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Abstract
Given an infinite word ! = x1x2 · · · on a finite set of non-negative integers, and
two adjacent factors or blocks of !,

A = xi+1xi+2 · · ·xi+m and B = xi+m+1xi+m+2 · · ·xi+m+n,

one can ask whether A = B, or whether A is a permutation of B, or whether the
sum of A, xi+1 + xi+2 + · · ·+ xi+m, equals the sum of B, or whether A,B have the
same sum and the same length. In this note, we are concerned with whether the
average of A,

1
m

(xi+1 + xi+2 + · · · + xi+m),

equals the average of B. (The word 5 4 1 0 1 3 5 1 2 4 2 2 0 3 5 on the alphabet
S = {0, 1, 2, 3, 4, 5} contains the three consecutive blocks 0 1 3 5 1, 2, 4 2 2 0, each
block having average 2.) Let ! = x1x2 · · · , an infinite word on some set of integers,
be fixed, and color all the pairs {a < b} of non-negative integers by setting

f!(a, b) =
1

b� a
(xa+1 + xa+2 + · · · + xb).

Then, applying the canonical Ramsey’s theorem to this coloring, we find that there
are only two “canonical” colorings rather than the usual four, namely, just the
“constant” and “1 � 1” colorings. We study this in detail, for various classes of
words. We also give a new and self-contained proof that for every infinite word !
(on a finite set of integers), and every k 2 N, ! contains k consecutive blocks all
with the same average.

– Dedicated to the memory of Ron Graham
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1. Introduction

Let S ⇢ Z, and let ! = x1x2x3 · · · , xi 2 S. Thus ! is an infinite word on the
alphabet S. Although a number of definitions and results make sense if S is allowed
to be infinite (in particular Definitions 1 and 2, and Theorems 1 and 2), in general
we restrict ourselves to the case where S is finite.

Here are some simple classes of such words !:

1. ! is periodic if there exist (finite) words y and u with ! = yuuu · · · .

2. ! is abelian periodic if there exist words y, u, u1, u2, u3, . . . with ! = yu1u2u3 · · · ,
where each ui is a permutation of u.

3. ! is sum periodic if ! = yu1u2u3 . . . , where all the ui have the same sum and
the same length.

4. ! is bounded average periodic if ! = yu1u2u3 . . . , and all the ui have the same
average, and and all the lengths of the ui are bounded by some constant.

5. ! is average periodic if ! = yu1u2u3 . . . , and all the ui have the same average.
(Here, the lengths of the ui are not necessarily bounded.)

6. ! has the average property, which means that for all k, ! has a factor B1B2 · · ·Bk,
where B1, B2, · · · , Bk all have the same average. (Here the lengths of B1, B2, · · · , Bk

are not necessarily equal.)

It turns out that every word ! (on a finite set of integers) has the average
property. This is the subject of Section 4.

It is fairly clear that 1 ) 2 ) 3 ) 4 ) 5 and that none of the reverse impli-
cations hold. A simple example showing that 5 ; 4 is the word ! = u1u2u3 · · · ,
where un = 0n1n0n. Thus ! = 010001100000111000 · · · .

The following definition and notation will be used throughout.

Definition 1. Let ! = x1x2 · · · be an infinite word on an alphabet consisting
of a finite set of integers. For each such word !, we define a function f!, whose
domain is the set of all 2-element subsets of N [ {0}, which we denote in the
usual way by [N [ {0}]2. Given a, b 2 N [ {0}, a < b, we write f!(a, b) instead of
f!({a, b}), and we define, for u = xa+1xa+2 · · ·xb, f!(u) = f!(a, b) = average of
{xa+1, xa+2, · · · , xb} = 1

b�a (xa+1 + xa+2 + · · · + ab).

Given ! = x1x2x3 · · · , where each xi 2 S, S a finite set of integers, we will often
be concerned with whether or not

lim
j!1

f!(0, j) = lim
j!1

1
j
(x1 + x2 + x3 + · · · + xj)

exists.
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Let ! be a given infinite word, on a finite set of integers. In Section 2 we apply
the canonical Ramsey’s theorem to the coloring f! of [N [ {0}]2, and we find that
there is an infinite subset I of N [ {0} such that f! restricted to [I]2 is either
constant or 1� 1.

