prove Theorem 2.

Proof of Theorem 2. Recursively applying Proposition 3 to prime factors of n yields

rb(Zn, 1)  2 +
mX

i=1

⇣
↵i(rb(Zpi , 1)� 2)

⌘
.

Since this is identical to the lower bound from Proposition 2 in Section 2.2, we can
conclude

rb(Zn, 1) = 2 +
mX

i=1

⇣
↵i(rb(Zpi , 1)� 2)

⌘
.
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3. Triples for x1 + x2 = px3, p Prime

Section 3 is dedicated to proving Theorem 5. In Section 3.1, we establish exact
values for rb(Zq, p) where p 6= q are prime. Finding an exact value for rb(Zp, p) is
more di�cult, and is the subject of Section 3.2. Some properties of rainbow-free
colorings of Zq are used in the construction of the general lower bound in Section
3.3. The equivalent upper bound is proved in Section 3.4. Combining Sections 3.3
and 3.4 proves Theorem 5.

3.1. Exact Values for rb(Zq, p), p 6= q Prime

Lemmas 10, 11, 12, 13 establish the upper bound rb(Zq, p)  4. These lemmas
are proven by assuming that there exists a rainbow-free r-coloring c with r � 4,
and reducing c to a 3-coloring ĉ. In each case, we find that ĉ does not conform to
the structure of a rainbow-free 3-coloring outlined in Theorem 6 proven in [4]. For
convenience, we include Theorem 6 and the necessary definitions from [4].

For a subset X ✓ Z⇤
q and a 2 Z⇤

q define aX := {ax | x 2 X}, X + a := {x + a |
x 2 X}, and X � a := X + (�a). We say the set aX is the dilation of X by a. Let
hxi  Z⇤

q denote the subgroup multiplicatively generated by x. A subset X 2 Z⇤
q is

H-periodic if X is the union of cosets of H, where H  Z⇤
p. In the case that X is

h�1i-periodic, we say that X is symmetric. This coincides with the notion that X
is symmetric if and only if X = �X.

Theorem 6. [[4], Theorem 2] A 3-coloring Zq = A[B[C with 1  |A|  |B|  |C|
is rainbow-free for x1 + x2 = kx3 if and only if, up to dilation, one of the following
holds.

1. A = {0} and both B and C are symmetric and hki-periodic subsets.

2. A = {1} for

(i) k = 2 mod q, (B�1) and (C�1) are symmetric and h2i-periodic subsets.

(ii) k = �1 mod q, (B \ {2}) + 2�1, (C \ {2}) + 2�1 are symmetric subsets.

3. |A| � 2, for k = �1 mod q and A,B, and C are arithmetic progressions with
di↵erence 1 such that A = [a1, a2 � 1], B = [a2, a3 � 1], and C = [a3, a1 � 1],
with (a1 + a2 + a3) = 1 or 2.

Suppose that q � 5 is prime. Let c be a coloring of Zq with color classes
C1, . . . , Cr with 1  |C1|  |C2|  · · ·  |Cr| and r � 4. Theorem 6 tells us
that rainbow-free colorings have very particular structure, up to the rearrangement
of the elements of Zq. The overarching goal of Lemmas 10, 11, 12, and 13, is to show
that if a coloring has too many colors, then some color classes can be combined to
violate the structure of a rainbow-free coloring.
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Observation 7. If C1 = {0} and C2 = {x}, then (x,�x, 0) is a rainbow triple for
x 6= 0.

Therefore, if c has two or more singleton color classes, we can assume that {0} is
not a color class. Furthermore, since dilation preserves the rainbow-free property,
we can assume that if |C2| = 1, then C1 = {1}.

Lemma 10. If p 6⌘ �1 mod q and |C2| = 1, then c admits a rainbow triple.

Proof. Consider the coloring ĉ given by the color classes C1, C2,
Sr

i=3 Ci. If ĉ admits
a rainbow triple, then c also admits a rainbow triple and we are done. If ĉ does not
admit a rainbow triple, then ĉ must conform to case 2.(i) in Theorem 6. Therefore,
p ⌘ 2 mod q. In this case, triples satisfying x1 + x2 = kx3 in Zq are 3-term arith-
metic progressions. In [2], Proposition 3.5 establishes that rb(Zq, 2)  4. Therefore,
there exists a rainbow triple under c.

Lemma 11. If p ⌘ �1 mod q and |C3| = 1, then c admits a rainbow triple.

Proof. Let C2 = {x}, C3 = {y}. For the sake of contradiction, assume that c is
rainbow free.

If x = 2, then (x,�3, 1) is a rainbow triple. The same argument for y shows that
x, y 6= 2.

Consider the coloring ĉ given by the color classes C1, C2,
Sr

i=3 Ci. Then by
Theorem 6 we must have C2 \ {2} + 2�1 is symmetric and so x + 2�1 = �2�1 � x.
Solving for x gives that x = �2�1. Considering the coloring given by C1, C3, C2 [Sr

i=4 Ci gives that y = �2�1, which is a contradiction.

Lemma 12. If p 6⌘ �1 mod q, and |C2| � 2, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple.
Consider the coloring ĉ given by C1 [C2, C3,

Sr
i=4 Ci. Since |C3| � |C2| � 2, notice

that ĉ does not have a singleton color class and is rainbow-free. This contradicts
Theorem 6.

