

SUM-PRODUCTS MOD M AND THE CONGRUENCE

 $ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod{m}$

Todd Cochrane

Department of Mathematics, Kansas State University, Manhattan, Kansas cochrane@math.ksu.edu

Sanying Shi

School of Mathematics, Hefei University of Technology, Hefei, P.R. China vera123_99@hotmail.com

Received: 1/21/20, Accepted: 8/28/20, Published: 9/11/20

Abstract

For $m \in \mathbb{N}$, and integers a, b, c with (abc, m) = 1, we show that the congruence

$$ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod{m}$$

has a solution with $1 \leq x_i \ll m^{2/k}$, with the implied constant depending on the number of prime factors $\omega(m)$ of m and their maximum multiplicity, generalizing a similar result for prime moduli. More precise results are given in special cases. We also establish that if $\mathcal{A}_1, \mathcal{A}_2, \mathcal{B}_1, \mathcal{B}_2$ are subsets of \mathbb{Z}_m , the ring of integers mod m, with $|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > 16 \omega(m)^2 m^4/p^*$, where p^* is the minimal prime divisor of m, then $\mathcal{A}_1\mathcal{B}_1 + \mathcal{A}_2\mathcal{B}_2 \supseteq \mathbb{Z}_m^*$, the group of units mod m, generalizing a result of Hart and Iosevich for prime moduli.

1. Introduction

For $m \in \mathbb{N}$ and integers a, b, c with (abc, m) = 1, we seek small solutions of the congruence

$$ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod{m}.$$
 (1)

For prime moduli, it was proven in [2] that there is a solution of (1) with $1 \le x_i \ll_{\varepsilon} m^{\frac{3}{2k} + \varepsilon}$. Let $r = \omega(m)$, the number of distinct prime factors of m, and let E denote the maximum multiplicity of any prime factor of m. Here we prove the following.

Theorem 1. For any positive integers E, k, r there is a constant c(E, k, r) such that for m > c(E, k, r) and any integers a, b, c with (abc, m) = 1, there exists a solution of (1) with

$$1 \le x_i \le 2 m^{2/k}, \qquad 1 \le i \le 2k.$$

2

Thus, by taking k sufficiently large, we obtain solutions of (1) with $1 \le x_i < m^{\varepsilon}$, for any $\varepsilon > 0$. We conjecture that there is in fact a solution of (1) with

$$1 \le x_i \ll_{\varepsilon,k} m^{\frac{1}{k} + \varepsilon},$$

uniformly in E and r. Such a bound is optimal aside from the possible removal of the ε . Theorem 1 is useful for classes of integers m where r and E are bounded in size. It is desirable to be able to replace the constant c(E,k,r) with a value depending only on k.

Ayyad and the authors [3] established that for arbitrary m, any cube of edge length B contains a solution of (1) provided that

$$B \gg_{\varepsilon} m^{\frac{1}{4} + \frac{1}{2\sqrt{k} + 3.9} + \varepsilon}.$$
 (2)

For k > 5 this is a weaker bound than what is given in Theorem 1, however it applies to cubes in arbitrary position. For prime moduli m = p, Garaev [4, Theorem 1] improved (2) to $B \gg_{\varepsilon} p^{\frac{1}{4} + \varepsilon}$ for $k \geq 7$.

For k = 4, 5 it was shown in [3] that any cube of edge length $B \gg_{\varepsilon} m^{\frac{3}{8} + \varepsilon}$, $m^{\frac{31}{84} + \varepsilon}$ respectively, contains a solution of (1).

For k=2 it was shown [1, Theorem 3] that there is a solution of the congruence

$$x_1 x_2 + x_3 x_4 \equiv c \pmod{m}$$

in any cube of edge length $B \ge 2\sqrt{m} + 1$ for prime power $m, B \gg m^{\frac{1}{2}} \log^2 m$, for general m. For prime moduli, Garaev and Garcia [5, Theorem 4] proved a result of the same strength for boxes with edges of different lengths.

Throughout the paper we let \mathbb{Z}_m denote the ring of integers mod m, and \mathbb{Z}_m^* the group of units mod m.

2. Sums of Products

The key to proving the result for prime moduli p in [2] was a theorem of Hart and Iosevich [6, Remark 1.3] stating that if $\mathcal{A}_1, \mathcal{A}_2, \mathcal{B}_1, \mathcal{B}_2$ are subsets of \mathbb{Z}_p , with

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > p^3,$$

then $\mathcal{A}_1\mathcal{B}_1 + \mathcal{A}_2\mathcal{B}_2 \supseteq \mathbb{Z}_p^*$. Let us start by investigating to what extent such a result can be extended to a general modulus.