Definition 2. Let ! = x1x2x3 · · · , where each xi 2 S, S a finite set of integers. If
there is an infinite subset I of N [ {0} such that f! restricted to [I]2 is constant,
we say that f! has the constant property. If there is an infinite subset I of N [ {0}
such that f! restricted to [I]2 is 1� 1, we say that f! has the 1� 1 property.

We completely characterize f! (in terms of whether f! has the constant property
or the 1 � 1 property or both), whenever ! is not average periodic, or is average
periodic but not bounded average periodic, or is bounded average periodic.

Somewhat surprisingly, it turns out that if ! is not average periodic, then the
sequence {f!(0, i)} must converge as i!1.

We summarize the results of Section 2 in Section 3.
Then, in Section 4, we show that every infinite word ! (on a finite set S of inte-

gers) has the average property (#6 on the previous list). This fact was conjectured
by the second author in the late 1970s. A proof did not appear until 2012 [1]. That
proof relied on the existence of many collinear points in certain seqences of planar
lattice points [7]. The present proof is self-contained and makes no reference to
lattice points; however, the method was inspired by Peter L. Montgomery’s proof
[5] of the existence of many collinear points in certain sequences of lattice points.
(Namely, any sequence {Pn} where for all n � 0, Pn+1 � Pn 2 {(0, 1), (1, 0)}.)

Section 5 has a few remarks on collinear points in the plane.
In Section 6, we show that it would be enough, in Section 4, to prove the main

result only for the case S = {0, 1}.

2. The Canonical Version of Ramsey’s Theorem for the Coloring f!

The following lemma is crucial.

Lemma 1. Let ! = x1x2x3 · · · , xi 2 Z, with f!(a, b) defined as in Definition 1. If
a, b, c 2 N [ {0}, a < b < c, and any two of f!(a, b), f!(b, c), f!(a, c) are equal, then
all three are equal.

Proof. The proof is a simple computation.

Theorem 1. Let ! = x1x2 · · · be an infinite word on an alphabet consisting of a
finite set of integers. Then, referring to Definitions 1 and 2, f! has the constant
property, or the 1� 1 property, or both.
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Proof. Applying the ordinary canonical Ramsey’s theorem (see, for example, [4],
Section 5) to this coloring tells us that there exists an infinite subset I of N [ {0}
such that f! restricted to [I]2 is one of:

1. 1� 1 or
2. “min”: f!(a, b) = f!(c, d) i↵ a = c (for all a, b, c, d 2 I, a < b, c < d) or
3. “max”: f!(a, b) = f!(c, d) i↵ b = d (for all a, b, c, d 2 I, a < b, c < d) or
4. constant.
Now let a, b, c 2 I, where a < b < c. If f! restricted to [I]2 is the “min” coloring,

then f!(a, b) = f!(a, c). Then, by Lemma 1, f!(a, b) = f!(b, c) = f!(a, c). Since f!

is the “min” coloring, f!(a, c) 6= f!(b, c), a contradiction. Similarly, f! restricted
to [I]2 cannot be the “max” coloring.

Lemma 2. Given !, an infinite word on some finite set of integers, if

lim
i!1

f!(0, i) = ↵ 2 R,

then, for all m 2 N, limi!1 f!(m, i) = ↵.

Proof. It’s easy to see that for each fixed m 2 N, limi!1 |f!(0, i)�f!(m, i)| = 0.

Theorem 2. If ! = x1x2x3 · · · , xi 2 S ⇢ Z, S finite, is not average periodic, then
f! has the 1� 1 property, but does not have the constant property.

