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Abstract

A subset A of a finite abelian group is called (k, `)-sum-free if kA ∩ `A = ∅. In this
paper, we extend this concept to compact abelian groups and study the question
of determining the maximum size of a measurable (k, `)-sum-free set. For integers
1 ≤ k < ` and a compact abelian group G, let

λk,`(G) = sup{µ(A) : kA ∩ `A = ∅}

be the maximum possible size of a (k, `)-sum-free subset of G. We prove that if
G = I×M , where I is the identity component of G, then

λk,`(G) = max {λk,`(M), λk,`(I)} ;

moreover, λk,`(I) = 1
k+` if I is nontrivial. We also discuss how this problem moti-

vates a new framework for studying (k, `)-sum-free sets in finite groups.

1. Introduction

The Minkowski sum of two subsets A and B of an additive abelian group G is

A+B = {a+ b : a ∈ A, b ∈ B}.

When G is finite, a natural problem is determining the maximum size of a subset

A ⊂ G that is sum-free, i.e., satisfies (A+A)∩A = ∅. In other words, A is sum-free

if x+ y = z has no solution in A. Early progress on this problem for cyclic groups

appears in the work of Diananda and Yap [4] and Wallis, Street, and Wallis [15]. In

2005, Green and Ruzsa [6] completely resolved this problem for finte abelian groups.

Let λ1,2(G) denote the maximum density of a sum-free subset of G.

Theorem 1 (Green and Ruzsa [6]). For any finite abelian group G with exponent

exp(G), we have

λ1,2(G) = max
d| exp(G)

{⌈
d− 1

3

⌉
· 1

d

}
.

In particular, 2
7 ≤ λ1,2(G) ≤ 1

2 , and both of these extremal values are achieved.
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Other statistics on sum-free sets have been the object of considerable study (see

[5, 14] and the references therein).

This problem has more recently been generalized to (k, `)-sum-free sets. For a

positive integer k, let kA = A+ · · ·+A︸ ︷︷ ︸
k

denote the k-fold Minkowski sum of A with

itself (not to be confused with the k-fold dilation of A). Then, for a finite abelian

group G, let

λk,`(G) = max

{
|A|
|G|

: kA ∩ `A = ∅
}

denote the maximum density of a (k, `)-sum-free subset of G. Trivially, λk,`(G) = 0

when k = `, so by convention we take 1 ≤ k < `.

Most work has focused on (k, `)-sum-free sets in cyclic groups; the general abelian

case remains far from understood. Important results are due to Bier and Chin [3]

and Hamidoune and Plagne [7], whose approaches relied on Vosper’s Theorem and

Kneser’s Theorem. In 2018, Bajnok and Matzke [2] found a general expression for

λk,`(Zn) by analyzing (k, `)-sum-free arithmetic progressions.

Theorem 2 (Bajnok and Matzke [2]). For any integers 1 ≤ k < ` and n ≥ 1, we

have

λk,`(Zn) = max
d|n

{⌈
d− δd + rd
k + `

⌉
· 1

d

}
,

where δd = gcd(d, `− k) and rd is the remainder of k
⌈
d−δd
k+`

⌉
modulo δd.

For further background, see the excellent exposition in [1].

One might wonder about the analogous problem on the circle group T = R/Z and

the d-dimensional torus Td. In this paper, we generalize the study of (k, `)-sum-free

sets to compact abelian groups. (We take all of our compact groups to be Hausdorff.)

This transition from the discrete setting to the continuous setting has a number

of precedents in additive combinatorics; previous fruitful generalizations include

analogs of Mann’s Theorem [9] and Freiman’s Theorem [11, 12]. Our generalization

of sum-free sets, however, is new.

For a compact abelian group G, let µ be the probability Haar measure (normal-

ized so that µ(G) = 1). We then define

λk,`(G) = sup{µ(A) : kA ∩ `A = ∅},

where the supremum runs over all measurable subsets A ⊂ G. Note that when G

is finite, this definition coincides with the definition above.