Lemma 13. If p ⌘ �1 mod q and |C3| � 2, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple.
There are two cases: |C2| � 2, or |C2| = 1.

Case 1: Assume that |C2| � 2 and C1 = {x}. By Theorem 6, the coloring
C1 [ C2, C3,

Sr
i=4 Ci is of the form

C1 [ C2 = [a1, a2 � 1],

C3 = [a2, a3 � 1],
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r[

i=4

Ci = [a3, a1 � 1].

Notice that x is not adjacent to at least one of C3 or
Sr

i=4 Ci. Without loss
of generality, assume x is not adjacent to C3 (the other case follows the same
argument). Consider the coloring ĉ given by C2, C1[C3,

Sr
i=4 Ci. Notice that ĉ can

only be dilated by 1 or �1 to preserve the interval structure of
Sr

i=4 Ci. However,
dilating by 1 or �1 will not make C1 [C3 an arithmetic progression with di↵erence
1. This is a contradiction.

Case 2: Assume that |C2| = 1. Consider the coloring ĉ given by

C1 [ C2, C3,
r[

i=4

Ci.

By Theorem 6, ĉ is of the form

C1 [ C2 = [a1, a2 � 1],

C3 = [a2, a3 � 1],
r[

i=4

Ci = [a3, a1 � 1]

with a1+a2+a3 2 {1, 2}. Since every set is an arithmetic progression with di↵erence
1, we have a2 � 1 = a1 + 1. This implies that a3 2 {�2a1 � 1,�2a1}. This implies
that c(�2a1�1) 6= c(a1), c(a1+1). Therefore, triple (�2a1�1, a1, a1+1) is rainbow,
which is a contradiction.

Lemmas 10, 11, 12, and 13 form a case analysis and road map for finding rainbow
solutions. In particular, these lemmas translate the structural properties of rainbow-
free 3-colorings, to an upper bound on the rainbow number. The rest of the work
in the proof of Theorem 3 determines the relationship between p and q that makes
rainbow-free 3-colorings possible.

Proof of Theorem 3. By Lemmas 10, 11, 12, and 13, we know that rb(Zq, p)  4.
Therefore, it su�ces to show that there exists a rainbow-free 3-coloring of Zq if and
only if p, q do not satisfy either condition 1 or 2. First we will prove that if there
exists a rainbow-free 3-coloring, then p, q do not satisfy conditions 1 and 2.

Let c be a rainbow-free 3-coloring. There are two cases, p 6⌘ �1 mod q or p ⌘ �1
mod q.

Case 1: By Theorem 6, either 0 is uniquely colored, or p ⌘ 2 mod q.
Suppose 0 is uniquely colored and c(1) = R. Notice that if c(x) = R, then

c(px) = R and c(�x) = R. If p, q satisfy either 1 or 2, then {pi,�pi | i 2 Z} = Z⇤
q ,

which contradicts the fact that c is a 3-coloring.
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Suppose p ⌘ 2 mod q. Then neither 1 nor 2 are satisfied by Theorem 3.5 in [3].

Case 2: Suppose p ⌘ �1 mod q. Then |p| = 2. If (q�1)/2 is odd, then (q�1)/2 6=
2. Therefore, neither 1 nor 2 are satisfied.

To prove the reverse direction, suppose that p, q do not satisfy either 1 or 2. Let
c be given by

C1 = {0}, C2 = {pi,�pi | i 2 Z}, C3 = Z⇤
q \ C2.

Since p, q do not satisfy either 1 or 2, C3 is non-empty. Notice that any rainbow
triple must contain 0 and some element y 2 C2. However, if 0, y, z is a triple, then
z 2 C2. Therefore, c is rainbow-free.

The following corollary is used in Section 3.3 to prove a general lower bound for
rb(Zn, p).

Corollary 1. There exists a maximum rainbow-free coloring of Zq where 0 is
uniquely colored and the color classes are symmetric.

3.2. Exact Values for rb(Zp↵ , p), p Prime

In order to determine the rainbow numbers for equations of the form x1 +x2 = px3

for prime p � 3, we still need to determine rb(Zp↵ , p) for ↵ � 1. We will prove
Theorem 4 using induction. Observation 8 and Propositions 4, 5, and 6 provide
the lower bound and base case for our induction argument. Lemmas 14 and 15
provide the basic structure of a rainbow-free coloring of Zp↵ . Lastly, Lemmas 16,
and 17 exploit the structure to derive a contradiction by forcing a rainbow triple.
Throughout this section, for 0  k  p� 1, recall that the kth residue class mod p
is the set Rk = {j 2 Zp↵ : j ⌘ k mod p} and that the kth residue palette Pk is the
set of colors which appear on Rk.

Observation 8. Notice rb(Z3, 3) = 3 and rb(Z9, 3) = 4.

Proposition 4. Let p � 3 be prime. Then rb(Zp, p) = p+1
2 + 1.

Proof. To prove the lower bound, consider the following coloring:

c(x) =

(
x 0  x  p+1

2

�x otherwise
.

