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Abstract
An exact r-coloring of a set S is a surjective function c : S ! [r]. The rainbow
number of a set S for equation eq is the smallest integer r such that every exact r-
coloring of S contains a rainbow solution to eq. In this paper, the rainbow number of
Zp, for p prime, and the equation a1x1+a2x2+a3x3 = b, is determined. The rainbow
number of Zn, for a natural number n, is determined under certain conditions.

1. Introduction

Let c be a coloring of set S. A subset X ✓ S is rainbow if each element of X is
colored distinctly. For example, color [n] = {1, 2, . . . , n} and consider solutions to
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the equation x1 +x2 = x3. If each element of a solution {a, b, a+ b} ✓ [n] is colored
distinctly, that solution is rainbow. One of the first papers to investigate rainbow
arithmetic progressions is [7], where Jungić et al. showed that colorings with each
color used equally yield rainbow arithmetic progressions. In [7], only 3-term arith-
metic progressions are considered which are also solutions to x1 + x2 = 2x3. In [1],
Axenovich and Fon-Der-Flaass showed that no 5-colorings avoid rainbow 3-term
arithmetic progressions. A few articles investigated the anti-van der Waerden num-
ber, which is the fewest number of colors needed to guarantee a rainbow arithmetic
progression. For example, Butler et al. established, in [4], bounds for the anti-van
der Waerden number when coloring [n] and some exact values when coloring Zn.
Later, Berikkyzy, Schulte, and Young determined, in [2], the anti-van der Waerden
number for [n] in the case of 3-term arithmetic progressions.

Some of this work was generalized to graphs and abelian groups. Montejano and
Serra investigated, in [9], rainbow-free colorings of abelian groups when considering
arithmetic progressions. Similarly, rainbow arithmetic progressions in finite abelian
groups were studied by co-author Young, in [11], where the anti-van der Waerden
numbers were connected to the order of the group. When arithmetic progressions
were extended to graphs, Rehm, Schulte, and Warnberg showed, in [10], the anti-van
der Waerden number of graph products is either 3 or 4.

Generalizing the equation x1 + x2 = 2x3, Bevilacqua et al., in [3], considered
x1+x2 = kx3 on Zn. The rainbow number of Zn was determined for these equations
when k = 1 or k = p where p is prime. These results served as motivation for
this paper where the equation a1x1 + a2x2 + a3x3 = b will be considered over Zp

and Zn with p prime. From now on a1x1 + a2x2 + a3x3 = b will be denoted by
eq(a1, a2, a3, b). This paper establishes the rainbow number, also known as the
anti-van der Waerden number, of Zn for eq(a1, a2, a3, b) for some equations. One
important result that will be used is Huicochea and Montejano’s characterization,
in [6], of all rainbow-free exact 3-colorings of Zp for eq(a1, a2, a3, b) for all primes p.

1.1. Preliminaries

An r-coloring of a set S is a function c : S ! [r] and an r-coloring is exact if c is
surjective. Note that an exact r-coloring yields a partition of S into r disjoint color
classes. This paper will focus on the linear equation eq(a1, a2, a3, b) given by

a1x1 + a2x2 + a3x3 = b (1)

and r-colorings of Zn. An ordered set (s1, s2, s3) is called a solution to eq(a1, a2, a3, b)
in Zn if a1s1 +a2s2 +a3s3 ⌘ b mod n. Throughout the paper = will be used instead
of ⌘, and the mod n will not be used unless the context requires clarification.

If c is an r-coloring of Zn, then a rainbow solution in Zn to eq(a1, a2, a3, b) is
a solution such that |{c(s1), c(s2), c(s3)}| = 3, i.e., each member of the solution
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has been assigned a distinct color by c. A coloring c of Zn is rainbow-free for
eq(a1, a2, a3, b) if there are no rainbow solutions.

The rainbow number of Zn for equation eq = eq(a1, a2, a3, b), denoted rb(Zn, eq),
is the smallest positive integer r such that every exact r-coloring of Zn has a rainbow
solution for eq. If there are no rainbow solutions to eq in an exact n-coloring of Zn,
then the convention will be that rb(Zn, eq) = n + 1. Since rainbow solutions to eq
require three colors, then rb(Zn, eq) � 3, for all n � 2.

The following tools will be used throughout the paper. Given a set S ✓ Zn and
d, t 2 Zn, the sets S + t = {s + t | s 2 S} and dS = {ds | s 2 S} are called the t-
translation and d-dilation of S, respectively. If the multiplicative inverse of a 2 Zn

exists, denote the inverse by a�1. The set of all these invertible elements forms a
group under multiplication, and it is denoted by Z⇤

n. For d 2 Z⇤
n, let hdi be the

multiplicative subgroup of Z⇤
n generated by d and hd1, . . . , dki be multiplicatively

generated by the di’s. A subset S ✓ Zn is hdi-periodic if S = dS and a set is called
symmetric if it is h�1i-periodic. For ease of reading, the related results from [6] are
referenced below.