Proof. (For the definition of “average periodic,” see the beginning of the Introduc-
tion.) According to Theorem 1, f! has at least one of the two properties. But f!

cannot have the constant property, since if I = {i1 < i2 < i3 < · · · } and f! is
constant on [I]2, then in particular f!(i1, i2) = f!(i2, i3) = · · · . Setting

y = x1x2 · · ·xi1 , u1 = xi1+1xi1+2 · · ·xi2 , u2 = xi2+1xi2+2 · · ·xi3 , · · · ,

we have ! = yu1u2u3 · · · and u1, u2, u3, . . . all have the same average, i.e., ! is
average periodic.

Remark 1. If ! = x1x2x3 · · · , xi 2 S, S finite, a simple calculation shows that

|f!(0, n)� f!(0, n + 1)|  1
n + 1

(maxS �minS).

Remark 2. For any such !, the sequence {f!(0, i)}1i=1, being a bounded sequence,
has one or more limit points.

Theorem 3. Given ! = x1x2x3 · · · , xi 2 S, S finite, assume that for some set
D = {j1 < j2 < j3 < · · · } and real number ↵,

f!(0, ji)! ↵ as i!1.
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Then the following two statements are equivalent.
(a) There is an infinite set A ⇢ D such that for all s, t 2 A, s < t, f!(s, t) 6= ↵.

(b) There is an infinite set B ⇢ D such that f! is 1� 1 on [B]2.

Proof. First we show (a)) (b). To simplify the notation, we might as well assume
that D = N, that is, we assume that f!(0, i)! ↵ as i!1 and, for all s, t 2 N, s <
t, f!(s, t) 6= ↵. We now choose the set B = {k1 < k2 < k3 < · · · } inductively as
follows.

Set k1 = 1, k2 = 2. If k1 < k2 < · · · < kn have been chosen so that f! is 1� 1 on
[{k1, k2, . . . , kn}]2, then choose kn+1 > kn so that for each r, 1  r  n,

0 < |↵� f!(kr, kn+1)| < min{|↵� f!(ku, kv)| : 1  u < v  n}.

(This is possible by Lemma 2: for each r, 1  r  n, f!(kr, i)! ↵ as i!1.)
Thus we automatically have that for all 1  u < v  n, 1  r  n,

f!(ku, kv) 6= f!(kr, kn+1). (1)

It remains to show that

1  r < s  n) f!(kr, kn+1) 6= f!(ks, kn+1).

But if 1  r < s  n (and hence kr < ks < kn+1), the equality f!(kr, kn+1) =
f!(ks, kn+1) implies by Lemma 1 that f!(kr, ks) = f!(ks, kn+1), contradicting (from
the definition of kn+1) the inequality (1) above.

To show that (b)) (a), simply note that if f! is 1� 1 on [B]2, then f!(s, t) = ↵
can hold for at most one pair s, t in B. Hence B � {s, t} can serve as A.

Corollary 1. Let A be any infinite subset of N with asymptotic density 0, and let
! be the characteristic sequence of A. Then there is an infinite subset B of N such
that f! is 1� 1 on [B]2.

Lemma 3. Given ! = x1x2x3 · · · , xi 2 S ⇢ Z, S finite, such that {f!(0, i)}
does not converge, then there are minumum and maximum limit points L1 < L2.
Furthermore, any real number r, L1 < r < L2, is also a limit point of {f!(0, i)}.

Proof. Clearly the infimum L1 and the supremum L2 of the set of limit points are
also limit points. Let L1 < r < L2. Let ✏ > 0. For infinitely many n, we have
f!(0, n) < r  f!(0, n + 1). For large n, by Remark 1,

f!(0, n + 1)� f!(0, n) < ✏.

Hence, |r � f!(0, n)| < ✏ for infinitely many n.
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Example. Consider the binary word ! = 01!12!03!14!05!16! · · · . By induction,

2! + 4! + 6! + · · · + (2n)! < 2 · (2n)!,

thus

f!(0, 1! + 2! + 3! + · · · + (2n + 1)!) =
2! + 4! + 6! + · · · + (2n)!

1! + 2! + 3! + · · · + (2n + 1)!
<

2
2n + 1

! 0.

