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Abstract

Divisor functions have attracted the attention of number theorists from Dirichlet
to the present day. Here we consider associated divisor functions c

(r)
j (n) which, for

non-negative integers j and r, count the number of ways of representing n as an
ordered product of j + r factors, of which the first j must be non-trivial, and their
natural extension to negative integers r. We give recurrence properties and explicit

formulae for these novel arithmetic functions. Specifically, the functions c
(−j)
j (n)

count, up to a sign, the number of ordered factorizations of n into j square-free
non-trivial factors. These functions are related to a modified version of the Möbius
function and turn out to play a central role in counting the number of sum systems
of given dimensions. Sum systems are finite collections of finite sets of non-negative
integers, of prescribed cardinalities, such that their set sum generates consecutive
integers without repetitions. Using a recently established bijection between sum sys-
tems and joint ordered factorizations of their component set cardinalities, we prove
a formula expressing the number of different sum systems in terms of associated
divisor functions.

1. Introduction

Sum systems are finite collections of finite sets of non-negative integers, of prescribed

cardinalities, such that the process of taking one element from each component set

and adding them up generates each number in an arithmetic progression exactly

once. Thus a sum system is of the form A1, . . . , Am ⊂ N0 := N∪{0} = {0, 1, 2, . . . },
such that

m∑
k=1

Ak =

{
0, 1, . . . ,

m∏
k=1

|Ak| − 1

}
,
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where the sum on the left-hand side is the Minkowski set sum defined as
m∑
k=1

Ak =

{
m∑
k=1

ak : ak ∈ Ak (k ∈ {1, . . . ,m})

}
and |Ak| denotes the cardinality of the set Ak. Such systems play a role in the

construction of principal reversible cuboids and (in the simple case of only two

component sets) of other matrices with integer entries and specific symmetry prop-

erties, e.g. most-perfect pandiagonal squares, cf. [8]. A variant of sum systems with

infinitely many component sets was considered, under the curious name ‘British

Number Systems’, by de Bruijn [2].

A construction formula for all sum systems was derived in the recent work [5].

Specifically, the construction of sum systems of given cardinalities a1, . . . , am for

the m component sets is based on joint ordered factorizations of these cardinalities,

defined as follows (cf. [5, Definition 6.6]); note that here and in the following we use

the notation N≥2 = N + {1} = {2, 3, 4, . . . }.

Definition. Let m ∈ N and a ∈ Nm. Then we call

((j1, f1), (j2, f2), . . . , (jL, fL)) ∈ ({1, . . . ,m} × N≥2)L,

where L ∈ N, a joint ordered factorization of a = (a1, . . . , am) if∏
jl=j

fl = aj (j ∈ {1, . . . ,m})

and jl 6= jl−1 (l ∈ {2, . . . , L}).

In other words, a joint ordered factorization of an n-tuple of natural numbers

a1, . . . , am arises from writing each of these numbers as a product of non-trivial

factors, i.e., factors ≥ 2, and then arranging all factors in a linear chain such that

no two adjacent factors arise from the factorization of the same number. It was

proven in [5, Theorem 6.7] that, given a joint ordered factorization, the sets

Ak =
∑
jl=k

(
l−1∏
s=1

fs

)
{0, 1, . . . , fl − 1} (j ∈ {1, . . . ,m})

(where we use the convention of multiplying a set of numbers M with a constant

α, αM = {αx : x ∈ M}) form a sum system, and that conversely any sum system

arises from some joint ordered factorization of its dimensions in this way. (In less

explicit form, the structure of sum system components had been obtained in [2]).

This establishes a bijection between sum systems and joint ordered factorizations.

As an illustrative example, consider the case m = 5, (a1, a2, a3, a4, a5)

= (4, 6, 8, 12, 20). An example of a joint ordered factorization of this quintuple

of dimensions is

((1, 2), (5, 2), (2, 2), (5, 5), (3, 4), (5, 2), (4, 4), (3, 2), (4, 3), (1, 2), (2, 3)),
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yielding the corresponding sum system

A1 ={0, 1, 7680, 7681}
A2 ={0, 4, 15360, 15364, 30720, 30724}
A3 ={0, 40, 80, 120, 1280, 1320, 1360, 1400}
A4 ={0, 320, 640, 960, 2560, 2880, 3200, 3520, 5120, 5440, 5760, 6080}
A5 ={0, 2, 8, 10, 16, 18, 24, 26, 32, 34, 160, 162, 168, 170, 176, 178, 184, 186, 192, 194}.