Theorem 1. [6, Theorem 3] Let A, B and C be the color classes of an exact 3-
coloring of Zp such that 1  |A|  |B|  |C|. The coloring is rainbow-free for
eq(1, 1,�c, 0) if and only if, under dilation, one of the following holds true:

1) A = {0}, with both B and C symmetric hci-periodic subsets.

2) A = {1} for

a) c = 2, with (B � 1) and (C � 1) symmetric h2i-periodic subsets;

b) c = �1, with (B\{�2}) + 2�1 and (C\{�2}) + 2�1 symmetric subsets.

3) |A| � 2, for c = �1, with A,B and C arithmetic progressions with di↵erence 1,
such that A = {i}t2�1

i=t1
, B = {i}t3�1

i=t2
, and C = {i}t1�1

i=t3
, where (t1 + t2 + t3) = 1

or 2.

Theorem 2. [6, Theorem 6] Let A, B and C be the color classes of an exact 3-
coloring of Zp such that 1  |A|  |B|  |C|. The coloring is rainbow-free for
eq(a1, a2, a3, b), with some ai 6= aj, if and only if A = {s} with s(a1 + a2 + a3) = b,
and both B and C are sets invariant under six specific transformations.

Corollary 1. [6, Corollary 8] Every exact 3-coloring of Zp contains a rainbow
solution of eq(a1, a2, a3, b), with some ai 6= aj, if and only if one of the following
holds true:

1) a1 + a2 + a3 = 0 6= b,

2) |hd1, . . . , d6i| = p� 1,
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where d1 = �a3a
�1
1 , d2 = �a2a

�1
1 , d3 = �a1a

�1
2 , d4 = �a3a

�1
2 , d5 = �a1a

�1
3 , and

d6 = �a2a
�1
3 .

Note that Theorem 3 is the same as the case when b = 0 and c = �1 in Theorem
1. It is included for completion.

Theorem 3. [6, Theorem 5] Let A, B and C be the color classes of an exact 3-
coloring of Zp with p � 3 and 1  |A|  |B|  |C|. The coloring is rainbow-free for
eq(1, 1, 1, b) if and only if one of the following holds true:

1) A = {s} with both (B\{b � 2s}) + (s � b)2�1 and (C\{b � 2s}) + (s � b)2�1

symmetric sets.

2) |A| � 2, and all A,B and C are arithmetic progressions with the same common
di↵erence d, so that d�1A = {i}t2�1

i=t1
, d�1B = {i}t3�1

i=t2
, and d�1C = {i}t1�1

i=t3
satisfy t1 + t2 + t3 2 {1 + d�1b, 2 + d�1b}.

Lemma 1 will be used to extend results for rainbow numbers of equations where
b = 0 to equations where b 6= 0.

Lemma 1. For a1, a2, a3 2 Zn, let a = a1 + a2 + a3 and suppose that a 2 Z⇤
n.

There exists a rainbow-free k-coloring of Zn for a1x1 + a2x2 + a3x3 = b if and only
if there exists a rainbow-free k-coloring of Zn for a1x1 + a2x2 + a3x3 = 0.

Proof. Define T : Zn ! Zn by T (x) = x � ba�1. Suppose (s1, s2, s3) is a solution
to a1x1 +a2x2 +a3x3 = b. Applying the one-to-one transformation T to (s1, s2, s3)
gives:

a1T (s1) + a2T (s2) + a3T (s3) = a1(s1 � ba�1) + a2(s2 � ba�1) + a3(s3 � ba�1)
= a1s1 + a2s2 + a3s3 + (a1 + a2 + a3)(�ba�1)
= b + a(�ba�1)
= 0.

Similarly, if (T (s1), T (s2), T (s3)) is a solution to a1x1 + a2x2 + a3x3 = 0, then
(s1, s2, s3) is a solution to a1x1 + a2x2 + a3x3 = b. This gives a one-to-one corre-
spondence between solutions of the two equations.

This paper is organized as follows. First, rb(Zp, eq(a1, a2, a3, b)), is determined
in Section 2. The main result in this section, Theorem 4, states that the rainbow
number of Zp is either 3 or 4. In Section 3, the rainbow number of Zn is computed
for a natural number n. The main result in this section, Theorem 8, shows that for
n = p↵1

1 p↵2
2 · · · p↵`

`

rb(Zn, eq(a1, a2, a3, b)) = 2 +
X̀

k=1

[↵k(rb(Zpk , eq(a1, a2, a3, b)� 2)] ,
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under certain conditions. To prove this result, Section 3 includes leading lemmas
and theorems such as finding the rainbow number rb(Z2↵ , eq(a1, a2, a3, b)) in The-
orem 6, establishing the right hand side of the above equation as a lower bound in
Corollary 4, and as an upper bound in Corollary 7.