Example 1. Let m be a positive even integer, H be the subgroup of \mathbb{Z}_m^* consisting of residue classes that are congruent to 1 mod 2, so that |H| = m/2 and $\mathcal{A}_1 = \mathcal{B}_1 = \mathcal{A}_2 = \mathcal{B}_2 = H$. Then

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| = \frac{m^4}{16}$$

and $A_1\mathcal{B}_1 + A_2\mathcal{B}_2 = 2\mathbb{Z}_m$. In particular, the sum-product set contains no element of \mathbb{Z}_m^* .

Example 2. Let m be any odd positive integer, p^* be the minimal prime divisor of m, H be the subgroup of \mathbb{Z}_m^* consisting of residue classes that are squares $\pmod{p^*}$, so that $|H| = \phi(m)/2$. Let $\mathcal{A}_1 = p^*\mathbb{Z}_m$, $\mathcal{B}_1 = \mathbb{Z}_m$, $\mathcal{A}_2 = \mathcal{B}_2 = H$. Then $|H| = \frac{m}{2} \prod_{p|m} (1 - \frac{1}{p})$,

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > \frac{m^4}{4p^*} \prod_{p|m} (1 - \frac{1}{p})^2,$$

and $\mathcal{A}_1\mathcal{B}_1 + \mathcal{A}_2\mathcal{B}_2 = H$. In particular, the sum-product set does not contain \mathbb{Z}_m^* .

Here we establish the following.

Theorem 2. Let p^* denote the minimal prime divisor of m and let $r = \omega(m)$. If A_1, A_2, B_1, B_2 are subsets of \mathbb{Z}_m with

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > 16r^2 \frac{m^4}{p^*},$$

then

$$\mathcal{A}_1 \mathcal{B}_1 + \mathcal{A}_2 \mathcal{B}_2 \supseteq \mathbb{Z}_m^*. \tag{3}$$

The preceding examples indicate that without further constraints on the sets \mathcal{A}_i , \mathcal{B}_i , the lower bound on the product of cardinalities, of order m^4/p^* , is best possible. It may be possible to remove the dependence on r however.

Remark 1. A stronger conclusion, namely that $\mathcal{A}_1\mathcal{B}_1 + \mathcal{A}_2\mathcal{B}_2 \supseteq \mathbb{Z}_m$ or $\mathbb{Z}_m \setminus \{0\}$ is not possible under the hypotheses of Theorem 2, as the following example indicates. Suppose that m has an odd prime divisor p with $p^2|m$. Let λ be a quadratic nonresidue mod p, H be the set of residue classes mod m that are squares mod p, $\mathcal{A}_1 = -\lambda H$, $\mathcal{A}_2 = \mathcal{B}_1 = \mathcal{B}_2 = H$. Then $|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > \frac{m^4}{16}$ but $p \notin \mathcal{A}_1\mathcal{B}_1 + \mathcal{A}_2\mathcal{B}_2$.

3. A More Precise Formulation of Theorem 2

Theorem 2 follows readily from the more precise statement:

Proposition 1. Let A_1, A_2, B_1, B_2 be subsets of \mathbb{Z}_m such that

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > m^4 \left[\prod_{p|m} \left(1 + \frac{\sqrt{2 - \frac{1}{p}}}{\sqrt{p} - 1} \right) - 1 \right]^2.$$

Then

$$\mathcal{A}_1 \mathcal{B}_1 + \mathcal{A}_2 \mathcal{B}_2 \supseteq \mathbb{Z}_m^*. \tag{4}$$

