
#A69 INTEGERS 20 (2020)

LENGTH OF THE CONTINUED LOGARITHM ALGORITHM ON
RATIONAL INPUTS

Jeffrey Shallit1

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
shallit@uwaterloo.ca

Received: 6/24/16, Revised: 6/16/20, Accepted: 8/19/20, Published: 8/31/20

Abstract

The continued logarithm algorithm was introduced by Gosper around 1978, and has
been studied recently by several authors. In this note we show that the continued
logarithm algorithm, on input of a rational number p/q ≥ 1, terminates in at most
2 log2 p + O(1) steps. Furthermore, this bound is tight, up to an additive constant.

1. Introduction

Let Z denote the integers, N denote the non-negative integers, and N>0 denote the

positive integers.

The continued fraction algorithm, which expands every real number x in an

expression of the form

x = a0 +
1

a1 +
1

a2 +
1

a3 + .. .

, (1)

with a0 ∈ Z and ai ∈ N>0 for i ≥ 1, has been extensively studied, in part because

of its relationship to the Euclidean algorithm. In particular, it is known that the

expression (1) is essentially unique, and terminates with final term an if and only

if x is a rational number. In this case, if x = p/q, the length of the expansion is at

most O(log q), as has been known since the 1841 work of Finck [8]. Furthermore,

examples achieving this bound are known.

Around 1978, Gosper [6] introduced an analogue of the continued fraction algo-

rithm for real numbers, called the continued logarithm algorithm, which expands

1Supported by NSERC grant 2018-04118.



INTEGERS: 20 (2020) 2

every real number x ≥ 1 in an expression of the form

x = 2k0(1 +
1

2k1(1 +
1

2k2(1 +
1

2k3(1 + . . .)
)

)

) .

where ki ∈ N for i ≥ 0. This can be abbreviated as follows: x = 〈k0, k1, k2, k3, . . .〉.
More recently, this algorithm was studied by Brabec [3, 4, 5], Borwein, Calkin,

Lindstrom, and Mattingly [1], and Borwein, Hare, and Lynch [2].

As in the case of the ordinary continued fraction algorithm, it is known that this

expression is essentially unique (modulo the requirement that the last term must

not be 0 if x > 1) and that the algorithm terminates if and only if x is rational.

However, up to now, no worst-case estimate of the length of the expansion has been

given. In this note, we provide such an estimate.

2. The Continued Logarithm Algorithm

Let x0 = x ≥ 1. The continued logarithm algorithm works as follows: at each

stage, choose the integer k ≥ 0 uniquely to satisfy the inequality 1 ≤ xi/2k < 2,

and set ki = k. If xi = 2k, the algorithm terminates with output 〈k0, k1, . . . , ki〉.
Otherwise, the algorithm continues with xi+1 = 1/(xi/2k − 1).

For example, if x = 96/7, we get

x0 = x = 96/7

k0 = 3

x1 = 1/(x0/23 − 1) = 7/5

k1 = 0

x2 = 1/(x1/20 − 1) = 5/2

k2 = 1

x3 = 1/(x2/21 − 1) = 4

k3 = 2.

and hence

96

7
= 23(1 +

1

20(1 +
1

21(1 +
1

22
)

)

)

= 〈3, 0, 1, 2〉.



INTEGERS: 20 (2020) 3

Similarly, 2k = 〈k〉 for k ≥ 0. Since the continued logarithm expansion is (essen-

tially) unique, we can regard an expression like x = 〈k0, k1, . . . , kn〉 as either an

evaluation of a certain function of the variables k0, k1, . . . , kn, or as a statement

about the output of the continued logarithm algorithm on an input x. We trust

there will be no confusion on the proper interpretation in what follows.

There are two different natural measures of the complexity of the algorithm on

rational inputs. The first is the number of steps n+ 1 in x = 〈k0, k1, . . . , kn〉, which

we write as L(x). The second is the total number of division steps k0 +k1 + · · ·+kn,

which we write as T (x). In this note we get asymptotically tight bounds for L and

T on rational numbers p/q ≥ 1.

3. The Bound on L

Consider performing the continued logarithm algorithm CL on a rational input
p
q ≥ 1, getting back p

q = 〈k0, k1, . . . , kn〉. We can associate a rational number p
q

with the pair (p, q). While this association is not unique (for example, 2 can be

represented either by (2, 1) or (4, 2)), it does not create problems in what follows. By

consolidating the division steps, we can express the continued logarithm algorithm

on rational numbers as a function of two integers that takes its value on finite lists,

as follows:

CL(p, q) =

{
k, if p = 2kq for some k ≥ 0;

k,CL(2kq, p− 2kq), if 1 < p
2kq

< 2.

