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Abstract
Given an infinite word w = x1x2--- on a finite set of non-negative integers, and
two adjacent factors or blocks of w,

A=xit1Tiy2 Tigm and B = Tipm1Tivm+2 Titmtn,

one can ask whether A = B, or whether A is a permutation of B, or whether the
sum of A, x;11+ Tipo + -+ Tiym, equals the sum of B, or whether A, B have the
same sum and the same length. In this note, we are concerned with whether the

average of A,
1
E(xz#l + Tito + -+ Titm),

equals the average of B. (The word 5410135124220 35 on the alphabet
S =1{0,1,2,3,4,5} contains the three consecutive blocks 01351, 2, 4220, each
block having average 2.) Let w = z125 - - -, an infinite word on some set of integers,
be fixed, and color all the pairs {a < b} of non-negative integers by setting

1
fw(%b) = m(aja_H + Ty + 0 A+ Ib)-

Then, applying the canonical Ramsey’s theorem to this coloring, we find that there
are only two “canonical” colorings rather than the usual four, namely, just the
“constant” and “1 — 1”7 colorings. We study this in detail, for various classes of
words. We also give a new and self-contained proof that for every infinite word w
(on a finite set of integers), and every k € N, w contains k consecutive blocks all
with the same average.

— Dedicated to the memory of Ron Graham



INTEGERS: 20 (2020) 2

1. Introduction

Let S C Z, and let w = 12223+, x; € S. Thus w is an infinite word on the
alphabet S. Although a number of definitions and results make sense if S is allowed
to be infinite (in particular Definitions 1 and 2, and Theorems 1 and 2), in general
we restrict ourselves to the case where S is finite.

Here are some simple classes of such words w:

1. w is periodic if there exist (finite) words y and v with w = yuuu--- .

2. w is abelian periodic if there exist words y, u, u1, uo, us, ... with w = yujugug - - - ,
where each u; is a permutation of u.

3. w is sum periodic if w = yujusus ..., where all the u; have the same sum and
the same length.

4. w is bounded average periodic if w = yujugus ..., and all the u; have the same
average, and and all the lengths of the u; are bounded by some constant.

5. w is average periodic if w = yujugus ..., and all the u; have the same average.
(Here, the lengths of the u; are not necessarily bounded.)

6. w has the average property, which means that for all k, w has a factor B;Bs - - - B,
where By, Ba, -+ , By, all have the same average. (Here the lengths of By, B, -+ , By
are not necessarily equal.)

It turns out that every word w (on a finite set of integers) has the average
property. This is the subject of Section 4.

It is fairly clear that 1 = 2 = 3 = 4 = 5 and that none of the reverse impli-
cations hold. A simple example showing that 5 % 4 is the word w = wjusug - -,
where u,, = 0"1"0". Thus w = 010001100000111000- - - .

The following definition and notation will be used throughout.

Definition 1. Let w = xix2--- be an infinite word on an alphabet consisting
of a finite set of integers. For each such word w, we define a function f,,, whose
domain is the set of all 2-element subsets of N U {0}, which we denote in the
usual way by [N U {0}]2. Given a,b € NU{0},a < b, we write f,(a,b) instead of
fo{a,b}), and we define, for u = zq11Zq12 - - Tp, fu(u) = fo(a,b) = average of
{Zat1, Tat2, 0o} = 5= (Tag1 + Tago + - + @p).

Given w = xxoxs3 - -+, where each x; € S, S a finite set of integers, we will often
be concerned with whether or not

1
lim f,,(0,7) = lim ;(331 +x2 + 23+ -+ 75)
j—oo j—oo

exists.
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Let w be a given infinite word, on a finite set of integers. In Section 2 we apply
the canonical Ramsey’s theorem to the coloring f,, of [N U {0}]2, and we find that
there is an infinite subset I of N U {0} such that f, restricted to [I]? is either
constant or 1 — 1.

Definition 2. Let w = xyx2x3 - - -, where each z; € S, S a finite set of integers. If
there is an infinite subset I of N U {0} such that f,, restricted to [I]? is constant,
we say that f,, has the constant property. If there is an infinite subset I of NU {0}
such that f,, restricted to [I]? is 1 — 1, we say that f,, has the 1 — 1 property.

We completely characterize f,, (in terms of whether f,, has the constant property
or the 1 — 1 property or both), whenever w is not average periodic, or is average
periodic but not bounded average periodic, or is bounded average periodic.