Thus, inscribing the above numbers on the faces of the five platonic polyhedra and

adding the numbers obtained in each roll of these five dice, we obtain a random

number generator for the integers 0, 1, . . . , 46079 (= a1a2a3a4a5 − 1) with uniform

probability distribution.

In the present paper, we answer the question of how many different joint ordered

factorizations of a given m-tuple of positive integers there are. Our main result

is Theorem 4, which expresses the number of joint ordered factorizations in terms

of values of certain associated divisor functions at a1, . . . , am (see Equation (14)).

These functions turn out to be closely linked to a modified version of the number

theoretic Möbius function (cf. [1, p. 77]). In Section 2, we study some of their

properties before tackling the counting problem in Sections 3 and 4.

For the reader’s convenience, here is a summary of the standard multi-index

notation used in this paper. For m-tuples of integers, we apply the usual compo-

nentwise addition, subtraction and scalar multiplication as well as the size function

and the multi-factorial,

|n| =
m∑
j=1

|nj |, n! =

m∏
j=1

nj ! (n ∈ Nm0 ),

respectively, and the partial ordering

n ≤ ñ⇐⇒ nj ≤ ñj (j ∈ {1, . . . ,m}).

We define the special m-tuples 0m = (0, . . . , 0), 1m = (1, . . . , 1) ∈ Nm0 . In addition

to the usual binomial coefficients, we use the multi-binomial coefficients(
n
ñ

)
=

m∏
j=1

(
nj
ñj

)
=

n!

ñ! (n− ñ)!
(n, ñ ∈ Nm0 , ñ ≤ n)

and the multinomial coefficients(
|n|
n

)
=

|n|!∏m
j=1 nj !

=
|n|!
n!

(n ∈ Nm0 ).

Note that using the same bracket notation for these different quantities does not

create confusion, since the type (dimensionality) of the arguments determines which
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coefficient is meant. Finally,

xn =

m∏
j=1

x
nj
j (n ∈ Nm0 , x ∈ Rm).

2. Non-trivial and Associated Divisor Functions

Divisor functions have been studied by many eminent number theorists, from Dirich-

let to the present day (e.g. [10], [6], [7]). The non-trivial and associated divisor

functions defined in [4] can be conveniently described in the framework of the com-

mutative Dirichlet convolution algebra of arithmetic functions. The convolution of

arithmetic functions f1, f2, . . . , fj is given by

(f1 ∗ f2 ∗ · · · ∗ fj)(n) =
∑

n1n2···nj=n
f1(n1)f2(n2) · · · fj(nj), (1)

summing over all ordered factorizations of n ∈ N into j factors. We denote the jth

convolution power as follows, f∗j := f ∗ f ∗ · · · ∗ f, where the right-hand side has j

repetitions of f ; by the usual convention, f∗0 = e. The function e(n) = δn,1 (n ∈ N)

is the neutral element of the Dirichlet convolution product, and the convolution

inverse of the constant function 1 is the well-known Möbius function µ.

In analogy to the standard jth divisor function dj = 1∗j (cf. [11, p. 9]), which

counts the ordered factorizations of its argument into j positive integer factors, we

define the jth non-trivial divisor function cj = (1− e)∗j , which counts the ordered

factorizations of its argument into j non-trivial integer factors, i.e., into factors > 1.

Furthermore, for a non-negative integer r, the associated (j, r)-divisor function

is defined as c
(r)
j = (1 − e)∗j ∗ 1∗r. In view of Equation (1), it counts the ordered

factorizations of its argument into j + r factors, of which the first j must be non-

trivial.

As the constant function 1 has a convolution inverse, the latter definition extends

naturally to negative upper indices, giving the associated (j,−r)-divisor function

c
(−r)
j = (1−e)∗j∗µ∗r. (Note that 1−e does not have a convolution inverse, so there is

no analogous extension to negative lower indices.) The functions c
(−r)
0 = µ∗r were

studied by Popovici [9]. In the associated (j,−r)-divisor functions, the modified

Möbius function

(µ− e)(n) =

{
(−1)Ω(n) if n is square-free

0 otherwise (including the case n = 1)
(n ∈ N),

where Ω(n) is the number of prime factors of n, appears naturally. Indeed, if j ≥ r,
then

c
(−r)
j = (1− e)∗j−r ∗ ((1− e) ∗ µ)∗r = (−1)r(1− e)∗j−r ∗ (µ− e)∗r;



INTEGERS: 20 (2020) 5

if j < r, then

c
(−r)
j = ((1− e) ∗ µ)∗j ∗ µ∗r−j = (−1)j(µ− e)∗j ∗ µ∗r−j .