Notice that c(x) = c(�x) for all x 2 Zp. Furthermore, if (x1, x2, x3) is a triple, then
x1 = �x2. Thus, c is a rainbow-free p+1

2 coloring, and rb(Zp, p) > p+1
2 .

To prove the upper bound, assume that c is an p+1
2 + 1 coloring of Zp. By the

pigeonhole principle, there exists x 2 Zp such that x 6= 0 and c(x) 6= c(�x). Since
p � 3, x 6= �x, and there exist y 6= x,�x such that c(y) 6= c(x), c(�x). Therefore,
(x,�x, y) is a rainbow-triple, and rb(Zp, p)  p+1

2 + 1.
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For the rest of the section, we will assume that ↵ � 2.

Proposition 5. For ↵ � 2,
rb(Z3↵ , 3) > 3.

Proof. Suppose that ↵ � 3 and c̄ is a rainbow-free 3-coloring of Z9. Let c be a
3-coloring of Zp↵ given by c(i) := c̄(i mod 9). Assume that x1, x2, x3 is a triple in
Z3↵ . Then x1, x2, x3 is a triple in Z9 and cannot be rainbow.

Proposition 6. For prime p � 5 and ↵ � 1,

rb(Zp↵ , p) � p + 1
2

+ 1.

Proof. Color all of Ri, Rp�i color i for 0  i  p+1
2 . Suppose x1 + x2 = px3 and

x1 ⌘ j mod p for 0  j  p � 1. Then x2 ⌘ p � j mod p, and x1, x2, x2 is not
rainbow.

Lemma 14. If c does not admit a rainbow triple, then

Pi = Pp�i

when 0 < i < p.

Proof. For the sake of contradiction, suppose that there exists 0 < i < p with
G 2 Pi \Pp�i. Then there exists an element px+ i with color G in Ri. Let py+p� i
be an element in Rp�i. Notice that

x1 = p(py � x + p� 1� i) + p� i

x2 = px + i

x3 = py + p� i

is a triple. Since G /2 Pp�i, we have c(x3) = c(x1). Furthermore, x1 � x3 =
p(py� x + p� 1� i) + p� i� py� p + i = p(y(p� 1)� x + p� 1). Since py + p� i
was arbitrary, we can choose y so that y(p � 1) � x + p � 1 6⌘ 0 mod p. Since
y(p� 1)� x + p� 1 6⌘ 0 mod p, we know that y(p� 1)� x + p� 1 is an additive
generator of Zp↵�1 . This implies that Pp�i = {B}.

Let pz + j be an element with c(pz + j) /2 {G,B}. Then

x1 = p(pz � x + j � 1) + p� i

x2 = px + i

x3 = pz + j

is a rainbow triple, which is a contradiction.
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Notice that by Lemma 14, it is su�cient to only consider the structure of Ri for
0 < i < p+1

2 .

Lemma 15. Suppose c does not admit a rainbow triple. If there exists 0 < i < p
such that |Pi \ P0| � 1, then |P0| = 1.

Proof. Since c does not admit a rainbow triple, Pi = Pp�i. Without loss of gener-
ality, suppose that G 2 Pi \P0 and let c(pa1 + i) = c(pa2 + p� i) = G. Let pb 2 R0

be arbitrary. Consider the following triple:

x1 = pb

x2 = p(pa1 + i� b)
x3 = pa1 + i.

Since c is rainbow-free, c(x1) = c(x2). Next, consider the following triple:

x01 = p(pa1 + i� b)
x02 = p(pa2 + p� i� pa1 � i + b)
x03 = pa2 + p� i.

Since c is rainbow-free, c(x01) = c(x02). This implies that

c(pb) = c(p(pa2 + p� i� pa1 � i + b)).

Notice that di↵erence in position between x02 and pb, given by pa2 +p� i�pa1� i+
b� b, does not depend on b. Furthermore, pa2 + p� i� pa1 � i + b� b is relatively
prime to p↵�1. Therefore, all elements in R0 receive the same color.

Lemma 16. Let p be prime with p � 5. If there exists 0 < i < p+1
2 such that

|Pi \ P0| � 2 and G /2 Pi [ P0, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple.
Since p � 5 and |P0| = 1, there exists j 6= i such that 0 < j < p and G 2 Pj\(Pi[P0).
By Lemma 14, Pj = Pp�j and Pi = Pp�i. Let c(pa1 + j) = c(pa2 + p� j) = G. Let
pb + i 2 Ri be arbitrary. Consider the following triple:

x1 = pb + i

x2 = p(pa1 + j � b� 1) + p� i

x3 = pa1 + j.

Then c(x1) = c(x2). Next consider the following triple:

x01 = p(pa1 + j � b� 1) + p� i

x02 = p(pa2 + p� j � pa1 � j + b) + i

x03 = pa2 + p� j
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Then c(x01) = c(x02). This implies that

c(pb + i) = c(p(pa2 + p� j � pa1 � j + b) + i).

Notice that the di↵erence in position between x02 and pb + i, given by pa1 + p� j �
pa1 � j + b� b, does not depend on b. Furthermore, pa2 + p� j � pa1 � j + b� b is
relatively prime to p↵�1. Therefore, all elements in Ri receive the same color. This
is a contradiction, since |Pi| � 2.