Somewhat surprisingly, it turns out that if w is not average periodic, then the
sequence {f,(0,7)} must converge as i — 0.

We summarize the results of Section 2 in Section 3.

Then, in Section 4, we show that every infinite word w (on a finite set S of inte-
gers) has the average property (#6 on the previous list). This fact was conjectured
by the second author in the late 1970s. A proof did not appear until 2012 [1]. That
proof relied on the existence of many collinear points in certain seqences of planar
lattice points [7]. The present proof is self-contained and makes no reference to
lattice points; however, the method was inspired by Peter L. Montgomery’s proof
[5] of the existence of many collinear points in certain sequences of lattice points.
(Namely, any sequence {P,,} where for all n >0, P,41 — P, € {(0,1),(1,0)}.)

Section 5 has a few remarks on collinear points in the plane.

In Section 6, we show that it would be enough, in Section 4, to prove the main
result only for the case S = {0,1}.

2. The Canonical Version of Ramsey’s Theorem for the Coloring f,

The following lemma is crucial.

Lemma 1. Let w = xyxoxs3 -+ ,x; € Z, with f,(a,b) defined as in Definition 1. If
a,b,c e NU{0},a < b < ¢, and any two of f,(a,b), f,(b,c), fu(a,c) are equal, then
all three are equal.

Proof. The proof is a simple computation. O

Theorem 1. Let w = z129 -+ be an infinite word on an alphabet consisting of a
finite set of integers. Then, referring to Definitions 1 and 2, f,, has the constant
property, or the 1 — 1 property, or both.
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Proof. Applying the ordinary canonical Ramsey’s theorem (see, for example, [4],
Section 5) to this coloring tells us that there exists an infinite subset I of NU {0}
such that f,, restricted to [/]? is one of:

1.1-1 or

2. “min”: f,(a,b) = fu(c,d) iff a = ¢ (for all a,b,c,d € I,a < b,c < d) or

3. “max”: f,(a,b) = fu(c,d) iff b=d (for all a,b,¢,d € I,a <b,c<d) or

4. constant.

Now let a,b,c € I, where a < b < c. If £, restricted to [I]? is the “min” coloring,
then f,(a,b) = f,(a,c). Then, by Lemma 1, f,(a,b) = f,(b,¢) = f.(a,c). Since f,
is the “min” coloring, f,(a,c) # f.(b,c), a contradiction. Similarly, f, restricted
to [I]? cannot be the “max” coloring. O

Lemma 2. Given w, an infinite word on some finite set of integers, if

lim f,(0,i) =a €R,

11— 00
then, for allm € N, lim;_, o, f,(m,i) = a.
Proof. 1t’s easy to see that for each fixed m € N, lim; o, |, (0,7)— f,(m,7)| = 0. O
Theorem 2. Ifw = x1x223---, ©; € S C7Z, S finite, is not average periodic, then
fo has the 1 — 1 property, but does not have the constant property.
Proof. (For the definition of “average periodic,” see the beginning of the Introduc-
tion.) According to Theorem 1, f, has at least one of the two properties. But f,

cannot have the constant property, since if T = {i; < is < i3 < ---} and f, is
constant on [I]2, then in particular f,(i1,i2) = f.(i2,i3) = - -- . Setting

Y=T1T2 Ty, U1 = Ty 41T41 42 * " Ty, U2 = Lip+1Tip4+2 * " Ligy ",

we have w = yujusus--- and wuy,us,us,... all have the same average, i.e., w is
average periodic. O
Remark 1. If w = x12023---, x; € S, S finite, a simple calculation shows that

1
|fu(0,n) — fu(0,n+1)| < n—H(maxS — min 5).

Remark 2. For any such w, the sequence {f,(0,7)}22;, being a bounded sequence,
has one or more limit points.

Theorem 3. Given w = x1x223---, x; €5, S finite, assume that for some set
D = {j1 < jo2 <j3<---} and real number o,

fu(0,7;) = a as i — oo.
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Then the following two statements are equivalent.
(a) There is an infinite set A C D such that for all s,t € A, s < t, f,(s,1) # .
(b) There is an infinite set B C D such that f,, is 1 —1 on [B]?.

Proof. First we show (a) = (b). To simplify the notation, we might as well assume
that D = N, that is, we assume that f,,(0,i) — a asi — oo and, for all s, € N, s <
t, fu(s,t) # a. We now choose the set B = {k1 < ka < k3 < ---} inductively as
follows.

