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Abstract

For afixed b € N = {1,2,3,...}, Goins et al. defined the concept of b-visibility for a
lattice point (r,s) in L = N x N which states that (r, s) is b-visible from the origin if
it lies on the graph of f(x) = ax?, for some positive a € Q, and no other lattice point
in L lies on this graph between (0,0) and (r, s). Furthermore, to study the density
of b-visible points in L, Goins et al. defined a generalization of greatest common
divisor, denoted by gcd,, and proved that the proportion of b-visible lattice points
in L is given by 1/¢(b+ 1), where ((s) is the Riemann zeta function. In this paper
we study the mean values of arithmetic functions A : L — C defined using ged,
and recover the main result of Goins et al. as a consequence of the more general
results of this paper. We also investigate a generalization of a result in the article of
Goins et al. that asserts that there are arbitrarily large rectangular arrangements of
b-visible points in the lattice L for a fixed b, more specifically, we give necessary and
sufficient conditions for an arbitrary rectangular arrangement containing b-visible
and b-invisible points to be realizable in the lattice L. Our result is inspired by the
work of Herzog and Stewart who proved this in the case b = 1.
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1. Introduction

Let L denote the lattice N x N. A point (r,s) in L is called wvisible from the origin,
or simply wisible, if ged(r,s) = 1, which is equivalent to having no other integer
lattice points on the line segment joining the point (0,0) and the point (7, s).

A classical result which predates the Prime Number Theorem asserts that the
proportion of visible points in L is given by 1/¢(2) = 6/7% ~ 0.608, where ((s) is
the Riemann zeta function. In a recent paper [4], Goins et al. explore the visibility
of lattice points on generalized lines of sight. Here, by generalized line of sight we
mean that the line from the origin to the lattice point (r, s) is no longer a straight
line segment but a more general curve. In particular, they study the density of
b-visible points from the origin which are the points (r, s) in L that lie on the graph
of f(z) = az® where a is a rational number and b is a positive integer and no other
point in L lies on this curve (i.e., line of sight) between (0,0) and (r, s). Remarkably,
they show (cf. [4, Theorem 1]) that the proportion of b-visible points in L is given
by 1/¢(b+ 1).

To study the density of b-visible points, they develop a generalization of the
greatest common divisor.

Definition 1. Let b € N. The generalized greatest common divisor of r and s with
respect to b is denoted by ged, and is defined by

gedy (1, 8) := max{ k € N |k divides r and k° divides s }.

Notice that when b = 1, gcd, coincides with the classical greatest common divisor
and one immediately recovers the classical result mentioned earlier pertaining to the
proportion of visible points in L. Moreover, it is shown in [4] that a point (r,s) € L
is b-visible if and only if ged,(r,s) = 1.

In this work, we first begin by studying the mean values of arithmetic functions
defined in terms of the ged,. That is, for a fixed b € N and an arithmetic function
f:N—C, we define Ay : L — C to be

Ag(r,s) = f(gedy(r, s))- (1)

We let M (Ay) denote the mean value of Ay over L (see Section 2 for the precise
definition) and ((s) = >_ f(n) n~*® denote the Dirichlet series associated to f. Then
our first result is as follows.

Theorem 2. Fiz b € N and let f : N — C be some arithmetic function satisfying

1O | (f * ) (k)|
N};Teo (N — o0), (2)
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where p is the Mobius function and * is the Dirichlet convolution. Then M(Ay)

exists and
_Gr(b+1)

as long as Cr(s) is absolutely convergent at s = b+ 1. Moreover, the condition (2)
holds, for example, when f is a bounded function.

Remark 3. We can recover the main result of [4] as an immediate application of
Theorem 2 by letting f(n) = HJ .

n

As another consequence of Theorem 2 we have the following result which gives
the density of the points (r,s) € L with a fixed gcd,.

Theorem 4. Fix two positive integers b and k. Then the proportion of points
(r,s) € L for which gcdy(r,s) =k is

1

We also study the average value of gcd, and obtain the following asymptotic
formula.

Theorem 5. Fix be N withb> 2. Then

_ b1_G(0)
Oém ngb(’f’, S) = $b+ m + O(E(x)),

O<s§3cb

where

) a? loga b=2)
Blw) = {a:b (b>2).