2. Rainbow Numbers of Zp

This section establishes the rainbow number for the equation eq(a1, a2, a3, b) over
Zp where p is a prime. Under certain conditions, Lemma 2 establishes that if two
elements in a solution are the same, then all three are the same. This fact was
mentioned in [6] without proof and has been included for completion.

Lemma 2. If a1s1+a2s2+a3s3 = 0 over Zp with |{s1, s2, s3}| < 3, a1+a2+a3 = 0
and a1a2a3 2 Z⇤

p, then s1 = s2 = s3.

Proof. If s1 = s2 = s3 the proof is complete. Without loss of generality, assume
s1 = s2. Observe that a1 + a2 + a3 = 0 implies a3 = �a1 � a2, and therefore
a1s1 + a2s1 + a3s3 = (a1 + a2)(s1 � s3) = 0.

Since Zp has no zero divisors, this gives a1 + a2 = 0 or s1 � s3 = 0. Note that
a1 + a2 = 0 along with a1 + a2 + a3 = 0 gives a3 = 0 which contradicts a1a2a3 6= 0.
Therefore, s1 � s3 = 0 and so s1 = s3 and |{s1, s2, s3}| = 1.

If p = 2, by convention rb(Z2, eq) = 3. The case when p = 3 is handled next.

Proposition 1. For all a1, a2, a3, b 2 Z3,

rb(Z3, eq(a1, a2, a3, b)) =

8
><

>:

3 if b = 0 and ai = aj, for some i 6= j

or b 6= 0 and ai 6= aj , for some i 6= j,
4 otherwise.

Proof. Note there is only one way (up to isomorphism) to color Z3 with three
distinct colors. Suppose eq has a rainbow solution and, without loss of generality,
assume a solution is (1, 2, 0). For eq(a1, a2, a3, 0), a1 + 2a2 = 0 implies a1 = a2.
It then follows that a rainbow solution will exist if and only if ai = aj for some
i 6= j, giving rb(Z3, eq(a1, a2, a3, 0)) = 3. If the ai’s are all distinct, by standard
convention, rb(Z3, eq(a1, a2, a3, 0)) = 4.

Now consider eq(a1, a2, a3, b) for b 6= 0. The solution (1, 2, 0) gives a1 � a2 = b.
Since b 6= 0, then a1 6= a2. It then follows that rb(Z3, eq(a1, a2, a3, b)) = 3 if ai 6= aj

for some i 6= j. Otherwise, rb(Z3, eq(a1, a2, a3, b)) = 4.

Next, the case p � 5 will be discussed. Theorem 4 shows that the rainbow
number of eq(a1, a2, a3, b) is either 3 or 4 depending on the di↵erent variations of
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a1, a2, a3 and b. The following theorem also uses notation established in Corollary
1.

Theorem 4. Let a1, a2, a3, b 2 Zp with some ai 6= aj and a1a2a3 2 Z⇤
p for p � 5,

then

rb(Zp, eq(a1, a2, a3, b)) =

8
<

:

3 if |hd1, d2, . . . , d6i| = p� 1
or a1 + a2 + a3 = 0 6= b,

4 otherwise.

Proof. The proof follows by case analysis. First, define eq = eq(a1, a2, a3, b).

Case 1: |hd1, d2, . . . , d6i| = p � 1 or a1 + a2 + a3 = 0 6= b. The conditions in this
case are the conditions of Corollary 1, thus rb(Zp, eq)  3 and rb(Zp, eq) = 3.

Case 2: |hd1, d2, . . . , d6i| < p� 1 and a1 + a2 + a3 6= 0. By Corollary 1, there exists
a rainbow-free 3-coloring which implies rb(Zp, eq) � 4. Since a1 +a2 +a3 6= 0 there
is a unique s 2 Zp such that s(a1 +a2 +a3) = b. Suppose there is a 4-coloring of Zp

with color classes A, B, C, and D such that s 2 A. Create a 3-coloring with color
classes A[B, C, and D. By construction, s is not in a color class by itself. Theorem
2 now guarantees there is a rainbow solution in this 3-coloring which corresponds to
a rainbow solution in the 4-coloring. Thus, rb(Zp, eq)  4 and hence, rb(Zp, eq) = 4.

Case 3: |hd1, d2, . . . , d6i| < p�1, a1+a2+a3 = 0, and b = 0. Since |hd1, d2, . . . , d6i| <
p�1 and b = 0, both conditions in Corollary 1 fail; hence, rb(Zp, eq) � 4. Note that
in this case, every s 2 Zp satisfies s(a1 + a2 + a3) = b. To show that rb(Zp, eq)  4,
consider a 4-coloring of Zp.