Similarly,
1! + 3! + 5! + · · · + (2n� 1)! < 2 · (2n� 1)!,

and thus

f!(0, 1! + 2! + 3! + · · · + (2n)!) = 1� 1! + 3! + 5! + · · · + (2n� 1)!
1! + 2! + 3! + · · · + (2n)!

> 1� 2
2n
! 1.

Thus every real number in [0, 1] is a limit point of {f!(0, i)}.

Theorem 4. Let ! = x1x2x3 · · · (on a finite alphabet S ⇢ Z) be such that {f!(0, i)}
does not converge. Then f! is 1� 1 on [B]2 for some infinite subset B of N.

Proof. Using Lemma 3, choose an irrational number ↵ and a sequence D = {j1 <
j2 < j3 < · · · } such that

f!(0, ji)! ↵ as i!1.

Since f!(r, s) is always rational, and hence unequal to ↵, Theorem 3 gives us an
infinite subset B of D such that f! is 1� 1 on [B]2.

Remark 3. We will see in Theorem 6 that when {f!(0, i)} does not converge, then
f! also has the constant property in a very strong sense.

Let ! = x1x2x3 · · · be such that the sequence {f!(0, i)} converges. We now give
a condition on such words ! which is equivalent to the statement that the coloring
f! has the 1� 1 property.

Definition 3. Given ! (on a finite alphabet S ⇢ Z) such that the sequence
f!(0, i)! ↵ as i!1, the equivalence relation E on N is defined as follows.

a ⇠= b if and only if a = b or a 6= b and f!(min{a, b},max{a, b}) = ↵.

Note that the transitivity property of the relation ⇠= follows from Lemma 1.

Theorem 5. Let ! = x1x2x3 · · · (on a finite alphabet S ⇢ Z) and assume f!(0, i)!
↵ as i!1. Then the following two statements are equivalent.

(a) The coloring, f!, has the 1� 1 property.
(b) The number of equivalence classes produced by E is infinite.
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Proof. First we show that (b) implies (a). Assume the number of equivalence classes
of E is infinite. Let A consist of one element from each equivalence class. Clearly
i, j 2 A ) f!(i, j) 6= ↵, so by Theorem 3, f! is 1 � 1 on [B]2, where B is some
infinite subset of A.

Now we show that (not b) implies (not a). Let A be any infinite subset of N. Let
r, s, t 2 A, r < s < t, where r ⇠= s ⇠= t. Then f!(r, s) = ↵ = f!(s, t), so f! is not
1� 1 on [A]2. Thus f! does not have the 1� 1 property.

Corollary 2. If ! = yu1u2u3 · · · (each f!(ui) = ↵) is bounded average periodic,
then f! has the constant property, but not the 1� 1 property.

Proof. We must have f!(0, i)! ↵ as i!1. But the number of equivalence classes
produced by E must be finite, for if i and j are in the same position in two equal
uk, then they will be in the same class. Hence an upper bound for the number of
classes is |y| + RT , where R is the number of di↵erent uk and T is an upper bound
for the lengths of the uk.

Theorem 6. Given ! = x1x2x3 · · · (where each xi 2 S, S a finite set of integers),
suppose {f!(0, i)} does not converge as i!1. Then ! is average periodic. In fact,
if ↵ is any rational number with L1 < ↵ < L2 (where L1 and L2 are the minimum
and maximum limit points of {f!(0, i)}), then there is an infinite set A ⇢ N such
that, if i, j 2 A, i < j, then f!(i, j) = ↵.

Proof. Recall that for 0  i < j, f!(i, j) = (xi+1 + xi+2 + xi+3 + · · · + xj)/(j � i).
We will use the notation g(n) = x1 + x2 + x3 + · · · + xn = nf!(0, n).

Let ↵ = P/Q. We know that there are infinitely many n such that

f!(0, n)  P/Q < f!(0, n + 1).

Using nf!(0, n) = g(n), the left and right hand inequalities become, respectively,
Qg(n)  Pn and (n + 1)P < Qg(n + 1).