In the last part of this work, we explore a generalization of a result of Goins et al.
[4, Theorem 2] that asserts that there are arbitrarily large rectangular arrangements
in L consisting only of b-invisible points. More specifically, given an arbitrary
rectangular arrangement consisting of b-visible and b-invisible points, which we call
a b-pattern (see Definition 9), we provide necessary and sufficient conditions for
it to be realizable in the lattice L. This generalization is motivated by the work
of Herzog and Stewart, who in [5, Theorem 1] have completely characterized the
conditions for a given pattern (in the case b = 1) consisting of visible and invisible
points to be realizable in L. In particular, they showed that the lattice L contains
arbitrarily large rectangular patches consisting entirely of invisible points. The
following theorem which we prove in Section 3 generalizes Theorem 1 in [5] to
our setting and completely characterizes the conditions for a given b-pattern to be
realizable in L.
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Before stating the theorem we need to introduce the following definition. Let m
be a positive integer and S be any collection of m?*! points in L. We say that S is
a complete rectangle modulo (m, m®) if it contains a complete system of residues of
the Cartesian product Z/mZ x Z/mb 7.

Theorem 6. For a fired b > 1 let P be a b-pattern consisting of b-visible and b-
inwvisible points. Then P is realizable in L if and only if the set of b-visible points
in P fails to contain a complete rectangle modulo (p,p®) for every prime p.

In Section 3, we also give a number of immediate corollaries of this theorem
which state whether or not certain b-patterns P can be realizable in L. Indeed, as
a corollary we recover Theorem 2 in [4]:

Corollary 1. L contains arbitrarily large rectangular patches consisting entirely of
b-inwvisible points.

Our paper is organized as follows. Section 2 contains the necessary definitions
and the proofs of Theorem 2, Theorem 4 and Theorem 5. Section 3 provides a proof
of Theorem 6 and discusses various consequences of this theorem.

2. Distribution of gcd,

2.1. Mean Value of Arithmetic Functions of Generalized Greatest
Common Divisor

For a positive integer N let
Ty :={(r,s) e L|0<7r,s < N}. (4)

We define the mean value of a function A : L — C to be the limit

Z(r,s)eTN A(T, S)

()

For an arithmetic function f : N — C we will be interested in functions Ay : L —
C that are as in Definition 1. For these functions Theorem 2 shows that M (Af) can
be computed in terms of the Dirichlet series (¢(s) = Y f(n)n~° associated to f
and the Riemann zeta function ((s). When b = 1, the computation of M(Ay) was
previously considered in [7, Theorem 7]. We now present a proof of the theorem.

Proof of Theorem 2. Let u be the constant function u(n) = 1 for all n € N. Let
g denote the Dirichlet convolution f * p of f with the Mobius function p so that
g*u = f. Then Ay = Ay, and the number of times the term g(k) (for a given
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k € N) appears in the sum

= Y Agulns = Y S gk

0<r,s<N 0<r,s<N

is L%J L%J Therefore

N
o =30 | 7] |5
k=1
On the other hand,
N2 N| | N N (N N N N N
e 5l -w G- [F) 5 G- 15]) @
N

NN <é
<G| S

Then by our hypothesis on g = f * u we have

N 2
lav = 341 9(K) gper| _ 2N Hy
—0
N2 - N? ’

where Hy = Yoo, |g(k)|k~1. This implies
M(Ag) = G0+ 1).

The equality (3) follows now from the fact that {f(s) = (4(s)¢(s) for every s for
which (f(s) and ((s) are absolutely convergent. O

As another consequence of Theorem 2 we can also count the proportion of lattice
points with a given ged,. More specifically, fix two positive integers b and k. For
N > 0 let Ty be the set defined in (4), then the proportion of lattice points with
ged, equal to k is defined by the limit

) |{(r,s) € Tn | ged, (1, s) :k}|
lim .
N—oo |TN‘

The value of this limit is given in Theorem 4, whose proof follows from Theorem 2
by taking f : N — C to be the function defined by f(n) = k for n = k, and f(n) =0
for n # k.