Set ki =1,ko =2. If k1 < ko < --- < k,, have been chosen so that f, is 1 —1 on
[{k1, k2, ..., Kk, }]?, then choose k, 1 > ky so that for each r, 1 <r < n,

0<|a— folkr kne1)] <min{|a — fo(ky, k)| : 1 <u<v<n}

(This is possible by Lemma 2: for each r,1 <7 <mn, f,(kr,i) — a as i — 00.)
Thus we automatically have that forall 1 <u <v <n,1 <r <n,

fw(kuykv) %fw(krakn+l)- (1)

It remains to show that

1<r<s<n= f,(kr,knt1) # fulks, kns1)-

But if 1 <r < s < n (and hence k, < ks < kp41), the equality f,(k.,knt1) =
fw(ks, knt1) implies by Lemma 1 that f,, (., ks) = fu(ks, knt1), contradicting (from
the definition of k,11) the inequality (1) above.

To show that (b) = (a), simply note that if f,, is 1 —1 on [B]?, then f,(s,t) = «
can hold for at most one pair s,¢ in B. Hence B — {s,¢} can serve as A. O]

Corollary 1. Let A be any infinite subset of N with asymptotic density 0, and let
w be the characteristic sequence of A. Then there is an infinite subset B of N such
that f, is 1 —1 on [B]%.

Lemma 3. Given w = xi1x923---, x; € S C Z, S finite, such that {f,(0,7)}
does not converge, then there are minumum and mazimum limit points L1 < Ls.
Furthermore, any real number r, L1 <1 < Lo, is also a limit point of {f.(0,7)}.

Proof. Clearly the infimum L; and the supremum Lo of the set of limit points are
also limit points. Let Ly < r < Ly. Let € > 0. For infinitely many n, we have
fu(0,n) < r < f,(0,n+1). For large n, by Remark 1,

fo(0,n +1) — £,(0,n) <e.

Hence, |r — f,(0,n)| < € for infinitely many n. O



INTEGERS: 20 (2020) 6

Example. Consider the binary word w = 0"12'03'140°'1%" ... . By induction,

20 441+ 6! + - + (2n)! < 2 (2n),

thus
20+ 41+ 6! + - + (2n)! 2
w(0, 11+ 21431 4+ + (20 + 1)]) = "
fo(0, 11420+ 31+ 4+ (2n + 1)) W2 434+ @nt D)~ 2n+1
Similarly,
U345 44 (2n = 1E < 2- (20 = 1)L,
and thus

H4+3+5! 4.+ (2n—1)!
>1—— — 1.
421434 --- 4+ (2n)! 2n

fo(O, 14204314 4 (2n)) =1 —

Thus every real number in [0, 1] is a limit point of {f,,(0,%)}.

Theorem 4. Let w = xz1x9x3 -+ (on a finite alphabet S C Z) be such that {f,,(0,4)}
does not converge. Then f, is 1 —1 on [B]? for some infinite subset B of N.

Proof. Using Lemma 3, choose an irrational number « and a sequence D = {j; <
Ja < js < ---} such that

fu(0,4;) = a as i — occ.

Since f,(r, s) is always rational, and hence unequal to «, Theorem 3 gives us an
infinite subset B of D such that f,, is 1 — 1 on [B]?. O

Remark 3. We will see in Theorem 6 that when {f,,(0,7)} does not converge, then
fw also has the constant property in a very strong sense.

Let w = z1xox3 - - - be such that the sequence {f,,(0,4)} converges. We now give
a condition on such words w which is equivalent to the statement that the coloring
fo has the 1 — 1 property.

Definition 3. Given w (on a finite alphabet S C Z) such that the sequence
fw(0,i) — a as i — oo, the equivalence relation E on N is defined as follows.

a>bifandonlyifa=b or a#b and f,(min{a,b}, max{a,b}) = a.
Note that the transitivity property of the relation & follows from Lemma 1.

Theorem 5. Let w = x93 - -+ (on a finite alphabet S C Z) and assume f,,(0,7) —
a as i — o0o. Then the following two statements are equivalent.

(a) The coloring, f., has the 1 — 1 property.

(b) The number of equivalence classes produced by E is infinite.