Case 3.1: At most two color classes have size one. Combine the two smallest color
classes to make a 3-coloring that has no color classes of size one. By Theorem 2,
this 3-coloring contains a rainbow solution. Thus, the original 4-coloring contains
a rainbow solution, which implies rb(Zp, eq)  4. Note that if there are at least
three color classes of size one, then the argument used in Case 3.1 does not hold.
Essentially, combining the two smallest color classes will give a 3-coloring that has
a color class with one element.

Case 3.2: At least three color classes have size one. Let A = {s1} and B = {s2}
be two of the three color classes of size one. Let s3 = a�1

3 (�a1s1 � a2s2). Then
(s1, s2, s3) is a solution. Since s1 6= s2, by Lemma 2, s1, s2, s3 are pairwise distinct.
Therefore, (s1, s2, s3) is a rainbow solution. Thus, the 4-coloring contains a rainbow,
which implies rb(Zp, eq)  4.

Note that Theorem 4 considered equations where ai 6= aj for some i 6= j. For
the remainder of this section it is assumed that a1 = a2 = a3. To handle equations
of this type, Theorem 1 and Lemma 3 are essential.
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Lemma 3. Suppose sets A, B, C, and D partition Zp. The sets A [ B, A [ C,
A [D, B, C, and D cannot all be arithmetic progressions with common di↵erence
d 6= 0.

Proof. For the sake of contradiction, suppose A[B, A[C, A[D, B, C, and D are
all arithmetic progressions with common di↵erence d. Define B = {�,�+d, . . . ,�+
kd}. Since B and A [ B are both arithmetic progressions with the same common
di↵erence, then A contains � � d or � + (k + 1)d. Similarly, this applies to C and
A [ C and applies to D and A [ D. However, this implies that B, C, and D are
not pairwise disjoint, a contradiction.

It will be shown in Lemma 5 that an arithmetic progression D of Zp, with 2 
|D|  p�2, of common di↵erence d can only be viewed as an arithmetic progression
of common di↵erence ±d. Consider the interval notation [x, y], for x < y, as defined
in [5] as follows. For x, y 2 Zp, let k = y � x and [x, y] := {x + i 2 Zp | 0  i  k}.
The author in [5] defines an arithmetic progression of common di↵erence r and
length k + 1 as the dilated interval r[x, y]. The set of such arithmetic progressions
is denoted, in [5], by AP(r).

Lemma 4. [5, Lemma 3.4] Let X be a subset of Zp such that 2  |X|  p� 2 and
r, t 2 Z⇤

p. If X, tX 2 AP(r), then t 2 {±1}.

This lemma can be generalized as follows.

Corollary 2. Let X be a subset of Zp such that 2  |X|  p�2. If tX, t0X 2 AP(r)
for t, t0 2 Z⇤

p, then t0 2 {±t}.

Proof. Let tX = r[x, y] and t0X = r[x0, y0]. Then X = t�1r[x, y] 2 AP(t�1r)
and t�1t0X = t�1r[x0, y0] 2 AP(t�1r). By Lemma 4, t�1t0 2 {±1}, and hence
t0 2 {±t}.

Lemma 5. Let D be a subset of Zp such that 2  |D|  p � 2 and d, r 2 Z⇤
p. If

D is an arithmetic progression with di↵erence d and D is an arithmetic progression
with di↵erence r, then r 2 {±d}.

Proof. Let D = {x, x + d, . . . , x + kd} and D = {x0, x0 + r, . . . , x0 + kr}. Then
D = d[d�1x, d�1x + k] 2 AP(d) and D = r[r�1x0, r�1x0 + k] 2 AP(r). Multiplying
these two dilated intervals by r and d, respectively, gives rD = rd[d�1x, d�1x+k] 2
AP(rd) and dD = rd[r�1x0, r�1x0 + k] 2 AP(rd). Thus rD and dD are both in
AP(rd). Applying Corollary 2 gives r 2 {±d}.

Theorem 5. If a 2 Z⇤
p, b 2 Zp, and p � 5, then rb(Zp, eq(a, a, a, b)) = 4.
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Proof. Since p � 5, then 3a 2 Z⇤
p. By Lemma 1, it is enough to consider ax1 +

ax2 + ax3 = 0. Furthermore, because a 2 Z⇤
p, the triple (s1, s2, s3) is a solution to

ax1 +ax2 +ax3 = 0 if and only if it is a solution to x1 +x2 +x3 = 0. Thus, without
loss of generality, the rest of the argument only considers x1 + x2 + x3 = 0. The
exact rainbow-free 3-coloring of Zp with color classes {0}, {1, p�1}, {2, 3, . . . , p�2}
establishes that 4  rb(Zp, eq(1, 1, 1, 0)). Suppose there is an exact 4-coloring of
Zp with color classes A, B, C, and D such that |A|  |B|  |C|  |D|. It will be
shown that a rainbow solution exists in the aforementioned exact 4-coloring.