Proof. For $a \in \mathbb{Z}_m^*$, let N be the number of solutions of the equation $x_1y_1 + x_2y_2 = a$ with $x_i \in \mathcal{A}_i, y_i \in \mathcal{B}_i, i = 1, 2$. Then

$$\begin{split} mN &= \sum_{\lambda} \sum_{\substack{x_i \in \mathcal{A}_i \\ y_i \in \mathcal{B}_i}} e_m(\lambda(x_1y_1 + x_2y_2 - a)) \\ &= \sum_{d \mid m} \sum_{\substack{\lambda = 1 \\ (\lambda, m) = d}} \sum_{\substack{x_i \in \mathcal{A}_i \\ y_i \in \mathcal{B}_i}} e_m(\lambda(x_1y_1 + x_2y_2 - a)) \\ &= \sum_{d \mid m} \sum_{\substack{\lambda = 1 \\ (\lambda', m/d) = 1}} \sum_{\substack{x_i \in \mathcal{A}_i \\ y_i \in \mathcal{B}_i}} e_{m/d}(\lambda'(x_1y_1 + x_2y_2 - a)) \\ &= \sum_{d \mid m} \sum_{\substack{\lambda = 1 \\ (\lambda, d) = 1}} \sum_{\substack{x_i \in \mathcal{A}_i \\ y_i \in \mathcal{B}_i}} e_d(\lambda(x_1y_1 + x_2y_2 - a)) \\ &= \prod_{i = 1}^2 |\mathcal{A}_i| |\mathcal{B}_i| + Error \end{split}$$

say, with

$$Error := \sum_{\substack{d|m \\ d>1}} \sum_{\substack{\lambda=1 \\ (\lambda,d)=1}}^{d} \sum_{\substack{x_i \in \mathcal{A}_i \\ y_i \in \mathcal{B}_i}} e_d(\lambda(x_1y_1 + x_2y_2 - a)).$$
 (5)

Applying the Cauchy-Schwarz inequality and then extending the range of summation for the y_i , we obtain that

$$|Error| \leq \sum_{\substack{d \mid m \\ d > 1}} \left(\sum_{y_i \in \mathcal{B}_i} 1 \right)^{1/2} \left(\sum_{y_i \in \mathcal{B}_i} \left| \sum_{\substack{\lambda = 1 \\ (\lambda, d) = 1}}^{d} \sum_{x_i \in \mathcal{A}_i} e_d(\lambda(x_1 y_1 + x_2 y_2 - a)) \right|^2 \right)^{1/2}$$

$$\leq \sum_{\substack{d \mid m \\ d > 1}} \prod_{i=1}^{2} |\mathcal{B}_i|^{1/2} \left(\sum_{y_1 \in \mathbb{Z}_m} \sum_{y_2 \in \mathbb{Z}_m} \sum_{\substack{\lambda = 1 \\ (\lambda, d) = 1}}^{d} \sum_{\substack{\lambda' = 1 \\ (\lambda', d)$$

and so

$$|Error| \leq \sum_{\substack{d \mid m \\ d > 1}} \prod_{i=1}^{2} |\mathcal{B}_{i}|^{1/2} \left(\sum_{\substack{\lambda = 1 \\ (\lambda, d) = 1}}^{d} \sum_{\substack{\lambda' = 1 \\ (\lambda', d) = 1}}^{d} e_{d} (a(\lambda' - \lambda)) \right)$$

$$\sum_{\substack{x_{i}, x_{i}' \in \mathcal{A}_{i} \\ y_{1} \in \mathbb{Z}_{m}}} \sum_{\substack{y_{1} \in \mathbb{Z}_{m}}} e_{d} (y_{1}(\lambda x_{1} - \lambda' x_{2})) \sum_{y_{2} \in \mathbb{Z}_{m}} e_{d} (y_{2}(\lambda x_{2} - \lambda' x_{2}')) \right)^{1/2}$$

$$= m \prod_{i=1}^{2} |\mathcal{B}_{i}|^{1/2} \sum_{\substack{d \mid m \\ d > 1}} E_{d}^{1/2}$$

say, where

$$E_{d} := \sum_{\substack{\lambda=1\\ (\lambda,d)=1}}^{d} \sum_{\substack{\lambda'=1\\ (\lambda',d)=1}}^{d} e_{d}(a(\lambda'-\lambda)) \prod_{i=1}^{2} \sum_{\substack{x_{i},x_{i}' \in \mathcal{A}_{i} \\ \lambda x_{i} \equiv \lambda' x_{i}' \pmod{d}}} 1$$

$$= \sum_{\substack{\nu=1\\ (\nu,d)=1}}^{d} \left(\sum_{\substack{\lambda=1\\ (\lambda,d)=1}}^{d} e_{d}(a\lambda(\nu-1)) \right) \prod_{i=1}^{2} \sum_{\substack{x_{i},x_{i}' \in \mathcal{A}_{i} \\ x_{i} \equiv \nu x_{i}' \pmod{d}}} 1.$$