INTEGERS: 20 (2020) 7

Proof. First we show that (b) implies (a). Assume the number of equivalence classes
of E is infinite. Let A consist of one element from each equivalence class. Clearly
i,j € A= f,(i,j) # a, so by Theorem 3, f, is 1 — 1 on [B]?, where B is some
infinite subset of A.

Now we show that (not b) implies (not a). Let A be any infinite subset of N. Let
r,s,t € A;r < s < t, where r = s 2 ¢t. Then f,(r,s) = a = f,(s,1), so f, is not
1 —1 on [A]%. Thus f,, does not have the 1 — 1 property. a

Corollary 2. If w = yujugus--- (each f,(u;) = «) is bounded average periodic,
then f,, has the constant property, but not the 1 — 1 property.

Proof. We must have f,,(0,7) — « as i — co. But the number of equivalence classes
produced by E must be finite, for if 4 and j are in the same position in two equal
ug, then they will be in the same class. Hence an upper bound for the number of
classes is |y| + RT, where R is the number of different u; and T' is an upper bound
for the lengths of the wuy. O

Theorem 6. Given w = xyxoxs3--- (where each x; € S,S a finite set of integers),
suppose { f,(0,1)} does not converge as i — oo. Then w is average periodic. In fact,
if « is any rational number with L1 < o < Lo (where Ly and Lo are the minimum
and mazimum limit points of {f,(0,i)}), then there is an infinite set A C N such
that, ifi,j € A,i < j, then f,(i,j) = a.

Proof. Recall that for 0 < i < j, f,(4,7) = (@ig1 + Tigo + Tigs + -+ ;) /(§ — ©).
We will use the notation g(n) = x1 + 22 + 23+ - -+ + 2, = nf,(0,n).
Let a = P/Q. We know that there are infinitely many n such that

fu(0,n) < P/Q < fu(0,n+1).

Using nf,(0,n) = g(n), the left and right hand inequalities become, respectively,
Qg(n) < Pnand (n+1)P < Qg(n + 1).

Now g(n+1) = g(n) + Zn+1, so the right hand side becomes P+ Pn < Qzpy1 +
Qg(n). Since Qg(n) < Pn, we have

P+ Pn < Qpy1 +Qg(n) < Qrpyr + Pn,
or, subtracting P + Pn,
0 < (Quns1 — P) + (Qg(n) — Pn) < Qups1 — P < Q(maxS) — . (2)

The x,4+1 vary with n, but since S is finite, there will be infinitely many n such
that (2) holds with each z,; being the same (say each z,; = a). Among these
values of n, since the integers (Qa — P) 4+ (Qg(n) — Pn) are bounded above and
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below, there is an infinite set A on which they are all equal. For any two elements
of A, say i < j, subtracting gives

0=(Qa—P)+Qg(j) — Pj— ((Qa—P)+Qg(i) — Pi) = Qg(j) — 9()) — P(j — 1),

or P(j —1i) = Q(g(j) — g(i)), and finally o = P/Q = £I=90) —

J—t

(T1+@o+-+aj) = (V1 +22++2) Tigrt+ T+t — 10, ])
. . - . . - w l) .
J—1 J—1

O

3. Summary of Section 2

Here is a summary of our results so far. According to Theorem 2 and Theorem 6, if w
is not average periodic then {f,(0,4)} converges and f,, has only the 1 —1 property.
According to Corollary 2, if w is bounded average periodic, then {f,,(0,7)} converges
and f,, has only the constant property. Theorems 4, 5, 6 fill in the remaining parts
of the diagram below.

4 (0 NOT AVERAGE PERIODIC )
ALL f, HAVE THE 1-1 PROPERTY AND
DO NOT HAVE THE CONSTANT PROPERTY
\_ NOTE: ALL {f, (0, n)} ARE CONVERGENT HERE )
(0 AVERAGE PERIODIC A
BUT NOT BOUNDED AVERAGE PERIODIC
ALL f, HAVE THE CONSTANT PROPERTY
PLUS THE FOLLOWING:
1F {f (0, n)} 1s NOT 1F {f, (0, n)} 1s 1F {f (0, n)} 1s
CONVERGENT, THEN CONVERGENT CONVERGENT
f,, HAS THE AND E HAS AND E HAS ONLY
1-1 PROPERTY INFINITELY MANY FINITELY MANY
NOTE: ALL (@) WITH EQUIVALENCE EQUIVALENCE
NON-CONVERGENT CLASSES, THEN CLASSES, THEN f,
{£,(0, n)} ARE f,, HAS THE DOES NOT HAVE
AVERAGE PERIODIC 1-1 PROPERTY | THE 1-1 PROPERTY
(0 BOUNDED AVERAGE PERIODIC
ALL f, HAVE THE CONSTANT PROPERTY AND
DO NOT HAVE THE 1-1 PROPERTY
\_ NOTE: ALL {f, (0, n)} ARE CONVERGENT HERE )
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4. The Average Property