Case 1: At most one color class has size one. Consider the exact 3-colorings with
color classes: A [ B, C, D; B, A [ C, D; and B, C, A [ D. If each of the
colorings is rainbow-free, then, by Theorem 3, each of the color classes in the three
colorings are arithmetic progressions. In particular, A[B, C and D are arithmetic
progressions with common di↵erence d; A[C, B and D are arithmetic progressions
with common di↵erence d0; and A [D, B and C are arithmetic progressions with
common di↵erence d00. Since the first two partitions overlap in the set D, and
2  |D|  p� 2, we know that d0 = ±d by Lemma 5. Similarly, d00 = ±d. Without
loss of generality, d00 = d0 = ±d. However, any arithmetic progression with common
di↵erence d is also an arithmetic progression with common di↵erence �d. This gives
A [ B, A [ C, A [D, B, C, and D are all arithmetic progressions with the same
common di↵erence d. This contradicts Lemma 3 so one of the exact 3-colorings
must have a rainbow solution.

Case 2: Exactly two color classes have size one. Let A = {s} and B = {�}. If
� 6= �2s, then {s,�,�s��} is a rainbow solution. Thus, without loss of generality,
assume � = �2s. Note this also means s 6= 0. Consider the exact 3-coloring with
color classes A [ B, C, D. If this coloring is rainbow-free, then, by Theorem 3.2,
A[B, C and D must be arithmetic progressions with common di↵erence d. Further,
d�1(A [ B), d�1C and d�1D are sets of consecutive integers and is a rainbow-
free exact 3-coloring. Now consider the exact 3-coloring with color classes d�1A,
d�1(B [ C), d�1D. Theorem 3.1 implies that d�1(B [ C)\{d�1(�2s)} + s2�1 =
d�1C + s2�1 and d�1D + s2�1 are symmetric. However, the color classes must also
be consecutive which would imply � = �s, which is a contradiction.

Case 3: At least three color classes have size one. Without loss of generality,
dilate the coloring so that A = {1}, B = {�}, and C = {�}. Note that if the
exact 3-colorings with color classes A, C, B [ D and A, B, C [ D are rainbow-
free, then they must be of the form described in Theorem 1 part 2.b. This means
B\{�2} + 2�1 2 {;, {0}} and C\{�2} + 2�1 2 {;, {0}}. So, without loss of gen-
erality, � = �2 and � = �(2�1). Notice that (�2,�(2�1), 2 + 2�1) is a rainbow
solution because �2 = �(2�1), 2+2�1 = �2 or 2+2�1 = �(2�1) imply p 2 {2, 3}.

In all cases, an exact 3-coloring constructed from the original exact 4-coloring has
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a rainbow solution. Thus the original exact 4-coloring has a rainbow solution.

3. Rainbow Numbers of Zn for a1x1 + a2x2 + a3x3 = b

In this section the rainbow number for Zn will be established under certain condi-
tions on the coe�cients. Since 2 is a special case, the rainbow number for Z2↵ will
be considered first. Then the lower and upper bounds are established for general n.

Let A and B be sets and m,n 2 Z. (A,m, eq) is solomorphic to (B,n, eq0)
when there exists a function � : A ! B such that {s1, s2, s3} ⇢ A is a solution to
eq mod m if and only if {�(s1),�(s2),�(s3)} ⇢ B is a solution to eq0 mod n. Note
that solomorphic sets have the same rainbow number.

Theorem 6. If a1a2a3 2 Z⇤
2, then

rb(Z2↵ , eq(a1, a2, a3, b)) = ↵ + 2.

Proof. The proof follows by induction on ↵. The base case ↵ = 1 holds by conven-
tion. Note that since a1a2a3 2 Z⇤

2, then ai ⌘ 1 mod 2 for all i and, by Lemma 1,
it can be assumed that b = 0. Let 0  ↵ 2 Z and assume the statement holds
for ↵ � 1. The following cases show the statement is true for ↵ + 1. Let c be
an exact ↵ + 2 coloring of Z2↵ and define Ri = {x 2 Z2↵ | x ⌘ i mod 2} and
Pi = {c(x) | x 2 Ri}.