Here the comma denotes concatenation. For example, CL(96, 7) = (3, 0, 1, 2).

The idea of our bound on L is to consider how the measure f(p, q) = p2 + q2

changes as the algorithm proceeds. In our interpretation of the algorithm on pairs

(p, q), it replaces (p, q) with (p′, q′), where p′ = 2kq and q′ = p−2kq for 1 ≤ p
2kq

< 2,

and terminates when q = 0. First we show that f(p, q) strictly decreases in each

step of the algorithm.

Lemma 1. If the continued logarithm algorithm takes (p, q) to (p′, q′), then f(p′, q′) <

f(p, q).

Proof. From the inequality p
q·2k ≥ 1 we get

p

q
≥ 2k > 2k − 1

2k+1
.

Multiplying by 2k+1q2, we get 2k+1pq > (22k+1−1)q2. Adding p2 to both sides and



INTEGERS: 20 (2020) 4

rearranging gives

p2 + q2 > p2 − 2k+1pq + 22k+1q2

= (2kq)2 + (p− 2kq)2

= (p′)2 + (q′)2,

as desired.

Next we show how f decreases as the algorithm proceeds. We use the notation

(p, q) →k (p′, q′) to denote that one step of the algorithm replaces p/q with p′/q′,

where p′ = 2kq and q′ = p− 2kq.

Lemma 2. If (p, q)→0 (p′, q′) then f(p′, q′) ≤ f(p, q)/2.

Proof. The condition k = 0 implies p′ = q and q′ = p − q. Then 1 ≤ p
q < 2. If

p
q = 1 then the algorithm terminates, so assume p

q > 1. Write p
q = c. If 1 < c ≤ 2,

then (c− 1)(c− 3) < 0. Multiplying by q2 gives q2(c2 − 4c + 3) < 0. Hence, using

the fact that p = cq, we get p2 − 4pq + 3q2 < 0. Dividing by 2 and rearranging, we

get f(p′, q′) = q2 + (p− q)2 < 1
2 (p2 + q2) < 1

2f(p, q).

Lemma 3. If two steps of the continued logarithm algorithm are (p, q)→k (p′, q′)→0

(p′′, q′′) with k ≥ 1 then f(p′′, q′′) < 1
4f(p, q).

Proof. The first step implies that 1 < p
2kq

< 2, and p′ = 2kq, q′ = p − 2kq. The

second step implies that 1 < 2kq
p−2kq < 2 and p′′ = p− 2kq, q′′ = 2k+1q − p.

Define c = p
2kq

and observe that the inequalities of the previous paragraph imply

3/2 ≤ c ≤ 2. Consider the polynomial h(c) = 7c2− 24c+ 20. Since the roots of this

polynomial are 10/7 and 2, we clearly see that h(c) ≤ 0 for 3/2 ≤ c ≤ 2. Hence

q2(7c2−24c+20)22k < q2 for q ≥ 1 and k ≥ 1. Substituting c = p
2kq

and simplifying

gives 7p2 − 24 · 2kpq + 20 · 22kq2 < q2. Adding p2 to both sides and then dividing

by 4 gives 2p2− 6 · 2kpq + 5 · 22kq2 < 1
4 (p2 + q2). But the left side of this inequality

is (p− 2kq)2 + (q2k+1 − p)2. Thus we have proved (p′′)2 + (q′′)2 < 1
4 (p2 + q2).

Lemma 4. If two steps of the continued logarithm algorithm are (p, q)→k (p′, q′)→k′

(p′′, q′′) with k, k′ ≥ 1, then p′′ and q′′ are both divisible by 2, and f(p′′/2, q′′/2) <
1
4f(p, q).

Proof. In that case the first step replaces (p, q) by (p′, q′) = (q · 2k, p− q · 2k), and

the second step replaces this latter pair with

(p′′, q′′) = ((p− q · 2k)2k
′
, q(2k+k′

+ 2k)− p · 2k
′
).

Now both elements of this latter pair are divisible by 2min(k,k′) ≥ 2. Since these

correspond to numerator and denominator, we can divide both elements of the pair



INTEGERS: 20 (2020) 5

by 2 and obtain an equivalent pair of integers (p′′/2, q′′/2). Note that CL(p′′, q′′) =

CL(p′′/2, q′′/2). By Lemma 3 we have f(p′′/2, q′′/2) = 1
4f(p′′, q′′) < 1

4f(p′, q′) <
1
4f(p, q), as desired.