Lemma 17. If p � 5, Zp↵ is colored with at least 4 colors, and there exists 0 < i <
p+1
2 with im(c) = Pi [ P0 and |Pi \ P0| � 2, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple.
By Lemma 15, let P0 = {R}. By Lemma 14, Pi = Pp�i. Since Pi contains all colors
except possibly R, there exists a, b, d such that c(pa+ i) = G, c(pb+ p� i) = B and
c(pd + i) = B. Consider the following triple:

x1 = pa + i

x2 = p(pb + p� i� a� 1) + p� i

x3 = pb + p� i.

Then c(x2) 2 {B,G}. Let x 2 {a, d} such that c(px + i) 6= c(x2) and consider the
following triple:

x01 = p(pb� p� i� a� 1) + p� i

x02 = p(px� pb + p + 2i + a) + i

x03 = px + i.

Notice that c(x02) 2 {B,G}. Furthermore, the di↵erence in position between x02 and
pa + i, given by px� pb + p + 2i ⌘ 2i mod p, does not depend on a, b, d modulo p.
Therefore, for any x 2 Zp there exists a ⌘ x such that c(pa + i) 2 {B,G}.

Since Pp�i contains all colors of c except for possibly R, there exists y such that
c(py + p � i) = Y . Select a ⌘ �1 � y mod p such that c(pa + i) 2 {B,G}. Then
the triple (py + p� i, pa + i, a + y + 1) is rainbow since a + y + 1 2 R0.

Proof of Theorem 4. Proposition 5 provides the lower bound for p = 3, ↵ � 2.
Observation 8 covers the case when p = 3,↵ = 1, 2.

We will proceed by induction on ↵. Suppose that rb(Zp↵�1 , 3) = 4 for some ↵ � 3.
Let c be a 4 coloring of Z3↵ . For the sake of contradiction, suppose that c does not
admit a rainbow triple. If |P0| = 4, then c admits a rainbow triple by the induction
hypothesis. Therefore, |P0|  3 and there exits 0 < i < p such that |Pi \ P0| � 1.
By Lemma 15, |P0| = 1. This implies that im(c) = |Pi \ P0|. By Lemma 17, c
admits a rainbow triple. This completes the case when p = 3.
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Let p � 5. With Proposition 4 as the base case, we will proceed by induction
on ↵. Suppose that rb(Zp↵�1 , p) = p+1

2 + 1 for some ↵ � 2. For the sake of
contradiction, suppose that c does not admit a rainbow triple. If |P0| = p+1

2 + 1,
then c admits a rainbow triple by the induction hypothesis. Therefore, |P0|  p+1

2

and there exists 0 < j < p such that |Pj \ P0| � 1. By Lemma 15, P0 = {R}. By
the pigeon hole principle, there exists 0 < i < p+1

2 such that |Pi \ P0| � 2. Notice
that one of the following must hold:

1. G /2 Pi [ P0 for some color G 6= R,

2. im(c) = Pi [ P0.

Therefore, by Lemmas 16 and 17, c must admit a rainbow triple. This completes
the case when p � 5.

3.3. Lower Bound for rb(Zn, p), p Prime

Since p is the coe�cient of the equation that we are considering, we will use q
to denote a prime other than p. Using values for rb(Zq, k), we establish a lower
bound for rb(Zn, p). In order to proceed in a similar manner as with the Schur
equation, Lemmas 18 and 19 are about the structure of triples. Lemma 20 exploits
this structural information to construct a coloring that witnesses the lower bound
for Proposition 7.

Lemma 18. If x1 + x2 = kx3 is a triple in Zn where m|x1, x2, x3 for some m|n,
m,n 2 Z, then there exists a triple of the form x1/m + x2/m = kx3/m in Z n

m
.

Proof. By definition x1 + x2 = kx3 in Zn implies:

x1 + x2 = qn + r

kx3 = tn + r

Divide both equations by m to get:

x1

m
+

x2

m
= q

n

m
+

r

m

k
x3

m
= t

n

m
+

r

m

Now we must check that r
m is an integer. Since m|(x1 + x2 � qn), we know m|r.

By definition, this means there exists a triple of the form x1/m + x2/m = kx3/m
in Z n

m
.

Next, we show that q cannot divide exactly two terms of a triple.
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Lemma 19. Let (x1, x2, x3) be a triple of the form x1 + x2 = kx3 in Zqn. If q
is relatively prime to k and q divides two of the terms in (x1, x2, x3) then q must
divide the third term in (x1, x2, x3).

Proof. We consider the case where q divides x1, x2 and the case where q divides x1,
x3.

Case 1: Assume q divides x1, x2. By definition the equation x1 + x2 = kx3 in
Zqn means:

x1 + x2 = c1qn + r

k · x3 = c2qn + r

We rearrange the first equation to get q divides x1 + x2 � c1qn, which implies that
q divides r. Thus, q divides c2qn + r, which implies q divides kx3. We know q and
k are relativity prime, therefore, q must divide x3.

Case 2: Similarly, assume q divides x1, x3. By definition the equation x1 +x2 =
kx3 in Zqn means:

x1 + x2 = c1qn + r

k · x3 = c2qn + r

From the second equation we get q divides kx3� c2qn, which implies that q divides
r. Thus, q divides x1 � c1 · qn� r, which implies q divides x2.