Now g(n+1) = g(n)+xn+1, so the right hand side becomes P +Pn < Qxn+1 +
Qg(n). Since Qg(n)  Pn, we have

P + Pn < Qxn+1 + Qg(n)  Qxn+1 + Pn,

or, subtracting P + Pn,

0 < (Qxn+1 � P ) + (Qg(n)� Pn)  Qxn+1 � P  Q(maxS)� P. (2)

The xn+1 vary with n, but since S is finite, there will be infinitely many n such
that (2) holds with each xn+1 being the same (say each xn+1 = a). Among these
values of n, since the integers (Qa � P ) + (Qg(n) � Pn) are bounded above and
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below, there is an infinite set A on which they are all equal. For any two elements
of A, say i < j, subtracting gives

0 = (Qa�P ) + Qg(j)�Pj � ((Qa�P ) + Qg(i)�Pi) = Q(g(j)� g(i))�P (j � i),

or P (j � i) = Q(g(j)� g(i)), and finally ↵ = P/Q = g(j)�g(i)
j�i =

(x1 + x2 + · · · + xj)� (x1 + x2 + · · · + xi)
j � i

=
xi+1 + xi+2 + · · · + xj

j � i
= f!(i, j).

3. Summary of Section 2

Here is a summary of our results so far. According to Theorem 2 and Theorem 6, if !
is not average periodic then {f!(0, i)} converges and f! has only the 1�1 property.
According to Corollary 2, if ! is bounded average periodic, then {f!(0, i)} converges
and f! has only the constant property. Theorems 4, 5, 6 fill in the remaining parts
of the diagram below.
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~ bounded average periodic
all  f

~ 
have the constant property and 

do not have the 1–1 property 
note: all {f

~
(0, n)}  are convergent here

~ not average periodic
all f

~ 
have the 1-1 property and  

do not have the constant property 
note: all {f

~
(0, n)}  are convergent here

~ average periodic  
but not bounded average periodic
all f

~ 
have the constant property  

plus the following:

if {f
~

(0, n)} is not  
convergent, then

f
~   has the  

1–1 property
note: all ~ with 
non-convergent 

{f
~

(0, n)}  are   
average periodic

if {f
~

(0, n)} is  
convergent

and E has  
infinitely many 

equivalence 
classes, then

f
~   has the 

 1–1 property

if {f
~

(0, n)} is  
convergent

and E has only  
finitely many 
equivalence 

classes, then f
~   

does not have  
the 1–1 property
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4. The Average Property

We now show (Theorem 7 below) that every infinite word ! = x1x2x3 · · · , where
each xi 2 S, S a finite set of integers, has the average property. That is, ! has
arbitrarily long sequences of consecutive blocks, all with the same average.

Lemma 4. Given ! = x1x2x3 · · · (where each xi 2 S, S a finite set of integers), let
k � 2, and suppose that ! does not contain k consecutive blocks with equal averages.
Let g(n) = x1 + x2 + · · · + xn = nf!(0, n) and h(n) = Qg(n) � Pn, where P � 0
and Q > 0 are integers. Let c be any integer. Then h(n) = c for at most k positive
integers n.

Proof. Suppose h(ni) = c for i = 1, 2, 3, . . . , k +1. Then g(ni) = (h(ni)+Pni)/Q =
(c + Pni)/Q and

f!(ni, ni+1) =
g(ni+1)� g(ni)

ni+1 � ni
=

c + Pni+1 � c� Pni

Q(ni+1 � ni)
= P/Q.

Thus ! has k consecutive blocks with equal averages, a contradiction.

Lemma 5. Given ! = x1x2x3 · · · (where each xi 2 S, S a finite set of integers), let
k � 2, and suppose that ! does not contain k consecutive blocks with equal averages.
Let g(n) = x1 + x2 + · · · + xn = nf!(0, n) and h(n) = Qg(n) � Pn, where P � 0
and Q > 0 are integers. Then, for any m > 0, there exists n 2 [1, (2m + 1)k + 1]
such that

|f!(0, n)� P/Q| >
1

2kQ
.