The sum over λ is a Ramanujan sum, which for any $m \in \mathbb{N}, x \in \mathbb{Z}$, satisfies

$$\sum_{\substack{\lambda=1\\ (\lambda,m)=1}}^{m} e_m(\lambda x) = \mu\left(\frac{m}{(m,x)}\right) \frac{\phi(m)}{\phi\left(m/(m,x)\right)}.$$

Since (a, d) = 1, and so $(d, a(\nu - 1)) = (d, \nu - 1)$, we obtain

$$E_{d} = \sum_{\substack{\nu=1\\ (\nu,d)=1}}^{d} \mu\left(\frac{d}{(\nu-1,d)}\right) \frac{\phi(d)}{\phi(d/(\nu-1,d))} \prod_{i=1}^{2} \sum_{\substack{x_{i},x_{i}' \in A_{i}\\ x_{i} \equiv \nu x_{i}' \pmod{d}}} 1$$

$$= \sum_{e|d} \frac{\mu(\frac{d}{e})\phi(d)}{\phi(d/e)} \sum_{\substack{\nu=1,(\nu,d)=1\\ (\nu-1,d)=e}}^{d} \prod_{i=1}^{2} \sum_{\substack{x_{i},x_{i}' \in A_{i}\\ x_{i} \equiv \nu x_{i}' \pmod{d}}} 1$$

$$\leq \sum_{e|d} \frac{|\mu(\frac{d}{e})|\phi(d)}{\phi(\frac{d}{e})} \sum_{\substack{\nu=1,(\nu,d)=1\\ \nu \equiv 1 \pmod{e}}}^{d} \prod_{i=1}^{2} \sum_{\substack{x_{i},x_{i}' \in A_{i}\\ x_{i} \equiv \nu x_{i}' \pmod{d}}} 1.$$

$$(6)$$

Now, for any choice of x'_1, x'_2 and ν , there are at most m/d choices for x_1 and m/d choices for x_2 . Also, the number of choices for ν is the number of t with

 $1 \le t \le d/e$ and (1+te,d)=1, which is $\phi(d)/\phi(e)$. Thus, altogether, there are at most $|\mathcal{A}_1||\mathcal{A}_2|\frac{\phi(d)}{\phi(e)}\frac{m^2}{d^2}$ choices for $\nu, x_1, x_2, x_1', x_2'$, and so

$$E_d \le \sum_{e|d} \frac{|\mu(\frac{d}{e})|\phi(d)}{\phi(\frac{d}{e})} |\mathcal{A}_1| |\mathcal{A}_2| \frac{\phi(d)}{\phi(e)} \frac{m^2}{d^2},$$

and

$$|Error| < m^{2} \prod_{i=1}^{2} |\mathcal{A}_{i}|^{1/2} |\mathcal{B}_{i}|^{1/2} \sum_{\substack{d \mid m \\ d > 1}} \frac{\phi(d)}{d} \left(\sum_{e \mid d} \frac{|\mu(\frac{d}{e})|}{\phi(\frac{d}{e})\phi(e)} \right)^{1/2}$$

$$= m^{2} \prod_{i=1}^{2} |\mathcal{A}_{i}|^{1/2} |\mathcal{B}_{i}|^{1/2} \sum_{\substack{d \mid m \\ d > 1}} \frac{\phi(d)}{d} G(d)^{1/2}, \tag{7}$$

where

$$G(d) := \sum_{e|d} \frac{|\mu(e)|}{\phi(e)\phi(\frac{d}{e})}.$$
(8)

Plainly, G(d) is a multiplicative function with

$$G(p^{j}) = \frac{2p-1}{p} \frac{p^{j}}{\phi(p^{j})^{2}},$$

$$G(d) = \frac{d}{\phi(d)^2} \prod_{p|d} \left(2 - \frac{1}{p}\right).$$

Thus, we obtain

$$|Error| < m^2 \prod_{i=1}^2 |A_i|^{1/2} |B_i|^{1/2} \sum_{\substack{d \mid m \ i > 1}} \frac{1}{\sqrt{d}} \prod_{p \mid d} \left(2 - \frac{1}{p}\right)^{1/2}.$$