We let I denote the identity component of G (the connected component of G

which contains the identity element). It is well known (see, e.g., [8], Theorem 5.4)

that I is a closed normal subgroup; the quotient M = G/I is the (topological) group

of components of G. It can be shown that G is isomorphic (as a topological group)
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to the Cartesian product I ×M when I is an open set, which is the case that we

consider in this paper.1

The main result of this paper is the following formula for λk,`(G) when G can be

written as G = I×M (as above).

Theorem 3. For any integers 1 ≤ k < ` and any compact abelian group G = I×M ,

we have

λk,`(G) = max {λk,`(M), λk,`(I)} .

If I is nontrivial, then we also have λk,`(I) = 1
k+` and hence

λk,`(G) = max

{
λk,`(M),

1

k + `

}
.

Note that positive-dimensional compact abelian Lie groups are included in the latter

case. In particular, λk,`(Td) = 1
k+` answers our original question about the d-

dimensional torus. We also remark that when I is trivial (consists of only a single

point), we have λk,`(I) = 0 and λk,`(G) = λk,`(M), as expected.

In Section 2, we prove Theorem 3. We will make use of the following deep classical

result of Kneser [10]. Here, µ∗ denotes the inner Haar probability measure. (Even

on T, the Minkowski sum of two measurable sets need not be measurable.)

Theorem 4 (Kneser [10]). Let G be a compact abelian group with Haar probability

measure µ, and let A and B be nonempty measurable subsets of G. Then

µ∗(A+B) ≥ min{µ(A) + µ(B), 1},

unless the stabilizer H = Stab(A+B) is an open subgroup of G, in which case

µ∗(A+B) ≥ µ(A) + µ(B)− µ(H).

In Section 3, we discuss some consequences of our results and possible future

lines of inquiry. In particular, the compact case inspires a curious new framework

for investigating (k, `)-sum-free sets in the finite context.

2. Proofs

We begin by recording a few general observations.

1If I is open, then M is finite (since G is compact) and has the discrete topology (since I is
open). Index the connected components of G according to the corresponding elements of M . Write
M = Zai × · · ·×Zar , where each Zai has generator mi. For each mi, choose an arbitrary element
xi in the corresponding connected component of G, and consider aixi. Since connected compact
abelian groups are divisible ([8], Theorem 24.25), there is an element yi ∈ I such that aiyi = aixi;
then zi = xi − yi is an element with order ai in the connected component of G corresponding to
mi. The subgroup of G generated by z1, . . . , zr is a closed and normal subgroup isomorphic to
M . Since this subgroup intersects I only at the identity element of G, we conclude (see, e.g., [13],
page 343) that G is isomorphic (as a topological group) to I×M .
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Lemma 1. Let A and B be (not necessarily measurable) subsets of a compact

abelian group G. If µ∗(A) + µ∗(B) > 1, then A+B = G.

Proof. There exist closed subsets A∗ ⊆ A and B∗ ⊆ B satisfying µ(A∗)+µ(B∗) > 1.

Assume (for the sake of contradiction) that there exists some g ∈ G\(A+B). Then

g /∈ A∗ + B∗, so A∗ and {g} − B∗ are disjoint. But 1 ≥ µ(A∗) + µ({g} − B∗) =

µ(A∗) + µ(B∗) yields a contradiction.

Lemma 2. Let G = I ×M be a compact abelian group. Then any open subgroup

H of G is of the form H = I×N , where N is a subgroup of M .

Proof. The set U = I∩H is open in I and nonempty (since it contains the identity

of G). Then U and its cosets are an open partition of I. Since I is connected, U = I.
Finally, noting that H/I is a subgroup of G/I ∼= M completes the proof.

Lemma 3. Let A be a nonempty subset of an abelian group G. Then for any

integers 1 ≤ i < j, we have Stab(iA) ⊆ Stab(jA) as an inclusion of subgroups.

Proof. For any h ∈ Stab(iA), we have {h} + jA = ({h} + iA) + (j − i)A = iA +

(j − i)A = jA, so h ∈ Stab(jA).

This is, of course, a specific instance of the general fact that Stab(A) is a subgroup

of Stab(A+B) for any A,B. We now bound λk,`(G) from above.

Theorem 5. For any integers 1 ≤ k < ` and any compact abelian group G = I×M ,

we have

λk,`(G) ≤ max

{
λk,`(M),

1

k + `

}
.