We now show (Theorem 7 below) that every infinite word w = xjx9xs - - , where
each z; € 5,5 a finite set of integers, has the average property. That is, w has
arbitrarily long sequences of consecutive blocks, all with the same average.

Lemma 4. Given w = x12923 -+ (where each x; € S, S a finite set of integers), let
k > 2, and suppose that w does not contain k consecutive blocks with equal averages.
Let g(n) = 1 + 22+ -+ x5 = nf,(0,n) and h(n) = Qg(n) — Pn, where P > 0
and QQ > 0 are integers. Let ¢ be any integer. Then h(n) = ¢ for at most k positive
mtegers n.

Proof. Suppose h(n;) =cfori=1,2,3,...,k+1. Then g(n;) = (h(n;)+ Pn;)/Q =
(¢c+ Pn;)/Q and

g(nit1) —g(n;) e+ Pniga—c—Pn;

fong,miyr) = = =P/Q.

w(ni; nit1) Nity1 — Ny Q(nit1 —ny) /

Thus w has k consecutive blocks with equal averages, a contradiction. O
Lemma 5. Givenw = x1x9x3 -+ (where each x; € S, S a finite set of integers), let

k > 2, and suppose that w does not contain k consecutive blocks with equal averages.
Let g(n) = a1 + 22+ -+ + 2, = nfu(0,n) and h(n) = Qg(n) — Pn, where P > 0
and Q > 0 are integers. Then, for any m > 0, there exists n € [1,(2m + 1)k + 1]
such that 1
w(0,n)—P A
|f(0,n) = P/Q| > %0
Proof. For any ¢ € [—m,m], by the previous Lemma, at most k values of n are
such that h(n) = c. Hence there are at most (2m + 1)k values of n such that
h(n) € [-m, m]. Hence there must be n € [1, (2m+1)k+1] such that h(n) ¢ [—-m, m]
and for this n we must have |h(n)| > m. Hence, |f,,(0,n)—P/Q| = |g(n)/n—P/Q|=

‘Qg(n)—Pn‘_|h(n)|> m+1 S 1
Qn Tl on ' T QQIem+Dk+1) T 2Qk
O
Lemma 6. Given w = zyxox3--- (where each x; € S, S a finite set of integers),

let k > 2, and suppose that w does not contain k consecutive blocks with equal
averages. Let P > 0 and @ > 0 be integers. Then there exists an ascending
sequence ny < ng < ng < --- such that for each 1,

£0(0,n:) = P/Q| > 1/2kQ. 3)
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Proof. Let m > 0. By the previous lemma, there is an n; € [1, (2m + 1)k + 1] such
that |h(n1)| > m such that (3) holds with ¢ = 1. Now let

m’ = max{|h(t)|: t € [1,(2m + 1)k + 1]}.

Clearly m’ > m and there exists an ny € [1, (2m’ 4+ 1)k + 1] such that |h(ng2)| > m’
and (3) holds with ¢ = 2. We must have ny € [1, (2m' + 1)k + 1J\[1, (2m + 1)k + 1],
so that

ny < ns.
The argument can be repeated with m” = max{|h(¢)| : ¢t € [1,(2m’ + 1)k + 1} to
obtain ng > na, etc., with each n; satisfying (3). O

In Theorem 7 below, we will use the well known result from approximation theory
that, if L is any real and M > 0, then there exits a rational number P/ such that

Q > M and
P 1
L——|<—. 4
-5 < 38 (1)
Theorem 7. FEvery infinite word w = x1x2x3 -+ (where each x; € S, S a finite set
of integers) contains M consecutive equal average blocks for any M > 0.

Proof. Tt {f,(0,i)} does not converge, then Theorem 6 shows that w has, in fact,
an infinite sequence of equal average consecutive blocks.