If at least ↵ + 1 colors appear in P0, then, by the inductive hypothesis, Z2↵

contains a rainbow solution to eq = eq(a1, a2, a3, 0) because (Z2↵�1 , 2↵�1, eq) is
solomorphic to (R0, 2↵, eq). If at most ↵ colors appear in P0, then there exist two
colors, red and blue, that appear in P1. Let s1 and s2 be two elements in R1

such that c({s1, s2}) = {red, blue}. Since a1 ⌘ a2 ⌘ a3 ⌘ s1 ⌘ s2 ⌘ 1 mod 2, the
element s3 2 Z2↵ satisfying a1s1+a2s2+a3s3 ⌘ 0 mod 2↵ is such that s3 2 R0. This
means {s1, s2, s3} is a rainbow solution to eq(a1, a2, a3, 0) since c(s3) /2 {red, blue}.
Thus rb(Z2↵ , eq(a1, a2, a3, 0))  ↵ + 2. To obtain a lower bound, color P0 with a
rainbow-free coloring of Z2↵�1 that has ↵ colors and color P1 with the (↵ + 1)st

color. This coloring has no rainbow solutions since every solution has exactly 1 or
3 elements from R0.

Theorem 7 and Corollary 3 establish the lower bound for the rainbow number of
Zn.

Theorem 7. Let 2  t 2 Z. If a1a2a3 2 Z⇤
p and Zt has a rainbow-free, exact

rt-coloring for eq = eq(a1, a2, a3, 0) where 0 is uniquely colored, then there exists a
rainbow-free, exact (rb(Zp, eq) + rt � 2)-coloring of Zpt with 0 uniquely colored.

Proof. Since rb(Zp, eq)  4, every rainbow-free coloring of Zp for eq uses at most
three colors. Define rp = rb(Zp, eq) � 1. Note there exists an exact rainbow-free
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rp-coloring of Zp for eq where 0 is the only element in its color class. If rp = 2 or
p = 3, the rp-coloring is obvious. If rp = 3, p � 5, and ai 6= aj , for some i 6= j, such
a coloring exists by Theorem 2. Lastly, if a1 = a2 = a3 the coloring is described in
the proof of Theorem 5.

Let cp be a rainbow-free, exact rp-coloring of Zp for eq such that 0 is colored
uniquely and ct be a rainbow-free exact rt-coloring of Zt where 0 is colored uniquely.
Define an exact (rp + rt � 1)-coloring of Zpt by

c(x) =

8
><

>:

0 if x = 0,
cp(x mod p) if x 6= 0 mod p,

(rp � 1) + ct

⇣
x
p mod t

⌘
if x = 0 mod p and x 6= 0.

Notice that 0 2 Zpt is the only element in its color class with respect to the
coloring c. Let (s1, s2, s3) be a solution in Zpt to eq. Since a1a2a3 2 Z⇤

p, p cannot
divide exactly two of s1, s2, and s3, so either p divides each of s1, s2, and s3 or p
divides at most one of s1, s2, and s3.

If p divides each of s1, s2, and s3, then (s1, s2, s3) is not a rainbow solution under
the coloring c since it is not a rainbow solution under ct. If p divides at most one
of s1, s2, and s3, then (s1, s2, s3) is not a rainbow solution under the coloring c
since it is not a rainbow solution under cp and 0 is the unique element in its color
class under cp. Therefore, c is a rainbow-free, exact (rb(Zp, eq) + rt� 2)-coloring of
Zpt.

Corollary 3. If n = p↵1
1 p↵2

2 p↵3
3 . . . p↵`

` , px prime for 1  x  `, and a1a2a3 2 Z⇤
n,

then

2 +
X̀

i=1

[↵i(rb(Zpi , eq(a1, a2, a3, 0)� 2))]  rb(Zn, eq(a1, a2, a3, 0)).

Proof. Define eq = eq(a1, a2, a3, 0). This proof is inductive on the sum of the
exponents in the prime factorization of n. When n is prime, proceeding as in the
first part of the proof of Theorem 7, there exists an exact rainbow-free rn-coloring
of Zn where 0 is colored uniquely. Thus, the inequality holds when n is prime.

Assume that for k = n
pj

= p↵1
1 p↵2

2 . . . p
↵j�1
j . . . p↵`

` < n, there is a rainbow-free,
exact rk-coloring of Zk such that 0 is colored uniquely with

rk = 1 + (↵j � 1)(rb(Zpj , eq)� 2) +
X̀

i=1
i6=j

↵i [rb(Zpi , eq)� 2] .

Applying Theorem 7 gives a rainbow-free, exact (rb(Zpj , eq) + rk � 2)-coloring of
Zkpj where 0 is colored uniquely. Therefore,
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rb(Zn, eq) � rb(Zpj , eq) + rk � 1

� rb(Zpj , eq) + (↵j � 1)(rb(Zpj , eq)� 2) +
X̀

i=1
i6=j

↵i [rb(Zpi , eq)� 2]

= 2 +
X̀

i=1

↵i [rb(Zpi , eq)� 2] .