Notice that Lemmas 18 and 19 are stated for the equation x1 +x2 = kx3 without
the stipulation that k is prime. We can use the above lemmas to find our lower
bound.

Lemma 20. Let q, t be positive integers with q prime, and q 6= p. If there exists
a rainbow-free r-coloring of Zt, then there exists a rainbow-free (r + rb(Zq, p)� 2)-
coloring of Zqt.

Proof. Let q, t 2 Z such that q is prime, and q 6= p. Let ĉ be a rainbow-free r-coloring
for Zt and let c̄ be a maximum coloring of Zq such that 0 is uniquely colored and
the other color classes are symmetric subsets, as described in Corollary 1. Let c be
an exact (r + 1)-coloring of Zqt if rb(Zq, p) = 3 or an exact (r + 2)-coloring of Zqt

if rb(Zq, p) = 4 as follows:

c(x) =

(
ĉ(x

q ) x ⌘ 0 mod q

r + c̄(x mod q) otherwise.

Since q and p are distinct primes, q and p are relatively prime. By Lemma
19, since q is relatively prime to p, q cannot divide exactly two of the terms in
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(x1, x2, x3) for the equation x1 + x2 = px3. Therefore, for all triples in Zqt, q can
divide all three elements, no elements, or exactly one element of the triple.

Case 1: If q divides all three terms in (x1, x2, x3), then by the constructions of
c, the triple has the same colors as the triple (x1

q , x2
q , x3

q ) in ĉ. By Lemma 18, if
(x1, x2, x3) is a triple in Zqt and q|x1, x2, x3, then (x1

q , x2
q , x3

q ) is a triple in Zt. Thus,
since ĉ is a rainbow-free coloring, triples where all three elements are divisible by q
cannot be rainbow in c.

Case 2: Suppose q divides none of the terms in (x1, x2, x3). There is a maximum
of two colors added on terms not divisible by q. Thus, there are at most two colors
coloring the elements in any such triple, and triples of the form (x1, x2, x3) with
each xi not divisible by q are not rainbow.

Case 3: Suppose q divides exactly one of (x1, x2, x3). First assume q divides x1.
Notice that if x1 + x2 ⌘ px3 mod qt then x1 + x2 ⌘ px3 mod q. Since 0 is
uniquely colored in c̄, the rainbow-free coloring of Zq, any triple in Zq of the form
0+x2 ⌘ px3 mod q is colored so that x2 and x3 receive the same color. In this case,
c(x2) = r+ c̄(x2 mod q) and c(x3) = r+ c̄(x3 mod q), so (x1, x2, x3) is not rainbow
under c. If q divides either x2 or x3 the argument proceeds the same way.

Proposition 7. Let p be prime and let n be an integer with prime factorization
n = p↵ · q↵1

1 · q↵2
2 · · · q↵m

m where qi is prime, qi 6= qj for i 6= j and ↵i � 0. Then,

rb(Zn, p) � rb(Zp↵ , p) +
mX

i=1

⇣
↵i(rb(Zqi , p)� 2)

⌘

Proof. If n is a power of p, then there is nothing to show. Suppose that the claim
holds true for n where n has N prime factors that are not p.

Assume that n = p↵ · q↵1
1 · q↵2

2 · · · q↵m
m where ↵1 + · · · + ↵m = N + 1. By the

induction hypothesis, there exists a rainbow-free r-coloring of Zn/q1 where

r = rb(Zp↵ , p) +
mX

i=1

⇣
↵i(rb(Zqi , p)� 2)

⌘
� rb(Zq1 , p) + 2.

Therefore, by Lemma 20 there exists a rainbow-free r + rb(Zq1 , p)� 2 coloring of
Zn. Thus, by induction

rb(Zp↵ , p) +
mX

i=1

⇣
↵i(rb(Zqi , p)� 2)

⌘
.

3.4. Upper Bound for rb(Zn, p), p Prime

In this section we prove an upper bound matching Proposition 7 for all prime factors
q of n. Consider Proposition 8.
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Proposition 8. Let n be a positive integer, and let p be prime. Let n have prime
factorization n = p↵ · q↵1

1 · · · q↵m
m . Then

rb(Zn, p)  rb(Zp↵ , p) +
mX

i=1

⇣
rb(Zq

↵i
i

, p)� 2
⌘

.

Proof. Suppose c is a rainbow-free r-coloring of Zn. It is a fact from abstract algebra
that

Zn
⇠= Zp↵ ⇥ Zq

↵1
1
⇥ · · ·⇥ Zq↵m

m
.

By abuse of notation, we allow ↵ = 0. With this fact, we can consider Zq
↵i
i

as
a subgroup of Zn. Let c0 be the coloring of c restricted to Zp↵ . Let ci be the
coloring c restricted to Zq

↵i
i

. Since c is rainbow-free, ci is also rainbow-free. Thus,
|ci|  rb(Z↵i

qi
, p) � 1. By accounting for the fact that c(0) is over counted, we can

conclude that

r  rb(Zp↵ , p)� 1 +
mX

i=1

⇣
rb(Zq

↵i
i

, p)� 2
⌘

.

Recall that if ↵ = 0, then rb(Zp↵ , p) = 2 by convention. The proposition immedi-
ately follows by letting r = rb(Zn, p)� 1.