If £,(0,i) — L as i — oo, assume w does not have k consecutive blocks of equal
average. We choose P > 0 and @ > k such that (4) holds. Lemma 6 gives us an
infinite set of indices,

ng <ng <ng<---

such that (3) holds for each i. Note that |f,(0,n;) — P/Q| > 1/2kQ > 1/2Q* >
|L — P/Q)|, so that

P P 1

1
Fo0m) = 51 =1E= 51> 555~ 309

=e>0.
Hence, for each 1,
P P P
Fu(0,1) = L] = [(Fu(0,m) — =) = (L — =) > |fu(0, ) — =] —
[ (0:mi) = LI = [(£0(0,m5) = 5) = (L = H)[ = [fo(0:mi) = 5
This implies that {f,(0,4)} has a limit point other than L, a contradiction. O

P
L——|>e
| QI

5. Remarks on Collinear Planar Lattice Points

Let w = xyx9ws - - (where each ; € S, .S a finite set of integers). Define a sequence
of plane latttice points P = {P;}22, by setting

Py=(0,0), Piy1— P, =(1,2i41),i >0,
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so that P, = (n,x1 + --- + ). Now let m < n < ¢. Then P,,, P,,, P, are collinear
exactly when the slope of the line through P,,, P, equals the slope of the line through
P,, P,, that is, exactly when

((i'l+"'+$n)—($1+"'+$m)) — L((l‘lﬁ-"'-f—%q)—(%l-i-""Fxn)),

n—m qg—m
or
1 1
n_m(merl"‘"""xn):q_m(xn+1+”'+$q)7
or

fw(man) = fw(na q)'
Thus the sequence {P;} contains M + 1 collinear points iff the word w contains
M consecutive equal average blocks, for any M > 0.
A more general class of sequences {P;} of planar points is obtained by specifying
a set A of planar points and then requiring Py = (0,0), P41 — P; € A,7 > 0. Such
sequences are considered in [2], [3], [5], [6], [7].

6. S={0,1} Suffices

One version of van der Waerden’s famous theorem on arithmetic progressions [8] is
this: given any infinite word w on a finite set of positive integers, and any k, there
are k consecutive blocks in w all having the same sum.

To see that this statement is implied by van der Waerden’s theorem, let w =
T1x2x3 - - -, where each z; € S, S a finite subset of N, and let T' = {¢;}72,, where
t; = x1+x9+- -4z, © > 1. Since t;411—t; < max .S, a finite number of translates of T
covers N. Removing elements in overlapping translates, we obtain a finite coloring of
N, hence by van der Waerden’s theorem, there are arbitrarily large monochromatic
arithmetic progressions. Each monochromatic arithmetic progression is a subset of
a translate of T', hence T itself contains arbitrarily large arithmetic progressions.
If, for example, t5, tg, 1, are in arithmetic progression, then (z1+---+x9) — (z1 +
codas) = (14 -+ xg) — (w14 +xg), or wg + 7+ T8+ 29 = T10+ - -+ T1s-

The above statement seems similar in spirit to the equal average property, which
says: given any infinite word w on a finite set of positive integers, and any k, there
are k consecutive blocks in w all having the same average.

The usual version of van der Waerden’s theorem is that if N is finitely colored,
there are arbitrarily large (finite) monochromatic arithmetic progressions. It is well
known that it suffices to show this for just the case of two colors.

We now show (Theorem 9) that to prove that any infinite word on a finite set
S of integers has the average property, it suffices to show this just for the case
S ={0,1}.

First we give a somewhat easier result.
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Theorem 8. Assume that every infinite word on {0,1} has the average prop-
erty. Let {P}2, be any sequence of points in the plane such that P; — Pi_q1 €
{(0,1),(1,0)}, i > 1. Then {P}32, contains k collinear points for every k.

Proof. Let P(0,0) = (0,0) and, for i > 1,P, — P,_; € {(0,1),(1,0)}. For ¢ > 1,
define

1, if P,—Pi_;=(0,1)
xTr; =
0, if P,— P_y =(1,0)

and let w = x1xox3 -+ . Let i < j < k, where

Tit1Ti42 " Tj, Tj41T542° Tk
have the same average. In the first block, x;41 + 2442 + -+ - + x; is the number of
ones in the block, that is, the number of vertical (unit) steps made from P; to P;.
Also, (j —1) — (@it1 + Tiy2 + - - - + ;) is the number of zeros in ;41242 - - - ;, that
is, the number of horizontal (unit) steps made from P; to P;. Hence

Tit1 + XTjpo+ -+ x5
(=1 = @1 + Tig2 + -+ 15)

is the slope of the line connecting P; to P;. Replacing i, j by 7, k, the same expression
gives the slope of the line connecting P; to P.