More generally, we obtain the following generalization to b > 1 of a result of
Cohen [2, Corollary 3.2].
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Corollary 2. Let S be a subset of N. Then the proportion of lattice points (r,s) € L
for which gedy(r, s) € S is given by Cs(1+b)/¢(b+ 1), where
=1
(sh+1)= > T
k=1,keS

More precisely,

lim {(r,s) e L|0<r,s <N, gcdy(r,s) € S} _ Cs(b+1)

2.2. The Average Value of General Arithmetic Functions in the Lattice

For a general function A : L — C we can still give a description of the mean value
M(A) in terms of a Dirichlet series whose k-th coefficient ( k& > 0 ) is the average
value of A on the points with ged, = k for a fixed b € N. More specifically, we
define
o~ My k(A
Canls) = M)

ks
k=1

where the coefficient M, ,(A), k > 0, is the average value of A on the points having

ged, =k, ie.,
Do (r5)eTny MT )
My (A) = 1 DB N.bk
b’k( ) Ngnoo |TN,b,k ’
and
Ty :={(r,s) € L|0<r,s <N, gedy(r,s) =k} (7)

As an interesting note, we can give a formulation of M 1 (A) in geometric terms
if we interpret the ged, as a metric as follows. Given a point A = (r,s) in L' =
L U {(0,0)} we let ||Al|p := ged,(r,s) if A # (0,0), and ||4][, = 0 if A = (0,0).
We say that two nonzero points A = (1, $1) and B = (r2, s2) in L are in the same

( 1 S1 )( 2 52 )
1Ay [| Al 1BIls" 1|BII; )

i.e., the points A and B both lie on the graph of f(z) = ax’, for some positive
rational number a.
For A, B € L' we define the metric

b-curve of vision if

|1|Blls — ||Alls |, if A and B are in the same b-curve of vision,

d A’B =
! ) {||A||b + [|B|p, otherwise.

In particular, dp(O, A) = || Allp.
With this definition of metric, the ball centered at the origin having radius 1 is
exactly the set of b-visible points from the origin. Moreover, the set of points whose
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ged, is a fixed integer £ can be thought of as sphere of radius k£ centered at the
origin:
Sh:={AcL:|Al=k}. (8)

Furthermore, according to Theorem 4 the sphere S? has density 1/(k*+1¢(b + 1)).

With this notation, M, ;(A) can be thought of as the average value of A on the
sphere S,g.

The following theorem informs us on how to calculate M(A) from (p,. We
remark that [7] also has a description of M(A) but in terms of certain multiple
Dirichlet series.

Theorem 7. Fizb € N and let A : L — C be a bounded function. Then (pp(s) is
convergent at s =b+ 1 and

(A b(b + 1)
M(A) = 2——-2. 9
Proof. We begin by showing that
M(A) = My(D), (10)
k=1
where M (A) is defined as the limit
hm Z(T’,S)ETN,b,k- A('f', 5)
N—o0 N2
and Ty px is as in (7).
In order to show this, we start with dividing the following identity by N?
Yoo A=) Y Alns),
0<r,s<N k=1 0<r,s<N
gedy (r,s)=k
thus obtaining
A(r,s ©
> o<rs<n AT, 8) _ Z SN,k’ (1)
N2 N2

where

SN,k = E A(’I“, 8).
o<r,s<N
gedy (r,s)=k

Let C > 0 such that |A(r,s)| < C for all (r,s) € L. Then

[Snkl < anpk C,
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where gy bk = |TN k|- Using the trivial bound

HTE

[Svil . C

N2 < Eb+17

for all N > 1. The Weirstrass M-test allows us now to interchange the limit N — oo
in the infinite sum (11), thus obtaining (10).

Finally, (9) is a consequence of the identity

My (A
M) = ey 2y

which in turn follows by taking the limit as N — oo in

we obtain the estimate

SNk SNk ANk
N2 gnpr N2

and observing that qn 1 /N? — 1/(k**1¢(b+ 1)), by virtue of Theorem 4. O

Clearly this theorem immediately implies Theorem 2 as M ,(Af) = f(k), for all
k >0, for Ay defined as in (1).

2.3. The Average Value of gcd,

In this section we are going to study the average value of the gecd, throughout the
points of the lattice L in more detail. The case b = 1 has been previously considered
in the paper [3] and asserts that

x? /
Z ged(r, s) = @ <10gm + 2y — % - CC((22))) + Oz 10t (12)

for every € > 0, where ~ is the Euler constant and 6 is the exponent appearing in
Dirichlet’s divisor problem, namely, 6 is the smallest positive number such that for
every € > 0

r,s<x

Z 7(n) = zlogz + (27 — 1)z + O(297).
n<x
Moreover, it is known that 1/4 < 6 < 131/416, where the upper bound was found
by Huxley in [6] and it is the best upper bound for 6 up to date.
The case b > 2 is treated in Theorem 5 whose proof we give below. We highlight
that, unlike (12), Theorem 5 does not provide secondary error terms. We also point
out that even tough it is classical to consider the sum