All that remains to prove Theorem 5 is to decompose rb(Zq↵ , p) where p, q are
prime into 2+↵ · (rb(Zq, p)� 2). There is a nice case that follows the same ideas as
for the upper bound of Theorem 2. This case is when the residue class R0 receives
enough colors to guarantee that |Pi \ P0|  1. However, this case is not forced. It
is possible that a residue class other than R0 receives the most colors. In this case,
we create auxiliary colorings of residue classes that violate Theorem 6. Lemmas 21
and 22 show that the auxiliary colorings we use preserve rainbow solutions. The
case where p 6⌘ 2 mod q culminates in Proposition 9, combining Lemmas 23, 24,
and 25. Lemma 26 shows that there exists a coloring that fits Lemma 23. Lemma
27 uses the fact that p ⌘ 2 mod q to repeatedly apply Lemma 26, resolving the
last case.

Suppose the following for the rest of this section: Let q 6= p be prime. Let c be
a coloring of Zq↵ where ↵ � 2. Let R0, R1, · · · , Rq�1 be the residue classes modulo
q for Zq↵ with corresponding residue palettes {Pi}. We will let G,B denote two
colors that are not in P0.

The next two lemmas have the exact same proof.

Lemma 21. Suppose ĉ is a 3-coloring of Zq such that X ✓ Pi implies c(i) 2 X
where X is a nonempty subset of {G,B}, and c(i) 2 {G,B} implies c(i) 2 Pi, and
c(i) = � otherwise. If ĉ contains a rainbow triple, then c contains a rainbow triple.

Lemma 22. Suppose |Pi \ Pj |  1. Let ĉ be a coloring of Zq such that:

ĉ(i) :=

(
Pi \ Pj if |Pi \ Pj | = 1
� otherwise
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If ĉ contains a rainbow triple then c contains a rainbow triple.

Proof of Lemmas 21 and 22. Suppose that (x1, x2, x3) is a rainbow triple in Zq un-
der ĉ. There are two cases: ĉ(x3) = �, or ĉ(x3) 6= �.

Case 1: If ĉ(x3) = �, then � 6= ĉ(x1), ĉ(x2). Without loss of generality, suppose
that x1 and x2 are colored G and B, respectively. This implies that there exists
u, v such that c(qu + x1) = G and c(qv + x2) = B. We must find an integer s such
that

u + v � ps ⌘
(

1 mod q↵�1 x1 + x2 � q

0 mod q↵�1 x1 + x2 < q
.

Since p and q are relatively prime, we can always solve for s. Therefore, there exists
a rainbow triple in Zq↵ under c.

Case 2: Assume ĉ(x3) 6= �. Without loss of generality, ĉ(x1) 6= �, and there exist
u, v such that c(qu + x1) = G and c(qv + x3) = B where G,B /2 Px2 . Notice that
pqv � qu + px3 � x1 2 Rx2 . Therefore, there exists a rainbow triple in Zq↵ under
c.

Lemma 23. Let c be rainbow-free with |Pi \ P0|  1. Then

|c|  rb(Zq↵�1 , p) + rb(Zq, p)� 3.

Proof. Suppose c is an r-coloring. Let ĉ be a coloring constructed from c as described
in Lemma 22. Notice that the set of colors used in c is comprised of the colors in
Rj and each color used in ĉ other than ↵. Thus, we know that r = |Pj | + |ĉ| � 1,
where |ĉ| is the number of colors appearing in ĉ.

Since c is a rainbow-free coloring of Zq↵ , we know c|R0 must be a rainbow-free
coloring of Zq, so |P0|  rb(Zq↵�1 , p)�1. Furthermore, ĉ is a rainbow-free coloring of
Zq, implying that |ĉ|  rb(Zq, p)�1. Therefore, r  rb(Zq↵�1 , p)+rb(Zq, p)�3.

From Lemma 23, we can conclude that if c has too many colors, then either c
has a rainbow triple, or |Pi \P0| � 2 for some i. In the next lemma, we show that if
c has too many colors and |Pj \ P0| � 2 for some j, then we can still conclude that
c has a rainbow triple.

Lemma 24. Suppose c has r = rb(Zq↵�1 , p) + rb(Zq, p) � 2 colors and p 6⌘ 2,�1
mod q. Then c is not rainbow-free.

Proof. By Lemma 23, there exists Pj such that |Pj \ P0| � 2, or we are done. For
the sake of contradiction, suppose c is rainbow-free. Without loss of generality,
G,B 2 Pj \ P0. Since p 6⌘ 2 mod q, we have a x such that 2j ⌘ px mod q and
x 6⌘ j mod q. Without loss of generality, this implies that G 2 Px. Furthermore,
P�j cannot contain either B or G.
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Define a coloring ĉ of Zq by

ĉ(i) =

8
>>>>>><

>>>>>>:

B i = j

G i = x

B B 2 Pi, i 6= j, x

G G 2 Pi, i 6= j, x

� otherwise

where the ambiguity if G,B 2 Pi and i 6= j, x is resolved arbitrarily. Notice that
ĉ(0) = �, ĉ(j) = B, and ĉ(x) = G. Therefore, ĉ is always a 3-coloring. Now, if we
find that ĉ has a rainbow triple, then we have reached a contradiction via Lemma
21. By Theorem 6, there are three ways ĉ can be rainbow-free: 0 is uniquely colored,
p ⌘ �1 mod q, or p ⌘ 2 mod q. However, none of these three situations hold. The
element 0 is not uniquely colored since ĉ(�j) = �. Furthermore, p 6⌘ 2 mod q and
p ⌘ �1 mod q by assumption. Thus, we can find a rainbow triple.