Proof. For any c 2 [�m,m], by the previous Lemma, at most k values of n are
such that h(n) = c. Hence there are at most (2m + 1)k values of n such that
h(n) 2 [�m,m]. Hence there must be n 2 [1, (2m+1)k+1] such that h(n) /2 [�m,m]
and for this n we must have |h(n)| > m. Hence, |f!(0, n)�P/Q| = |g(n)/n�P/Q|=

|Qg(n)� Pn

Qn
| = |h(n)

Qn
| � m + 1

Q((2m + 1)k + 1)
>

1
2Qk

.

Lemma 6. Given ! = x1x2x3 · · · (where each xi 2 S, S a finite set of integers),
let k � 2, and suppose that ! does not contain k consecutive blocks with equal
averages. Let P � 0 and Q > 0 be integers. Then there exists an ascending
sequence n1 < n2 < n3 < · · · such that for each i,

|f!(0, ni)� P/Q| > 1/2kQ. (3)
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Proof. Let m > 0. By the previous lemma, there is an n1 2 [1, (2m + 1)k + 1] such
that |h(n1)| > m such that (3) holds with i = 1. Now let

m0 = max{|h(t)| : t 2 [1, (2m + 1)k + 1]}.

Clearly m0 > m and there exists an n2 2 [1, (2m0 + 1)k + 1] such that |h(n2)| > m0

and (3) holds with i = 2. We must have n2 2 [1, (2m0 + 1)k + 1]\[1, (2m + 1)k + 1],
so that

n1 < n2.

The argument can be repeated with m00 = max{|h(t)| : t 2 [1, (2m0 + 1)k + 1} to
obtain n3 > n2, etc., with each ni satisfying (3).

In Theorem 7 below, we will use the well known result from approximation theory
that, if L is any real and M > 0, then there exits a rational number P/Q such that
Q > M and

|L� P

Q
| <

1
2Q2

. (4)

Theorem 7. Every infinite word ! = x1x2x3 · · · (where each xi 2 S, S a finite set
of integers) contains M consecutive equal average blocks for any M > 0.

Proof. If {f!(0, i)} does not converge, then Theorem 6 shows that ! has, in fact,
an infinite sequence of equal average consecutive blocks.

If f!(0, i)! L as i!1, assume ! does not have k consecutive blocks of equal
average. We choose P � 0 and Q > k such that (4) holds. Lemma 6 gives us an
infinite set of indices,

n1 < n2 < n3 < · · ·
such that (3) holds for each i. Note that |f!(0, ni) � P/Q| > 1/2kQ > 1/2Q2 >
|L� P/Q|, so that

|f!(0, ni)�
P

Q
|� |L� P

Q
| >

1
2kQ

� 1
2Q2

= ✏ > 0.

Hence, for each i,

|f!(0, ni)� L| = |(f!(0, ni)�
P

Q
)� (L� P

Q
)| � |f!(0, ni)�

P

Q
|� |L� P

Q
| > ✏.

This implies that {f!(0, i)} has a limit point other than L, a contradiction.

5. Remarks on Collinear Planar Lattice Points

Let ! = x1x2x3 · · · (where each xi 2 S, S a finite set of integers). Define a sequence
of plane latttice points P = {Pi}1i=0 by setting

P0 = (0, 0), Pi+1 � Pi = (1, xi+1), i � 0,
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so that Pn = (n, x1 + · · · + xn). Now let m < n < q. Then Pm, Pn, Pq are collinear
exactly when the slope of the line through Pm, Pn equals the slope of the line through
Pn, Pq, that is, exactly when

1
n�m

((x1 + · · ·+xn)� (x1 + · · ·+xm)) =
1

q �m
((x1 + · · ·+xq)� (x1 + · · ·+xn)),

or
1

n�m
(xm+1 + · · · + xn) =

1
q �m

(xn+1 + · · · + xq),

or
f!(m,n) = f!(n, q).