Z ngb(rv 8)7

o<r<z
0<s<zx
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it is more natural in this context to rather work with the sum

Z ged, (7, s).

o<r<z
0<s§xb

Proof of Theorem 5. Let b > 2. From the classical identity Zd|n pd)y=n,n>1
for the Euler totient function ¢, we obtain the following identities

Y ogedy(rs)= > > 6(d)

o<r<z 0<r<z d|gcdy(r,s)
0<s<z® 0<s<z®

=S o0 3] |5)
=5 o {Gm+0 (%))

d<z
_ s 2@ b\ 20d)
_ Zdb+1+o(x > da ).
d<z d<z
We now invoke the following estimates (cf. [1] Chapter 3, Exercises 6 and 7)
log x
logm+——A+O< )7 13
@) : 1

n<x

where A = 3700 almlogn _ ¢2) g

n

e
Z¢ Cla @ mE) N __Zﬁw( 1= og ), (14)

n<zx

where @ > 1 and « # 2.
Applying (13) and (14) to b = 2 we have

3 gedy(r,s) = 2° {@ SLNE ) (hfx)} + O(21og )

2 (3) )
= ac?’% + O(2? log ),

and applied to b > 3 we similarly obtain

b
Z ged, (1, 5) = 2Pt {C(lc)(j)l) + = bﬁ + 0z~ 1og:c)} + O(zb)

sgwb
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which proves the theorem. O

3. The Graph of b-visible Points

The collection of all b-visible points in the lattice L can be thought of as a graph,
denoted by Gy, if we build an edge between two given b-visible points whenever the
Euclidean distance between them is 1. In this section we will prove some results
concerning the connectivity of the graph Gy,

We start with the following result which states that Gy, is on average 4/((b+ 1)-
connected, i.e., every point in the graph Gy is on average connected to 4/{(b+ 1)
points.

Theorem 8. For an arbitrary point in the lattice L, there are on average

4
¢(b+1)

b-visible points around it. More precisely, for (r,s) € L define
A(r,s) = [{(n,m) € L|(n,m) is b-visible and |n —r| 4+ |m —s| =1 }|,

and let M(A) be as in (5). Then

Proof. Let ©(r,s) = { J for (r,s) € L. Then

1
gedy (7,s)

A(r,s) = Z O(n,m).

(n,m)eL
[n—r|+|n—s|=1

For an integer N > 2 we have that the sum

Z A(r, s)

o<r,s<N

equals

4 3" O(rs) - [0(1,1)+6(1,N) + O(N,1) + O(N, N) |
o<r,s<N .
=Y [e01,i) +6(i,1) + 6, N) + O(N, )],

i=1
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but since © is a bounded function we clearly have

> Alrs)=4 > O(r,s)+O(N).

0<r,s<N 0<r,s<N
The result now follows from Theorem 2 applied to ® and Remark 3. O

Despite the result above, we will show in Corollary 5 that the graph G} is not
connected, i.e., for every b > 1 there are b-visible points completely surrounded by
b-invisible points. The connectivity of the graph G was also studied by Vardi [8] in
connection with the question of unbounded walks on a single subset of a graph which
Vardi calls deterministic percolation. Vardi shows that there is a unique infinite
connected component of Gy, denoted by C7, which has an asymptotic density. In
particular, Theorem 3.2 and 3.3 of [8] shows that the limit

0 := lim 7|Cl NTy|
N—oo |TN|
exists and it is non-zero, where T) is defined in (4). Moreover, his computations
seem to indicate that the proportion of C; in G is approximately 0.96+.01. There-
fore 6 ~ 0.58368 which experimentally shows that more than 58% of lattice points
lie in the infinite component.

Since G C Gy, for b > 2, the results of [8] immediately imply that there is only
one infinite connected component of Gy, which we denote by C,. Moreover, this
infinite connected component has positive density in Gy, i.e. there exists a constant
K > 0 such that

K <

for N > 0. In future work we would like show that the limit

lim 7|Cb NTy|
N—o0 |TN|

exists for all b > 1 and compute it experimentally.