Note that c
(r)
j (n) involves factorization of n into j + r factors if r ≥ 0, into

max{j,−r} factors if r < 0, of which at least j must be non-trivial, so c
(r)
j (n) = 0

if j > Ω(n). (Also, if r < 0, then at least −r factors must be square-free.)

The special case j = −r,

c
(−j)
j (n) = (−1)j

∑
n1n2···nj=n

(µ− e)(n1) (µ− e)(n2) · · · (µ− e)(nj) (n ∈ N), (2)

turns out to be of particular importance (cf. Theorem 4 below). The value of

c
(−j)
j (n) can be interpreted as (−1)Ω(n)+j times the number of ordered factorizations

of n into j non-trivial, square-free factors.

The following statement aids the calculation of the associated divisor functions

either via a recurrent scheme similar to Pascal’s triangle, or directly in terms of the

prime factorization of their argument.

Theorem 1. Let j ∈ N0, r ∈ Z. Then

(a)

c
(r+1)
j = c

(r)
j+1 + c

(r)
j ; (3)

(b) if n = pa11 pa22 · · · paνν with distinct primes p1, p2, . . . , pν , then

c
(r)
j (n) =

j∑
k=0

(−1)k
(
j
k

) ν∏
l=1

(
al + r + j − k − 1

al

)
. (4)

Proof. Equation (3) follows immediately from the observation that c
(r)
j+1 = (1 −

e)∗j+1 ∗ 1∗r = (1 − e)∗j ∗ 1 ∗ 1∗r − (1 − e)∗j ∗ e ∗ 1∗r. For part (b), the binomial

theorem gives

c
(r)
j =

j∑
k=0

(−1)k
(
j
k

)
e∗k ∗ 1∗j−k+r, (5)

and Equation (4) follows from the identity (cf. [4, Lemma 1])

1∗j(n) =

ν∏
k=1

(
ak + j − 1

ak

)
, (6)
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which holds for all integers j. As 1 and 1∗−1 = µ are multiplicative arithmetic

functions and the Dirichlet convolution of multiplicative functions is multiplicative,

it is sufficient to verify (6) for a single prime power. For positive j, 1∗j(pa) is, by

Equation (1), equal to the number of j-part partitions of a, i.e., to

(
a+ j − 1

a

)
.

Furthermore, again by Equation (1), 1∗−j(pa) = µ∗j(pa) is equal to (−1)a times the

number of ways of writing a as an ordered sum of j terms, each either 0 or 1, i.e.,

to (−1)a
(
j
a

)
=

(
−j + a− 1

a

)
.

Remarks. 1. In the specific case of a power of a square-free number n, the product

in Equation (4) turns into a power; then, using the last identity in the above proof,

we can derive the formula

c
(r−j+1−a)
j (na) = (−1)aΩ(n)+jc

(−r)
j (na).

2. The discussion before Theorem 1 shows that for all r ∈ Z, the factorization

involved in c
(r)
j requires j non-trivial factors. If j = Ω(n), then these must be the

prime factors of n. Hence, writing c
(r+1)
|a| (pa11 pa22 · · · paνν ) in two different ways, and

taking j = |a| and changing the summation variable from k to |a| − k in eq. (4), we

can deduce the interesting identity(
|a|
a

)
=

|a|∑
k=0

(−1)|a|−k
(
|a|
k

) ν∏
l=1

(
al + k + r

al

)
for all a ∈ Nν , ν ∈ N, and for all r ∈ Z; note that the left-hand side is independent

of r.

We note the following relationships between the associated divisor functions and

the standard divisor functions dj (and their inverses with respect to Dirichlet con-

volution).