Proof. Assume (for the sake of contradiction) that there exists a (k, `)-sum-free

set A ⊆ G with measure strictly greater than both λk,`(M) and 1
k+` . Let H =

Stab(`A). We consider two cases depending on whether or not H contains I.
First, suppose H does not contain I. Lemma 3 implies that I is not contained in

any Stab(iA) for 2 ≤ i ≤ `, so we conclude from Lemma 2 that these stabilizers are

not open subgroups of G. Iterative applications of Theorem 4 then give µ∗(kA) ≥
min{kµ(A), 1} and µ∗(`(−A)) = µ∗(`A) ≥ min{`µ(A), 1}. Since

µ∗(kA) + µ∗(`A) >
k

k + `
+

`

k + `
= 1,

Lemma 1 tells us that kA + `(−A) = G, and, in particular, 0 ∈ kA + `(−A). So

there exist a1, . . . , ak+` ∈ A satisfying a1 + · · · + ak = ak+1 + · · · + ak+`, which

contradicts A being (k, `)-sum-free.

Second, suppose H contains I. This implies that `A is a union of cosets of I: if

g ∈ (m+ I) ∩ (`A), then I + {g} = m+ I ⊆ H + (`A) = `A. Let

P = {p ∈M : (p+ I) ∩A 6= ∅}
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be the set of the elements ofM whose corresponding components inG have nonempty

intersection with A. Since |P |
|M | ≥ µ(A) > λk,`(M), we have kP ∩ `P 6= ∅. Then

there exist p1, . . . , pk+` ∈ P and m ∈M such that

p1 + · · ·+ pk = pk+1 + · · ·+ pk+` = m.

So there also exist a1, . . . , ak+` ∈ A with each ai ∈ pi + I. Then

ak+1 + · · ·+ ak+` ∈ (m+ I) ∩ (`A),

whence we conclude that m+ I ⊆ `A. Finally,

a1 + · · ·+ ak ∈ (m+ I) ∩ (kA) ⊆ (`A)

contradicts A being (k, `)-sum-free. This completes the proof.

Next, we establish lower bounds by constructing large (k, `)-sum-free sets. The

following lemma generalizes a common tool in the study of (k, `)-sum-free sets in

finite groups.

Lemma 4. Fix any positive integers 1 ≤ k < ` and any compact abelian group

G. If G admits a surjective measurable homomorphism φ onto the compact abelian

group H, then λk,`(H) ≤ λk,`(G).

Proof. Let S ⊂ H be a (k, `)-sum-free set of density µ. Then A = φ−1(S) ⊂ G

is a (k, `)-sum-free set (φ(kA) and φ(`A) are disjoint in H) with the same density

(corresponding probability Haar measure).

Lower bounds now follow from the obvious choices for H.

Lemma 5. For any positive integers 1 ≤ k < ` and any compact abelian group

G = I×M , we have

max {λk,`(M), λk,`(I)} ≤ λk,`(G).

Proof. Apply Lemma 4 with H = M and H = I.

When I is nontrivial, we can bound λk,`(I) from below using Pontryagin duality.

Lemma 6. For any positive integers 1 ≤ k < ` and any nontrivial compact con-

nected abelian group G, we have

λk,`(G) ≥ 1

k + `
.
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Proof. Consider the Pontryagin dual Ĝ (the group of characters of G). It is known

(see, e.g., [8], Theorem 24.25) that a compact abelian group is connected if and only

if its Pontryagin dual is torsion-free. Thus, Ĝ is torsion-free, and it is nontrivial since

G is nontrivial. Let χ ∈ Ĝ be an element of infinite order. Since χ(G) is closed and

dense in T, we conclude that χ(G) = T. By Lemma 4, we have λk,`(T) ≤ λk,`(G).

Finally, note that the set

S =

(
k

`2 − k2
,

`

`2 − k2

)
⊂ T

is a (k, `)-sum-free set with measure 1
k+` : the intervals kS =

(
k2

`2−k2 ,
k`

`2−k2

)
and

`S =
(

k`
`2−k2 ,

`2

`2−k2

)
are disjoint in T.

At last, we show how these results imply Theorem 3.