3.1. Patterns of b-visible and b-invisible Lattice Points

In [4, Theorem 2] it is shown that the lattice L contains arbitrarily large rectangles
containing only b-invisible points. This raises the natural question: what other
rectangular arrangements consisting of b-visible points and b-invisible points can be
found in the lattice L? In [5], Herzog and Stewart gave a complete answer to this
question in the case b = 1. In this section we generalize their work to the case b > 2.

In order to make the geometrical representations easier to visualize, we will use
the same notation as in [5] and assign a circle (o) for every b-visible point in the
lattice and a cross (x) for every b-invisible point.
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Definition 9. Let w be a positive integer and to each element (r,s) € L with
1 <r<wandl < s < w’ assign a cross or a circle or neither. We call this
configuration a b-pattern P of L.

We say that the b-pattern P can be realized in L if there exists a point (u,v) in
L such that the rectangle

(u,v) +P={(r,s)eL:u+1<r<u+tw v+1<s<v+uw’}

has a b-visible point whenever P has a circle and a b-invisible point whenever P has
a Cross.

Definition 10. Let m be a positive integer. We call a complete rectangle modulo
(m,m®) any collection S of m’*! points in L containing a complete system of

residues of the Cartesian product Z/mZ x Z/mb Z.

In what follows, we will use the notation (z,y) = (r,s) mod (m,m®) to mean
that the congruences z = r mod m and y = s mod m? both hold.
We are now ready to prove the main result in this section.

Theorem 11 (cf. Theorem 6). A given b-pattern P is realizable in L if and only
if the set C of circles in P fails to contain a complete rectangle modulo (p,p®) for
every prime p.

Proof. Let (u,v) be an element in L. Assume that the b-pattern P is embedded in
the square 1 <r < w, 1 < s < w’. Denote by (u,v)+ P the translate of every lattice
point in the b-pattern P by (u,v). If we assume that the b-pattern P is such that
its set C' of circles contains a complete rectangle modulo (p,p®) for some prime p,
then there exists an element (r, s) in (u,v)+ P for which (r,s) = (0,0) mod (p,p?).
This implies that p divides ged, (r, s), and thus (r, s) is b-invisible. This contradicts
that P is realizable in L, which proves the necessity of the condition.

Assume now that the set C' of circles in P fails to contain a complete rectangle
modulo (p, p®) for every prime p. Then we will find a (u, v) in L such that (u,v)+ P
contains a b-visible point for every circle of P and a b-invisible point for every
cross in P. Such (u,v) will be found as a common solution to three collections of
congruences that we define below.

We define the first collection of congruences as follows. Let p be a prime with
p < w. The condition of the theorem implies the existence of a point (r, s,) such
that (r,s) # (rp,sp,) mod (p,p?) for all (r,s) in C. Let (u,v) be such that

(u,v) = (—rp, —sp) mod (p, p°). (15)

For all (r, s) in C' we then have (u+7r,v+s) = (r—rp,,s—s,) # (0,0) mod (p, p), so
that gde,(u+ 1, v+ ) is not divisible by p. Since the moduli p in (15) are relatively
prime, we can find a (u,v) so that (15) holds simultaneously for all p < w.
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We build now the second collection of congruences. The idea for this collection
is to guarantee that every cross in P becomes a b-invisible point in (u,v) + P. This
is done as follows. To each cross (i,7) in the b-pattern P we associate a prime
Q(i,7) > w, with different primes Q(i, j) corresponding to different points (¢, 7). To
the congruences (15) we attach the congruences

(u’ U) = (_ia _.7) mod (Q(Z,]),Q(Z,])b), (16)

for each cross (7, 7) in the b-pattern P. The congruence (16) implies (u+1i,v+j) =
(0,0) mod (Q(i,4), Q(i,5)?). This implies that Q(i, j) divides gedy(u +4,v +5), so
that (u—+4,v+ j) is b-invisible for every cross (7, j) in the b-pattern P. Once again,
the Chinese Remainder Theorem guarantees the existence of a common solution
(u,v) to (15) and (16).

Observe, additionally, that for this common solution (u,v) we have that the
congruence (u +r,v + s) = (0,0) mod (Q(i,7), Q(i,5)?), for (r,s) with 1 < r < w
and 1 < s < w®’, has a solution if and only if (7, s) coincides with the cross (i, ) in
P. This is a consequence of the inequalities Q(i,j) > w and Q(i,5)" > w®.