Theorem 2. Let j ∈ N0, r ∈ Z. Then

dr =

∞∑
k=0

(
k + r − 1

k

)
c
(−k)
k . (7)

More generally, for any u ∈ N0 and v ∈ Z,

c
(r+v)
j+u =

∞∑
k=j

(
k + r − 1
k − j

)
c
(v−k)
u+k . (8)
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Proof. The identity (7) follows from the inverse binomial formula,

1∗r = (e+ µ− e)∗−r =

∞∑
k=0

(−1)k
(
r + k − 1

k

)
(µ− e)∗k.

The series is pointwise convergent because µ− e is pointwise nilpotent in the con-

volution algebra. Hence induction on j gives

(1− e)∗j ∗ 1∗k =

∞∑
k=j

(
k + r − 1
k − j

)
(e− µ)∗k,

and Equation (8) follows by convolution with (1− e)∗u ∗ 1∗v on both sides.

Remark. Curiously, the binomial coefficient appearing in Equations (7) and (8)

can be expressed as the associated divisor function of a kth prime power, c
(r)
j (pk) =(

k + r − 1
k − j

)
(cf. [4, Lemma 5] and [11, p. 62] for j = 0), giving an alternate form

as the sum over products of the form c
(r)
j (pk)c

(−k)
k (n). For j = 0, this is equal to

the number of weak compositions of k into r parts (cf. [12, p. 15]). We also note

that Equation (5) provides a converse to Equation (7).

Taking r = 2 in Equation (7) gives an expression for the standard divisor function

(number of divisors), d2 =
∞∑
k=0

(k + 1)c
(−k)
k . Taking r = 1 yields the identity 1 =

∞∑
k=0

c
(−k)
k . We note that the sum

∞∑
k=0

|c(−k)
k |, which gives the number of ordered

factorizations into (any number of) square-free, non-trivial factors, generates all

odd integers; indeed,
∞∑
k=0

|c(−k)
k (p1p

m
2 )| = 2m+ 1 (m ∈ N0).

3. An Auxiliary Counting Problem

We now turn to the question of counting the number of joint ordered factorizations

of a given m-tuple. In the present section, we first consider the following combi-

natorial problem. Given a number of colored (but otherwise identical) blocks, with

any number of blocks to each of several colors, in how many ways can all blocks

be arranged in a linear sequence such that no two adjacent blocks have the same

color? Note that the answer may very well be 0; indeed, if there are 2 more blocks

of one color than of all the other colors taken together, then there is no possible

arrangement.

In the following, we make extensive use of the standard multi-index notation

summarised at the end of the Introduction. We denote by en the number of different
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ways |n| objects, of which there are nj of type j, j ∈ {1, . . . ,m}, and which are

otherwise indistinguishable, can be linearly arranged such that no neighbouring

objects have the same type. Then, for any n ∈ Nm, the identity(
|n|
n

)
=

∑
1m≤k≤n

(
n− 1m
k − 1m

)
ek (9)

holds. Indeed,

(
|n|
n

)
is the number of linear arrangements of all objects ignoring

the non-adjacency condition. Given any such arrangement, consider the associated

collapsed arrangement where any group of contiguous objects of the same type is

replaced with a single such object, resulting in an arrangement of size k ≤ n satis-

fying the adjacency condition. There are ek different collapsed arrangements of size

k, and

(
n− 1m
k − 1m

)
different arrangements giving rise to each collapsed arrangement.

Theorem 3. Let n ∈ Nm, m ∈ N. Then

en =
∑

0m≤k≤n−1m

(−1)|k|
(
n− 1m
k

)(
|n− k|
n− k

)
. (10)

Proof. The power series for the generating function

∑
k∈Nm0

e1m+k
xk

k!

can be shown to be convergent for all x ∈ Rm by comparison with exponential series

using the a priori estimate

e1m+k ≤
(
|k + 1m|
k + 1m

)
≤ m|k|+m,

where we used Equation (9) in the first and the multinomial theorem in the second

inequality. Using the exponential series

exp

m∑
j=1

xj =
∑
k∈Nm0

xl

k!
(x ∈ Rm)

and the identity (9) between two applications of the multivariate Cauchy product
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formula, we find

∑
k∈N0

e1m+k
xk

k!
=

(∑
k∈N0

e1m+k
xk

k!

)∑
l∈Nm0

xl

l!

∑
l∈Nm0

(−1)|l|
xl

l!


=

∑
n∈N0

 ∑
0m≤k≤n

(
n
k

)
e1m+k

 xn

n!