Theorem 1. On input p/q ≥ 1 the continued logarithm algorithm uses at most

2 log2 p + 2 steps.

Proof. Consider the continued logarithm expansion and process it from left to right

as follows: if a term is 0, use Lemma 2. If a term is k ≥ 1, group it with the term

that follows and use either Lemma 3 or Lemma 4. By doing so we group all terms

except possibly the last. Lemma 2 shows that a single step reduces f by a factor of

2. Lemmas 3 and 4 show that two steps reduce f by a factor of 4. Thus the total

number of steps on input (p, q) is at most log2(p2 + q2) + 1, where the +1 term

takes into account the last term that might be ungrouped.

So the algorithm uses at most log2(p2 + q2) + 1 steps. Since p ≥ q, we have

log2(p2 + q2) + 1 ≤ log2(2p2) + 1 ≤ log2(p2) + 2 ≤ (2 log2 p) + 2.

A nearly matching lower bound of 2 log2 p + O(1) is achievable, as the following

class of examples shows.

Theorem 2. For n ≥ 1, on input 2n − 1 the continued logarithm algorithm takes

2n− 2 steps.

Proof. We have 2n− 1 = 〈n− 1, 0, n− 2, 0, . . . , 2, 0, 1, 1〉, as can be easily proved by

induction.

4. The Bound on T

Theorem 3. Let p
q ≥ 1. Then T (p

q ) < (log2 p)(2 log2 p + 2).

Proof. As the continued logarithm algorithm proceeds, the numerators strictly de-

crease, so each k is bounded by log2 p. The number of steps is bounded by Theo-

rem 1.

Theorem 4. For n ≥ 1 we have T (2n − 1) = n(n− 1)/2 + 1.

Proof. Follows immediately from the expansion 2n−1 = 〈n−1, 0, n−2, 0, . . . , 2, 0, 1, 1〉
given in the proof of Theorem 3.



INTEGERS: 20 (2020) 6

5. Remarks

In a previous version of this paper, we asked, “What is the average case behavior

of the number of steps of the continued logarithm algorithm on rational numbers

p/q, with q < p < 2q, as q → ∞?” This has recently been answered by Rotondo,

Vallée, and Viola [7].

Another interesting question is whether the sequence (L(n))n≥1 a k-regular se-

quence for some k ≥ 2. The available numerical evidence suggests it is not.

Acknowledgment. I thank Robbert Fokkink and Wieb Bosma for their helpful

comments.

References

[1] Jonathan M. Borwein, Neil J. Calkin, Scott B. Lindstrom, and Andrew Mattingly, Continued
logarithms and associated continued fractions, Experimental Math. 26 (2017), 412–429.

[2] Jonathan M. Borwein, Kevin G. Hare, and Jason G. Lynch, Generalized continued logarithms
and related continued fractions, J. Integer Seq. 20 (2017), Article 17.5.7.

[3] Tomáš Brabec, Hardware implementation of continued logarithm arithmetic, In Scientific
Computing, Computer Arithmetic and Validated Numerics, 2006. SCAN 2006, IEEE, 2006,
pp. 1–9.

[4] Tomáš Brabec, On progress of investigations in continued logarithms, Preprint. Available
at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4552&rep=rep1&type=
pdf.

[5] Tomáš Brabec, Speculatively redundant continued logarithm representation, IEEE Trans.
Computers 59 (2010), 1441–1454.

[6] Bill Gosper. Continued fraction arithmetic, Unpublished manuscript, c. 1978. Available
at http://perl.plover.com/classes/cftalk/INFO/gosper.txt or http://www.tweedledum.

com/rwg/cfup.htm.

[7] P. Rotondo, B. Vallée, and A. Viola, Analysis of the continued logarithm algorithm, In M. A.
Bender et al., eds., LATIN 2018, LNCS 10807, pp. 849–863, 2018.

[8] J. Shallit, Origins of the analysis of the Euclidean algorithm, Historia Math. 21 (1994),
401–419.

https://cs.uwaterloo.ca/journals/JIS/VOL20/Hare/hare5.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4552&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.4552&rep=rep1&type=pdf
http://perl.plover.com/classes/cftalk/INFO/gosper.txt
http://www.tweedledum.com/rwg/cfup.htm
http://www.tweedledum.com/rwg/cfup.htm

	Introduction
	The Continued Logarithm Algorithm
	The Bound on L
	The Bound on T
	Remarks