The above considerations imply so far that for a circle (r,s) in P the number
ged, (w47, v + s) is not divisible by the primes p < w and Q(z, ). However, it may
still happen that ged,(u + r,v + s) > 1 for some circle (r,s) in P. We can remedy
this by considering a third collection of congruences as follows.

First, fix a positive u satisfying both (15) and (16). The positive numbers u +
1,...,u+w have a finite number of prime factors which, by the above considerations,
are all different than the primes p < w and Q(4,j); we use ¢ to denote these prime
factors. For each one of these primes ¢ we attach to (15) and (16) a new set of
congruences

v=0 mod q, (17)

which has a simultaneous solution by the Chinese Remainder Theorem. Moreover,
since ¢ > w (and so ¢° > w’) we have that v+1, ..., v+w® lies between two multiples
of ¢°, namely v and v + ¢°, therefore v + s is not divisible by ¢® for 1 < s < w’. In
this way, for every circle (r,s) in C we have that ged,(u + r,v + s) is not divisible
by any of the primes ¢. In conclusion, we have that ged,(u +7r,v + s) = 1, ie.,
(u+r,v+ s) is b-visible for every circle (r,s) in C. This finishes the proof of the
theorem.

O

It is worth mentioning that since the criterion for a b-pattern P to be realizable
in L is based on a collection of congruences, it immediately follows that if P is
realizable once then it is realizable infinitely many times.

We finish by stating a collection of results that are consequences of Theorem 11.

Corollary 3 ( [4, Theorem 2] ). Any b-pattern P containing only crosses is
realizable in L, that is: L has arbitrarily large b-invisible forests.
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Corollary 4. Let P be the b-pattern consisting of a square with vertices (1,1),
(N,1), (N,N) and (1,N), N > 1, containing only circles. Then P is realizable if
and only if N? < 2°.

Corollary 5. Any b-pattern P composed of crosses and only one circle is realizable
in L, that is, there are extremely lonesome b-visible points. Therefore the graph Gy
defined above is not connected.

For example, the point (6001645,49747967748324) has ged, = 1, but the points
around it which are (600164541, 49747967748324+j) with (i,5) = (-1, -1), (-1, 0),
(-1,1),(0,-1),(0,1),(1,-1),(1,0), (1,1) have ged, = 19,6,11,13,5,17,2, 7 respec-
tively.

Corollary 6. Let P be the b-pattern that consists of a rectangle with vertices (1,1),
(M,1), (M,N) and (1,N), M > 2, N > 2, with all of its boundary points being
circles and all its interior points being crosses. For b = 1, we have that P is
realizable in L if and only if M and N are both odd (cf. [5, Corollary 3]). For
b > 2, P is realizable in L if and only if M is odd or N > 2°. In particular, there
are arbitrarily large rectangular b-invisible forests fenced off by b-visible points.

Proof. We will assume that b > 2, since the case b = 1 can be found in [5, Corollary

Let p > 2 be a prime number. Take z mod p such that z # 1, M, N mod p.
Then (z, z) mod(p, p?) cannot be congruent to any of the elements in the boundary
of P which is described by the set

C:={(L,s), (r,1), (M,s), (nN) : 1<r<M,1<s<N}

Thus we have shown that C fails to contain a complete rectangle modulo (p, p®) for
p > 2. Therefore, for this specific pattern P we have that

P is realizable in L <= C fails to contain a complete rectangle mod(2,2°). (18)

With this new equivalency in mind we now proceed to prove the result. Suppose
that P is realizable in L. Let us show that either M is odd or N < 2°. Suppose
not, i.e., M is even and N > 2°. Then the following points of C

(1,1), (1,2),...,(1,2°) and (M,1), (M,2),..., (M,2°)

contain a complete rectangle mod(2,2%). This is a contradiction according to (18).

Conversely, suppose that M is odd or N < 2°. Let us show that P is realizable
in L. According to (18) it is enough to show C fails to contain a complete rectangle
mod(2,2%). In order to do this, we will show that it is impossible for the set C to
contain all of the elements

(2,2),(2,3),...,(2,2°) mod(2,2°%). (19)
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from a complete rectangle modulo (2,2%). Indeed, if M is odd then only the points
from C given by (r, N), 1 <r < M, could contain all of (19), but this is impossible
as their second component is N which is fixed; recall that 2 < 2° since we are
assuming b > 2.

Finally, if N < 2° then none of the points in C is congruent to the pair (2,2%)
mod(2,2°) as they all have second component between 1 and N (< 2°). O
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