But
Titl T Tiga + -+ X5 Tjp1 T Tjqp2+ -+ Tg

j—i k=

(the two blocks have the same average), hence, since

a c . . a
3= 7 if and only if b—a - d_o

we have finally

Tit1 + Tjpo + -+ T; Tjt1 + XTjpo + -+ Tk

(G =) = (@ip1 +zipo +- ) (k—J) = (@ + 22+ +ay)

The above argument is reversible, so the converse of Theorem 8 is also true.

Theorem 9. Assume that every infinite word on {0,1} has the average property.
Then every infinite word on any finite set S of integers has the average property.

Proof. Let
W =Y1Yy2ys- -
be an infinite word on a finite set S of non-negative integers. (The more general

case, allowing S to be a finite set of integers, follows by subtracting a suitable
positive integer from each y;, which does not disturb the average property.)
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For each i, let u; = 1¥:0. For example, if y; = 3, then u; = 1110. If y; = 0, we set
U; = 0.
Let
5:U1’LL2U3"° = T1T2T3--, T; € {0,1}, ZZ 1.

By assumption, for any M > 0, § has M consecutive blocks

Lty 4108 42 70 Lty Lig41Tta42 """ Ltz "0 Liy+1Tey 42 Liprp

each with the same average, and we wish to show that w has K consecutive blocks
with equal averages, for any K.

Let K be given. Since each x;, occurs in some u;, and there are only finitely
many distinct u;, if we choose M large enough, we can find K + 1 indices amongst
the ¢;, say

J1 <Ja2 <Js <. <Jk+i1,

such that each z;, occurs in the same position of the same block u (v € {190| a €
S1). By Lemma 1, the K blocks

Ty 1T 42" Ty Tjo 142" Ty 775 e 41 Tpe42 " " Tiige gy s

also have the same average.

From these K blocks, let us consider two that are adjacent. To ease the notation,
let f = ji,9 = jir1, and h = j;1o. We must have, for the two consecutive blocks in
B determined by f, g, and h, two corresponding consecutive blocks in w. Precisely,
we have

Tf1T 42 Tg = TUmt1Umt2 - - - Up—18 (corresponding to Ym+1Ym+2 - Yn)
and
Tg1Tg42° " Th = TUp41Un+2 * " Up—1S (corresponding to Yn1Yn+2 - yp)

for appropriate m,n, and p, and words r and s, where sr = u = Uy, = u,, = up (7
will be the empty word, in the case x5 = x4y = x5, = 0.)
Summing these blocks, we get (using > r+> s => uy,)

Tppr+appatotTg =3 T+ Y Unpi+ Y Uzt Y U1t DS

:Zum+1+2um+2+...—Q—Zun,l—i—Zun:ym+1+ym+2+...+ym

and, similarly,

Tgr1+TgratoF T =Y T Unprt Yy Unsz b F ) Up ity s

:Zunﬂ+Zun+2+"'+zup—1+zup:yn+1 + Yny2 + -+ Ype
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Now, in the blocks xf1 1T 10+ T4 and 4412442 - - - Th, the numbers of 1s are
Tl +xpqpa+ -+ x5 and xgp1 F2gp2+ -+

respectively and the numbers of Os are n —m and p — n, respectively, since each u;,
as well as sr, contains exactly one 0. Hence,

g—f=Mm-m)+tapn+apo+-+ag
and
h—g=(p—n)+zgi1+Tgi2+ - +ap
The blocks xf4 1242 x4 and Tgy12T442 - - - 75 have the same average, so

Tfr1 +Tp42 +Try3+ -+ T4 _ Tg4+1 + Tg+2 + Tg43 + -+ 2T

(n—m)+ a1+ a2t a3+ +39  (pP—n)+Tgr1 +Tgr2+ Tgrs+ ot Tn
Since a/b = ¢/d if and only if a/(b+ a) = ¢/(d + ¢), we get

Tfr+Tpqpo + Tpqs+ -+ Ty Loyl + Tgqpo + Tgpg+ -+ T

(n—m) (p—mn) ’
that is,
Ymyl tYmt2 T Ymi3 + -+ Un  Yngl tYnp2 tYngz t o+ Y
(n—m) B (p—n) '
O
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