Proof of Theorem 3. We condition on whether or not I is trivial. If I is trivial,

then λk,`(I) = 0 and G is isomorphic to M . In this case, the first statement of the

theorem holds trivially. If I is nontrivial, then it suffices to observe that the upper

bound of Theorem 5 coincides with the lower bound of Lemma 5 (by Lemma 6).

3. Discussion

Theorem 3 completely determines λk,`(G) in terms of the largest possible (k, `)-

sum-free sets of its “connected” and “discrete” parts when the identity component

of G is open. In the finite case (cf. Theorem 2), one must take into consideration the

largest (k, `)-sum-free sets in all subgroups; our Theorem 3 shows that for compact

G = I×M , it suffices to look for (k, `)-sum-free sets in only I and M .

There remain many interesting questions in the case where the identity compo-

nent of G is not open. Profinite groups (totally disconnected compact groups) are

a particularly natural avenue for further inquiry. Consider, for instance, the case

where G is the direct product of countably many finite cyclic groups:

G = (Z2)e2 × (Z3)e3 × (Z4)e4 × · · ·

(with the ei’s either finite or ∞). Roughly speaking, the measurable subsets of

M can be approximated by subsets of the form S × (G/H), where H is a finite

subgroup of G and S ⊆ H. Then we expect λk,`(G) = sup{λk,`(H)}, where H

ranges over the finite subgroups of G. As a starting point, Theorem 2 provides

lower bounds. When k = 1 and ` = 2, we can also apply Theorem 1: for example,

λ1,2((Zp)∞) =
⌈
p−1
3

⌉
· 1p .
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The problem of finding (k, `)-sum-free subsets when I is a d-dimensional torus and

M is finite motivates a set of related questions for finite abelian groups. Consider

the maps φn taking subsets of T to subsets of Zn via

A 7→
{
i ∈ Zn :

(
i

n
,
i+ 1

n

)
⊆ A

}
.

The fact
(
i
n ,

i+1
n

)
+
(
j
n ,

j+1
n

)
=
(
i+j
n , i+j+2

n

)
implies that for any sets A,B ⊆ T,

{0, 1}+ φn(A) + φn(B) ⊆ φn(A+B),

with equality when (but not only when) A and B are the unions of open intervals

of the form
(
i
n ,

i+1
n

)
. We remark that any open sets can be arbitrarily well ap-

proximated from the inside in this manner for large enough n. This observation

motivates the following set of definitions.

Let A, B, and C be subsets of a finite abelian group G. For lack of better

notation, let A ∗C B = C +A+B be a “modified” sumset of A and B, and let

k ∗C A = A ∗C · · · ∗C A︸ ︷︷ ︸
k

= kA+ (k − 1)C

be the k-fold iteration of this sumset. We can investigate (k, `)-sum-free sets under

this operation (i.e., with respect to fixed C) by defining

λCk,`(G) = max

{
|A|
|G|

: (k ∗C A) ∩ (` ∗C A) = ∅
}
.

Of course, λ
{0}
k,` (G) = λk,`(G) recovers the ordinary definition of the maximum size

of a (k, `)-sum-free set.

When G = Zn and C = {0, 1}, we see that λ
{0,1}
k,` (Zn) reflects the problem of

finding open (k, `)-sum-free subsets of T. Theorem 3 for G = T gives

λ
{0,1}
k,` (Zn) ≤ 1

k + `
.

(This bound also follows from Kneser’s Theorem for finite groups.) Note that

equality is achieved at least whenever n is a multiple of `2 − k2 (Lemma 6). This

group invariant seems an interesting object of study.

Question 1. What can we say about λ
{0,1}
k,` (Zn)? Which values of n satisfy λ

{0,1}
k,` (Zn) =

1
k+`? For fixed 1 ≤ k < `, which n minimizes λ

{0,1}
k,` (Zn)?

Other compact abelian groups of the form Td×M (with M finite) analogously give

rise to the more general problem of computing λCk,`(G) with G = Zn1
×· · ·×Znd

×M
and C = {(ε1, ε2, . . . , εd, 0) : εi ∈ {0, 1}}. Finally, we propose that other choices of
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C could lead to questions of future interest. (Zhang [16] has recently investigated

some of these questions.)
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