Corollary 4 generalizes Corollary 3 to eq(a1, a2, a3, b) using Lemma 1.

Corollary 4. If n = p↵1
1 p↵2

2 p↵3
3 . . . p↵`

` , pk prime for 1  k  `, and a1 + a2 +
a3, a1a2a3 2 Z⇤

n, then

2 +
X̀

i=1

[↵i(rb(Zpi , eq(a1, a2, a3, b)� 2))]  rb(Zn, eq(a1, a2, a3, b)).

The upper bound will now be established. Suppose c is a coloring of Zut. The
remainder of this section uses residue classes Ri = {z 2 Zut | z ⌘ i mod u} and
color palettes Pi = {c(z) | z 2 Ri} that were mentioned in the proof of Theorem 6.

Lemma 6. Let 3  t, u 2 Z, a3 2 Z⇤
u, and (s1, s2, s3) and (s01, s02, s03) be solutions

in Zut to eq(a1, a2, a3, b). If s01 2 Rs1 and s02 2 Rs2 , then s03 2 Rs3 .

Proof. Since a1s01 + a2s02 + a3s03 = b mod ut implies a1s01 + a2s02 + a3s03 = b mod u,
solving for s03 over Zu gives s03 = a�1

3 (b� (a1s1 + a2s2)) = a�1
3 (a3s3) mod u. Hence,

s03 2 Rs3 .

A similar argument to the one used in Lemma 6 can be used for a1, a2 2 Z⇤
t and

solving for s01 and s02 instead.

Lemma 7. If k, n 2 Z are such that 3  n, then

rb(Zn, eq(a1, a2, a3, b)) = rb(Zn, eq(a1, a2, a3, b + (a1 + a2 + a3)k)).

Proof. Let eq = eq(a1, a2, a3, b), a = a1 + a2 + a3, eq0 = eq(a1, a2, a3, b + ak) and
c be an exact r-coloring of Zn for eq. If (s1, s2, s3) is a solution in Zn to eq, then
a1s1 +a2s2 +a3s3 +(a1 +a2 +a3)k = b+ak and (s1 +k, s2 +k, s3 +k) is a solution
in Zn to eq0. Define ck : Zn ! [r] by ck(x) = c(x + k mod n). Thus, (s1, s2, s3) is
a rainbow solution to eq with respect to c if and only if (s1 + k, s2 + k, s3 + k) is a
rainbow solution to eq0 with respect to ck. Since ck is a translation of the coloring
c, rb(Zn, eq) = rb(Zn, eq0).
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Lemma 8. Let 2  t 2 Z and c be a rainbow-free coloring of Zut for eq(a1, a2, a3, b)
and a1a2a3 2 Z⇤

ut that does not use color yellow. If there exists j 2 Zt such that
for all i 2 Zt, |Pi\Pj |  1, then the coloring of Zt given by

ĉ(i) =
⇢

yellow Pi ✓ Pj ,
Pi \ Pj otherwise,

is well-defined and rainbow-free.

Proof. Since |Pi\Pj |  1, ĉ is well-defined. Let eq = eq(a1, a2, a3, b) and assume
that (s1, s2, s3) is a rainbow solution of eq in Zt with respect to ĉ. Since (s1, s2, s3) is
a rainbow solution, without loss of generality, ĉ(s1) = red and ĉ(s2) = blue. Thus,
there exist ↵ 2 Rs1 , � 2 Rs2 such that c(↵) = red and c(�) = blue. Therefore,
(↵, �, �) is a solution to eq in Zut for some � 2 Rs3 . Note that ĉ(s3) is not red or
blue. However, Ps3 \ {ĉ(s3)} ✓ Pj . Therefore c(�) is not red or blue so (↵, �, �) is a
rainbow solution to eq in Zut with respect to c, a contradiction.

Lemma 9. If c is a rainbow-free coloring of Zut for eq(a1, a2, a3, b), a1a2a3 2 Z⇤
ut

and |P0| � |Pi| for 0  i  u� 1, then |Pi\P0|  1.

Proof. Assume |Pi\P0| � 2 for some 1  i  u � 1 and let red, blue 2 Pi\P0. Let
j 2 Zut be such that a1i + a20 + a3j = b. Suppose there is an ↵ 2 Rj such that
c(↵) /2 P0. Choose � 2 Ri such that c(�) 2 {red, blue}\{c(↵)}. Now there exists
� 2 R0 such that {�, �,↵} is a rainbow solution to eq(a1, a2, a3, b), a contradiction.
Therefore, Pj ✓ P0. A similar argument gives that P0 ✓ Pj , so P0 = Pj .