∑
l∈Nm0

(−1)|l|
xl

l!


=

(∑
n∈N0

(
|n+ 1m|
n+ 1m

)
xn

n!

)∑
l∈Nm0

(−1)|l|
xl

l!


=
∑
k∈Nm0

 ∑
0m≤l≤k

(−1)|l|
(
k
l

)(
|k + 1m − l|
k + 1m − l

) xk

k!
(x ∈ Rm),

from which Equation (10) can be read off.

In the special case m = 2, working out the repeated binomial sums using Gould’s

combinatorial identities (3.48) and (3.47) [3] gives

e(n1,n2) =

(
2

n2 − n1 + 1

)
=

2 if n1 = n2,
1 if |n1 − n2| = 1,
0 otherwise.

(11)

This reflects the obvious fact that with only two types of objects, the non-adjacency

condition enforces an alternating arrangement, for which there are two possibilities

if the numbers of objects of both types are equal, one possibility if they differ by

one, and no possibility otherwise. We emphasise that m = 2 is a rather untypical

case and that for m ≥ 3 much more complex arrangements are possible.

Remark. Equation (10) can be given a direct combinatorial interpretation (and a

somewhat more convoluted proof) in the following manner. We call any arrange-

ment of the |n| objects ignoring the non-adjacency condition with t objects that

are each followed by an object of the same type marked with a tick an annotated

arrangement with t ticks. (Clearly there is no annotated version with t ticks of any

arrangement which has fewer than t objects followed by an object of the same type.)

For each t ∈ N0, let At be the set of all annotated arrangements with t ticks. Its

cardinality is

|At| =
∑

k∈Nm0 ,|k|=t

(
n− 1m
k

)(
|n− k|
n− k

)
. (12)

Indeed, given any element of At, we find kj ticked objects of type j ∈ {1, . . . ,m},
so |k| = t. Considering the nj objects of type j in the arrangement (ignoring the
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other types for the moment), the ticks can occur in nj − 1 places, so there are(
nj − 1
kj

)
possibilities. Taking ticked objects together with their following object

and single unticked objects as groups, there will be nj − kj such groups. Among

all types, the groups can be arranged in

(
|n− k|
n− k

)
ways, hence we obtain Equation

(12). Now to verify Equation (10), consider an arrangement of the objects. Let

l ∈ {0, . . . , |n| −m} be the number of objects in this arrangement followed by an

object of the same type. Annotated versions of this arrangement will appear in the

sets A0, . . . , Al. In the set At, it will have t ticks which can be placed in l places,

so there are

(
l
t

)
annotated versions of this (fixed) arrangement in this set. We

now count the total of its appearances (as different annotated arrangements) in

the sets A0, . . . , Al, counting its appearances in odd-indexed sets negative, those in

even-indexed sets positive. Thus in total we count this arrangement

l∑
t=0

(−1)t
(
l
t

)
= (1− 1)l = δl,0

times. Hence the only arrangements counted in the alternating total are those with

l = 0 objects followed by an object of the same color. This gives

en =

|n|−m∑
t=0

(−1)t|At|

and hence, by Equation (12), formula (10).

4. The Number of Joint Ordered Factorizations

Given anm-tuple of integers a = (a1, a2, . . . , am) ∈ Nm, with aj ≥ 2 (j ∈ {1, . . . ,m}),
we can use Theorem 3 to count the joint ordered factorizations of a where aj is split

into a prescribed number nj of non-trivial factors. Indeed, we can think of taking nj
placeholders marked as type j (and otherwise indistinguishable), for j ∈ {1, . . . ,m},
and arranging all these placeholders according to the rules of the auxiliary counting

problem of Section 3, and then putting the factors for each aj into the blocks of type

j in their given order. As there are en admissible arrangements of the placeholders

and cnj (aj) different non-trivial ordered factorizations of aj , we obtain the number

of joint ordered factorizations from Equation (10) as

en

m∏
j=1

cnj (aj) =
∑

0m≤k≤n−1m

(−1)|k|
(
n− 1m
k

)(
|n− k|
n− k

) m∏
j=1

cnj (aj). (13)
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The sum over all n ∈ Nm (which is a finite sum since cnj (aj) = 0 if nj exceeds

Ω(aj), the number of prime factors of aj counting multiplicities) then gives the

total number of joint ordered factorizations of a, which can be expressed as follows.