Thus the sequence {Pi} contains M + 1 collinear points i↵ the word ! contains
M consecutive equal average blocks, for any M > 0.

A more general class of sequences {Pi} of planar points is obtained by specifying
a set A of planar points and then requiring P0 = (0, 0), Pi+1 � Pi 2 A, i � 0. Such
sequences are considered in [2], [3], [5], [6], [7].

6. S={0,1} Su�ces

One version of van der Waerden’s famous theorem on arithmetic progressions [8] is
this: given any infinite word ! on a finite set of positive integers, and any k, there
are k consecutive blocks in ! all having the same sum.

To see that this statement is implied by van der Waerden’s theorem, let ! =
x1x2x3 · · · , where each xi 2 S, S a finite subset of N, and let T = {ti}1i=1, where
ti = x1+x2+· · ·+xi, i � 1. Since ti+1�ti  maxS, a finite number of translates of T
covers N. Removing elements in overlapping translates, we obtain a finite coloring of
N, hence by van der Waerden’s theorem, there are arbitrarily large monochromatic
arithmetic progressions. Each monochromatic arithmetic progression is a subset of
a translate of T , hence T itself contains arbitrarily large arithmetic progressions.
If, for example, t5, t9, t18, are in arithmetic progression, then (x1 + · · ·+x9)� (x1 +
· · ·+ x5) = (x1 + · · ·+ x18)� (x1 + · · ·+ x9), or x6 + x7 + x8 + x9 = x10 + · · ·+ x18.

The above statement seems similar in spirit to the equal average property, which
says: given any infinite word ! on a finite set of positive integers, and any k, there
are k consecutive blocks in ! all having the same average.

The usual version of van der Waerden’s theorem is that if N is finitely colored,
there are arbitrarily large (finite) monochromatic arithmetic progressions. It is well
known that it su�ces to show this for just the case of two colors.

We now show (Theorem 9) that to prove that any infinite word on a finite set
S of integers has the average property, it su�ces to show this just for the case
S = {0, 1}.

First we give a somewhat easier result.
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Theorem 8. Assume that every infinite word on {0, 1} has the average prop-
erty. Let {P}1i=0 be any sequence of points in the plane such that Pi � Pi�1 2
{(0, 1), (1, 0)}, i � 1. Then {P}1i=0 contains k collinear points for every k.

Proof. Let P (0, 0) = (0, 0) and, for i � 1, Pi � Pi�1 2 {(0, 1), (1, 0)}. For i � 1,
define

xi =

(
1, if Pi � Pi�1 = (0, 1)
0, if Pi � Pi�1 = (1, 0)

and let ! = x1x2x3 · · · . Let i < j < k, where

xi+1xi+2 · · ·xj , xj+1xj+2 · · ·xk

have the same average. In the first block, xi+1 + xi+2 + · · · + xj is the number of
ones in the block, that is, the number of vertical (unit) steps made from Pi to Pj .
Also, (j� i)� (xi+1 +xi+2 + · · ·+xj) is the number of zeros in xi+1xi+2 · · ·xj , that
is, the number of horizontal (unit) steps made from Pi to Pj . Hence

xi+1 + xi+2 + · · · + xj

(j � i)� (xi+1 + xi+2 + · · · + xj)

is the slope of the line connecting Pi to Pj . Replacing i, j by j, k, the same expression
gives the slope of the line connecting Pj to Pk.

But
xi+1 + xi+2 + · · · + xj

j � i
=

xj+1 + xj+2 + · · · + xk

k � j

(the two blocks have the same average), hence, since
a

b
=

c

d
if and only if

a

b� a
=

c

d� c
,

we have finally

xi+1 + xi+2 + · · · + xj

(j � i)� (xi+1 + xi+2 + · · · + xj)
=

xj+1 + xj+2 + · · · + xk

(k � j)� (xj+1 + xj+2 + · · · + xk)
.

The above argument is reversible, so the converse of Theorem 8 is also true.

Theorem 9. Assume that every infinite word on {0, 1} has the average property.
Then every infinite word on any finite set S of integers has the average property.