Since |P0| is maximum there must exist two colors, both in P0 and Pj , that are
not in Pi. Let yellow, green 2 P0\Pi. Choosing a yellow element in R0 and a green
element in Rj and solving for the appropriate element in Ri will give a rainbow
solution, which is a contradiction. Therefore, |Pi\P0|  1 for all 0  i  u� 1.

Using an inductive argument with the following Lemma 10, similar to the argu-
ment made in Corollary 3, and Theorem 6 gives Corollary 7.

Lemma 10. If 2  t 2 Z, 3  p prime, a1a2a3 2 Z⇤
pt, then

rb(Zpt, eq(a1, a2, a3, b))  rb(Zp, eq(a1, a2, a3, b2)) + rb(Zt, eq(a1, a2, a3, b1))� 2,

for some b1, b2 2 Z.

Proof. Let eq = eq(a1, a2, a3, b) and c be a rainbow-free exact (rb(Zpt, eq) � 1)-
coloring of Zpt. Create the coloring ck from Lemma 7 to get |P0| � |Pi| for 1  i 
p�1, where Pi are defined with respect to coloring ck. This implies that (Zpt, pt, eq)
is solomorphic to (Zpt, pt, eq1) with eq1 = eq(a1, a2, a3, b1) for some b1 2 Zpt.

Since ck is rainbow-free and |P0| � |Pi| for all i, Lemma 8 and Lemma 9 give
a well-defined coloring ĉ using P0. If ĉ has a rainbow solution, then ck has a
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rainbow solution, so ĉ must be rainbow-free. However, since ĉ is coloring Zt, ĉ uses
at most rb(Zt, eq1) � 1 colors which contributes at most rb(Zt, eq1) � 2 colors to
c because, without loss of generality, yellow is not a color from c. Furthermore,
(R0, pt, eq1) is solomorphic to (Zp, p, eq2) so |P0|  rb(Zp, eq2) � 1, where eq2 =
eq(a1, a2, a3, b2) for some b2 2 Zp. In order for ĉ to be rainbow-free, ck must use at
most rb(Zp, eq2)+ rb(Zt, eq1)� 3 colors. This implies rb(Zpt, eq(a1, a2, a3, b))� 1 
rb(Zp, eq2) + rb(Zt, eq1)� 3.

Corollary 5. If n = p1p2 · · · p`, 3  pk prime for 1  k  `, a1a2a3 2 Z⇤
n, and

eq = eq(a1, a2, a3, b), then

rb(Zn, eq)  2 +
X̀

k=1

[rb(Zpk , eqk)� 2] ,

where eqk = eq(a1, a2, a3, bk) for some bk 2 Z.

Corollary 6. Let n = p1p2 · · · p`, pk prime for 1  k  `, a1a2a3 2 Z⇤
n, where

a1 + a2 + a3 2 Z⇤
3 if 3 | n. Let eq = eq(a1, a2, a3, 0), then

rb(Zn, eq)  2 +
X̀

k=1

[rb(Zpk , eq)� 2] .

Proof. By Theorems 4, 5, and 6, if p 6= 3, then rb(Zp, eq(a1, a2, a3, b))  rb(Zp, eq)
for all b. If a1+a2+a3 2 Z⇤

3, Proposition 1 gives rb(Z3, eq(a1, a2, a3, b))  rb(Z3, eq)
for all b. The result follows by Corollary 5.

Note that the assumption a1 + a2 + a3 2 Z⇤
3 is necessary when 3 | n. For

example, rb(Z3, eq(1, 1, 1, 0)) = 3 and rb(Z9, eq(1, 1, 1, 0)) = 5. In particular, Z9

has the rainbow-free coloring c : Z9 ! [4] given by c(2) = 2, c(5) = 3, c(8) = 4, and
c(x) = 1 else.

Corollary 6 and Lemma 1 combine to give Corollary 7.

Corollary 7. If n = p↵1
1 p↵2

2 · · · p↵`
` , pk prime for 1  k  `, a1 + a2 + a3, a1a2a3 2

Z⇤
n and eq = eq(a1, a2, a3, b), then

rb(Zn, eq)  2 +
X̀

k=1

[↵k(rb(Zpk , eq)� 2)] .

Finally, Corollaries 3, 4 and 7 combine to give Theorem 8.

Theorem 8. Let n = p↵1
1 p↵2

2 · · · p↵`
` , with pk prime for 1  k  `, and a1a2a3 2 Z⇤

n.
If one of the following holds:

1) b 6= 0 and a1 + a2 + a3 2 Z⇤
n,
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2) b = 0 and 3 - n, or

3) b = 0, 3 | n, and a1 + a2 + a3 2 Z⇤
3,

then

rb(Zn, eq(a1, a2, a3, b)) = 2 +
X̀

k=1

[↵k(rb(Zpk , eq(a1, a2, a3, b)� 2)] .
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