Theorem 4. Let m ∈ N and a ∈ Nm≥2. Then the number of different joint ordered

factorizations of a is

Na =
∑
l∈Nm

(
|l|
l

) m∏
j=1

c
(−lj)
lj

(aj). (14)

Proof. Summing the expression (13) over n ∈ Nm, changing the summation variable

by setting n = k + l and interchanging the order of the sums, we find

Na =
∑
k∈Nm0

∑
l∈Nm

(
k + l − 1m

k

)(
|l|
l

) m∏
j=1

ckj+lj (aj)

=
∑
l∈Nm

(
|l|
l

) m∏
j=1

( ∞∑
k=0

(
k + lj − 1

k

)
ck+lj (aj)

)
.

Now consider the functions which appear in the right-hand side product. By the

binomial formula for negative powers in the Dirichlet convolution algebra of arith-

metic functions,

∞∑
k=0

(−1)k
(
k + lj − 1

k

)
clj+k = (1− e)∗lj ∗

∞∑
k=0

(
k + lj − 1

k

)
(e− 1)∗k

= (1− e)∗lj ∗ (e− (e− 1))∗−lj = (1− e)∗lj ∗ µ∗lj = c
(−lj)
lj

,

and hence the result.

Remarks. 1. In view of the interpretation given to Equation (2) in Section 2,

Equation (14) can be read as

Na = (−1)
∑m
j=1 Ω(aj)

∞∑
n=m

(−1)n
∑

l∈Nm,|l|=n

(
|l|
l

) m∏
j=1

Flj (aj),

where we denote by Flj (aj) the number of ordered factorizations of aj into lj non-

trivial, square-free factors. Thus Na can be construed as an alternating sum over

n of the number of ways the integers a1, a2, . . . , am can be split into a total of n

non-trivial, square-free factors, and these factors can be linearly arranged without

further constraints.
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2. In the two-dimensional case m = 2, Equation (11) gives a simple explicit form

for e(n1,n2), and we obtain directly from the left-hand side of Equation (13) that

N(a1,a2) =

∞∑
n=1

2 cn(a1) cn(a2) +

∞∑
n=1

cn(a1) cn+1(a2) +

∞∑
n=1

cn+1(a1) cn(a2).

In the symmetric case a1 = a2 = a considered in [8] and [4], this gives, via

cn + cn+1 = (1− e)∗n ∗ (e+ 1− e) = c
(1)
n , the expression N(a,a) = 2

∞∑
n=1

cn(a) c
(1)
n (a),

which involves different divisor functions compared to Equation (14) and reproduces

Theorem 4 of [4]. Note that the count given in [4] is N(a,a)/2, using the permuta-

tion symmetry of the two equally-sized component sets of the sum system. More

generally, when we have m equally sized component sets in the sum system, then

by the same permutation symmetry, N(a,a,...,a)/m! ∈ N0. Clearly, this property

extends to more general m-tuples a ∈ Nm provided that all numbers aj have the

same factorization structure, i.e., the multisets of exponents in the prime factoriza-

tion coincide. The integer sequences (N(a,a)/2!)a∈N and (N(a,a,a)/3!)a∈N are equal

to sequences A0273013 and A0131514 in the OEIS (http://oeis.org), respectively,

but it seems that no such OEIS record exists for m ≥ 4.

We conclude with the observation that the number of m-part sum systems is at

least m!, and this value is attained if and only if all parts have prime cardinality.

Theorem 5. Let m ∈ N and a ∈ Nm≥2. Then Na ≥ m! and equality holds if and

only if all aj are prime numbers.

Proof. Starting from the left-hand side of Equation (13) and considering that e1m =

m! by Equation (10) and c1(aj) = 1, we find

Na = m! +
∑

n∈N\{1m}

en

m∏
j=1

cnj (aj) ≥ m!. (15)

Suppose one of the dimensions, w.l.o.g. a1, is not a prime, and consider n =

(2, 1, . . . , 1). Then
m∏
j=1

cnj (aj) = c2(a1) ≥ 1 and e(2,1,...,1) = (m+1)!
2! by Equation

(10), so the sum in (15) is strictly greater than 0. It is obvious that Na = m! if all

aj , j ∈ {1, . . . ,m}, are prime.
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