Proof. Let
! = y1y2y3 · · ·

be an infinite word on a finite set S of non-negative integers. (The more general
case, allowing S to be a finite set of integers, follows by subtracting a suitable
positive integer from each yi, which does not disturb the average property.)
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For each i, let ui = 1yi0. For example, if yi = 3, then ui = 1110. If yi = 0, we set
ui = 0.

Let
� = u1u2u3 · · · = x1x2x3 · · · , xi 2 {0, 1}, i � 1.

By assumption, for any M > 0, � has M consecutive blocks

xt1+1xt1+2 · · ·xt2 , xt2+1xt2+2 · · ·xt3 , · · · , xtM+1xtM+2 · · ·xtM+1

each with the same average, and we wish to show that ! has K consecutive blocks
with equal averages, for any K.

Let K be given. Since each xti occurs in some uj , and there are only finitely
many distinct uj , if we choose M large enough, we can find K + 1 indices amongst
the ti, say

j1 < j2 < j3 < · · · < jK+1,

such that each xji occurs in the same position of the same block u (u 2 {1a0| a 2
S}). By Lemma 1, the K blocks

xj1+1xj1+2 · · ·xj2 , xj2+1xj2+2 · · ·xj3 , · · · , xjK+1xjK+2 · · ·xjK+1 ,

also have the same average.
From these K blocks, let us consider two that are adjacent. To ease the notation,

let f = ji, g = ji+1, and h = ji+2. We must have, for the two consecutive blocks in
� determined by f, g, and h, two corresponding consecutive blocks in !. Precisely,
we have

xf+1xf+2 · · ·xg = rum+1um+2 · · ·un�1s (corresponding to ym+1ym+2 · · · yn)

and

xg+1xg+2 · · ·xh = run+1un+2 · · ·up�1s (corresponding to yn+1yn+2 · · · yp)

for appropriate m,n, and p, and words r and s, where sr = u = um = un = up (r
will be the empty word, in the case xf = xg = xh = 0.)

Summing these blocks, we get (using
P

r +
P

s =
P

un)

xf+1 + xf+2 + · · · + xg =
X

r +
X

um+1 +
X

um+2 + · · · +
X

un�1 +
X

s

=
X

um+1 +
X

um+2 + · · · +
X

un�1 +
X

un = ym+1 + ym+2 + · · · + yn,

and, similarly,

xg+1 + xg+2 + · · · + xh =
X

r +
X

un+1 +
X

un+2 + · · · +
X

up�1 +
X

s

=
X

un+1 +
X

un+2 + · · · +
X

up�1 +
X

up = yn+1 + yn+2 + · · · + yp.
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Now, in the blocks xf+1xf+2 · · ·xg and xg+1xg+2 · · ·xh, the numbers of 1s are

xf+1 + xf+2 + · · · + xg and xg+1 + xg+2 + · · · + xh

respectively and the numbers of 0s are n�m and p�n, respectively, since each ui,
as well as sr, contains exactly one 0. Hence,

g � f = (n�m) + xf+1 + xf+2 + · · · + xg

and
h� g = (p� n) + xg+1 + xg+2 + · · · + xh.

The blocks xf+1xf+2 · · ·xg and xg+1xg+2 · · ·xh have the same average, so
xf+1 + xf+2 + xf+3 + · · · + xg

(n�m) + xf+1 + xf+2 + xf+3 + · · · + xg
=

xg+1 + xg+2 + xg+3 + · · · + xh

(p� n) + xg+1 + xg+2 + xg+3 + · · · + xh
.

Since a/b = c/d if and only if a/(b + a) = c/(d + c), we get

xf+1 + xf+2 + xf+3 + · · · + xg

(n�m)
=

xg+1 + xg+2 + xg+3 + · · · + xh

(p� n)
;

that is,
ym+1 + ym+2 + ym+3 + · · · + yn

(n�m)
=

yn+1 + yn+2 + yn+3 + · · · + yp

(p� n)
.
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