Lemma 25. Suppose c has r = rb(Zq↵�1 , p) + rb(Zq, p) � 2 and p ⌘ �1 mod q.
Then c is not rainbow-free.

Proof. For the sake of contradiction, suppose that c is rainbow-free. By Theorem
3, rb(Zq, p) = 4. Notice that |P0|  rb(Zq↵�1 , p) � 1, which implies that there are
at least 3 colors not represented in P0. Without loss of generality, we will let these
colors be denoted by G, B, and Y . Given an ordering of colors X1 < X2 < X3,
consider the coloring ĉ : Zq ! {X1,X2,X3,�} given by

ĉ(x) =

(
min{Xi|Xi 2 Px} {X1,X2,X3} \ Px 6= {}
� otherwise

.

Suppose ĉ contains a rainbow triple x, y, z with colors ĉ(x) < ĉ(y) < ĉ(z) (where
� > Xi for all i). Then there exists sq + x 2 Rx, tq + y 2 Ry with c(sq + x) = ĉ(x)
and c(tq + y) = c(y). By construction of ĉ, we have ĉ(x), ĉ(y) 62 Pz. This implies
completing sq + x and tq + y with an element in Rz will provide a rainbow triple.
Therefore, if there exists an ordering of G,B, Y such that ĉ is a 4-coloring of Zq,
then we are done.

Claim: If |Px \ P0| � 1, then |Px \ P0| � 2.
Without loss of generality, let G < B < Y be an ordering that maximizes the

number of colors used by ĉ. Since G 62 P0, ĉ is at least a 2-coloring. Furthermore,
ĉ always uses � on 0. We may also assume that ĉ is not a 4-coloring. This implies
that ĉ does not use Y . Now if Y 2 Px, then either G 2 Px or B 2 Px. By reordering
the colors, we can conclude that if B 2 Px, then either G 2 Px or Y 2 Px, and
if G 2 Px, then either B 2 Px or Y 2 Px. In particular, if |Px \ P0| � 1, then
|Px \ P0| � 2. This concludes the proof of the claim.
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Let Pj be such that |Pj \ P0| � 2. By applying the �(x) = j�1x to Zq, we
can assume that j = 1. Furthermore, we have that P�1 ✓ P0. By selecting two
elements in R1 with di↵erent colors not in P0, we can conclude that |P�2 \P0| � 2.
In particular, the set I = {i : |Pi \ P0| � 2} contains (�2)k for any non-negative
integer k. Notice that if q = 5, then I contains 4 which gives us a rainbow triple
since P�1 ✓ P0. Furthermore, if q � 17, then 1,�2 = q � 2, 4,�8 = q � 8 are
distinct modulo q. The fact that 1,�2, 4,�8 are distinct for primes 7, 11, 13 is true
by inspection. Therefore, |I| � 4 and q � 7.

For any four distinct elements in I there exists indices x1, x2, x3, x4 such that
(without loss of generality for the colors) G 2 Px1 \ Px2 and B 2 Px3 \ Px4 . Since
|I| � 4 we can define a coloring ĉ of Zq by

ĉ(i) =

8
>>>>>><

>>>>>>:

G i = x1, x2

B i = x3, x4

B B 2 Pi, i 6= x1, x2, x3, x4

G G 2 Pi, i 6= x1, x2, x3, x4

� otherwise

where the ambiguity if G,B 2 Pi and i 6= x1, x2, x3, x4 is resolved arbitrarily. If ĉ
has a rainbow solution, then c has a rainbow solution by Lemma 21.

Notice that every color class of ĉ has size at least 2. Therefore, by Theorem
6, up to dilation, � = [a3, a1 � 1], G = [a1, a2 � 1], and B = [a2, a3 � 1] with
a1 +a2 +a3 ⌘ 0, 1 mod q and 0 < a1 < a2 < a3  q. Furthermore, [a1, a3�1] must
be closed under multiplication by �2, since we can find a rainbow triple otherwise.
We will conclude that this structure is impossible. Let � be an ordering on Zq,
where a > b if a0 > b0 where a0 (resp. b0) is a representative of the equivalence class
a (resp. b) such that 0  a0  q.

First, assume that a1 = 1. This implies that a3�1 ⌫ �2 and a3 = �1. However,
this is a contradiction since

a1 + a2 + a3 ⌘ 1 + a2 � 1 ⌘ 0, 1 mod q

and q > a2 > 1. Therefore, we can conclude that a1 > 1 (and a1 � 1). Notice that
if q� q+1

2 2 [a1, a3�1], then we have reached a contradiction, since �2(q� q+1
2 ) ⌘ 1

mod q. We will complete the proof by assuming that a1 � q� q+1
2 or q� q+1

2 � a3�1,
and deriving a contradiction in each case.

Case 1: Assume that q � q+1
2 � a3 � 1. If a1 � bq/4c, then q � 2a1 ⌫ q � q+1

2 ,
which is a contradiction. Therefore, a3 � 1 � bq/4c. Now if a3 � 1 ⌫ bq/3c, then
4(a3�1) � a3�1. Furthermore, if bq/3c � a3�1, then �2(a3�1) � a3�1. Either
one of the previous two possibilities results in a contradiction since [a1, a3 � 1] is
closed under multiplication by �2.
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Case 2: Assume that q� q+1
2 � a1. If a3� 1 ⌫ 3q/4, then q� 2(a3� 1) � q� q+1

2 ,
which is a contradiction. Therefore, a1 � b3q/4c. Now if a1 ⌫ d2q/3e, then
�2a1 � a1. Furthermore, if d2q/3e � a1, then 4a1 � a1. Either one of the
previous two possibilities results in a contradiction since [a1, a3� 1] is closed under
multiplication by �2.

Since both cases result in contradictions, we conclude that c is not rainbow-
free.

Proposition 9. Let p, q be prime such that p 6⌘ 2 mod q. Then

rb(Zq↵ , p)  2 + ↵ (rb(Zq, p)� 2) .

Proof. Combining Lemmas 23, 24, and 25, we know that rb(Zq↵ , p)�1  rb(Zq↵�1 , p)+
rb(Zq, p) � 2 for ↵ � 2. Recursively applying this inequality gives the desired re-
sult.

Lemma 26. Suppose c is a rainbow-free coloring of Zq↵ for x1 + x2 = px3 where
↵ � 2 and q 6= p is prime. Let R0, · · · , Rq�1 be the residue classes modulo q of
Zq↵ , with corresponding color palettes P0, · · · , Pq�1. Let j be an index such that
|Pj | � |Pi| for all 0  i  q � 1. Then |Pi \ Pj |  1 for all 0  i  q � 1.

Proof. For the sake of contradiction, assume that there exists i such that |Pi \Pj | �
2. This implies that there exists qu+ i and qv + i with colors G and B respectively,
that are not in Pj . Without loss of generality, v > u.

First suppose that Ppi�j 6= Pj . There are two cases: either Ppi�j has a color
that is not in Pj , or Pj has a color that is not in Ppi�j .

Case 1: Suppose that c(sq+pi�j) /2 Pj . Without loss of generality, c(sq+pi�j) 6=
G. Then

x1 = qs + pi� j

x2 = pqu +�qs + j

x3 = qu + i

is a rainbow triple.

Case 2: Suppose that c(qs + j) /2 Ppi�j . Then

x1 = qs + j

x2 = pqu� qs + pi� j

x3 = qu + i

is rainbow.
Since c is assumed to be rainbow-free, both cases result in a contradiction. There-

fore, Pj = Ppi�j .
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Let qs+j 2 Rj . Since c is rainbow-free, c(pqu�qs+pi�j) = c(qs+j). Similarly,
the triple

{q(pu� s) + pi� j, q(pv � pu + s) + j, qv + i}

shows that c(pqv� pqu+ qs+ j) = c(pqu� qs+ pi� j) = c(qs+ j). Notice that the
di↵erence of position between pqv� pqu+ qs+ j and qs+ j in Rj is p(v�u). Since
p 6= q is prime and v > u, we know that p(v � u) is an additive generator of Zq↵�1

(since p 6 |q). Therefore, Rj is monochromatic; this contradicts the maximality of
|Pj |.

Lemma 27. If p ⌘ 2 mod q, then rb(Zq↵ , p)  rb(Zq↵�1 , p) + rb(Zq, p)� 2.

Proof. Suppose c is an r-coloring. By Lemma 26, there exists index j such that
|Pj | � |Pi| for all 0  i  q � 1. Then |Pi \ Pj |  1 for all 0  i  q � 1. Let ĉ be a
coloring constructed from c as described in Lemma 22. Notice that the set of colors
used in c is comprised of the colors in Rj and each color used in ĉ other than ↵.
Thus, we know that r = |Pj | + |ĉ|� 1, where |ĉ| is the number of colors appearing
in ĉ.

Notice that p ⌘ 2 mod q implies that any triple with 2 elements in Rj must be
completely contained in Rj . Therefore, Rj acts like Zq↵�1 when we only consider
the positions within Rj . Since c is a rainbow-free coloring of Zq↵�1 , we know c|Rj

must be a rainbow-free coloring of Zq, so |P0|  rb(Zq↵�1 , p) � 1. Furthermore, ĉ
is a rainbow-free coloring of Zq↵�1 , implying that |ĉ|  rb(Zq, p) � 1. Therefore,
r  rb(Zq↵�1 , p) + rb(Zq, p)� 3.

Proof of Theorem 5. Applying Proposition 9 or Lemma 27 for to every prime factor
qi 6= p of n in Proposition 8 gives

rb(Zn, p)  rb(Zp↵ , p) +
mX

i=1

⇣
↵i(rb(Zqi , p)� 2)

⌘
.

Since this is identical to the lower bound from Proposition 7, we can conclude

rb(Zn, p) = rb(Zp↵ , p) +
mX

i=1

⇣
↵i(rb(Zqi , p)� 2)

⌘
.
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