If we include d = 1, the sum over d on the right-hand side,

$$H(m) := \sum_{d|m} \frac{1}{\sqrt{d}} \prod_{p|d} \left(2 - \frac{1}{p}\right)^{1/2},$$

is a multiplicative function with

$$H(p^{j}) = 1 + \sqrt{2 - \frac{1}{p}} \frac{1}{\sqrt{p}} \left(1 + \frac{1}{\sqrt{p}} + \frac{1}{p} + \dots + \frac{1}{(\sqrt{p})^{j-1}} \right) \le 1 + \sqrt{2 - \frac{1}{p}} \frac{1}{\sqrt{p} - 1}.$$

Thus,

$$|Error| < m^2 \prod_{i=1}^2 |A_i|^{1/2} |B_i|^{1/2} \left[\prod_{p|m} \left(1 + \frac{\sqrt{2 - \frac{1}{p}}}{\sqrt{p} - 1} \right) - 1 \right],$$

which is less than the main term $\prod_{i=1}^{2} |A_i| |B_i|$ under the hypothesis of the proposition.

4. Proof of Theorem 2

The result is vacuously true for $p^* \leq 16r^2$, and so we may assume $p^* > 16r^2$. It follows that $p^* \geq (2\sqrt{2} r + 1)^2$, and so

$$\frac{\sqrt{p^* - 1}}{\sqrt{2}} \ge 2r. \tag{9}$$

Now, for any $x \geq 2r$, we have

$$\left(1 + \frac{1}{x}\right)^r \le e^{r/x} \le 1 + \frac{2r}{x},\tag{10}$$

and so letting $x = (\sqrt{p^*} - 1)/\sqrt{2}$, we have by (9) and (10),

$$\prod_{p \mid m} \left(1 + \frac{\sqrt{2}}{\sqrt{p} - 1} \right) \le \left(1 + \frac{\sqrt{2}}{\sqrt{p^*} - 1} \right)^r \le 1 + \frac{2\sqrt{2} \ r}{\sqrt{p^*} - 1},$$

and

$$\left[\prod_{p|m}\left(1+\frac{\sqrt{2-\frac{1}{p}}}{\sqrt{p}-1}\right)-1\right]^2\leq \left(\frac{2\sqrt{2}\ r}{\sqrt{p^*}-1}\right)^2\leq \frac{16r^2}{p^*},$$

the latter inequality holding for $p^* > 16$, which we have assumed. The theorem now follows immediately from Proposition 1.

Remark 2. For special classes of moduli, more precise versions of the proposition are available. We give a couple of examples here, prime power moduli and moduli that are products of two distinct primes.

Proposition 2. For any prime power $m = p^l$, we have

$$\mathcal{A}_1 \mathcal{B}_1 + \mathcal{A}_2 \mathcal{B}_2 \supseteq \mathbb{Z}_m^*, \tag{11}$$

provided that

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > m^4 \frac{p-1}{(p-\sqrt{p})^2}.$$

Proof. Let *Error* denote the error term in (5). For $m = p^l$, the only positive contribution to E_d in (6) occurs when e = d, and so we obtain

$$\begin{split} |Error| &< m^2 \prod_{i=1}^2 |A_i|^{1/2} |B_i|^{1/2} \sum_{j=1}^l \frac{\phi(p^j)}{p^j} \frac{1}{\sqrt{\phi(p^j)}} \\ &= m^2 \prod_{i=1}^2 |A_i|^{1/2} |B_i|^{1/2} \sqrt{1 - \frac{1}{p}} \sum_{j=1}^l \frac{1}{p^{j/2}} \\ &\le \frac{\sqrt{p-1}}{p - \sqrt{p}} \ m^2 \prod_{i=1}^2 |A_i|^{1/2} |B_i|^{1/2}, \end{split}$$

8

yielding the result.

Proposition 3. For m = pq, with primes p < q, we have

$$\mathcal{A}_1 \mathcal{B}_1 + \mathcal{A}_2 \mathcal{B}_2 \supseteq \mathbb{Z}_m^*, \tag{12}$$

provided that

$$|\mathcal{A}_1||\mathcal{A}_2||\mathcal{B}_1||\mathcal{B}_2| > 2m^3(\sqrt{p} + \sqrt{q} + \sqrt{2})^2.$$

Proof. In this case, with G(d) as defined in (8), we obtain from (7),

$$\begin{split} |Error| &< m^2 \prod_{i=1}^2 |\mathcal{A}_i|^{1/2} |\mathcal{B}_i|^{1/2} \sum_{\substack{d \mid pq \\ d > 1}} \frac{\phi(d)}{d} G(d)^{1/2} \\ &= m^2 \prod_{i=1}^2 |\mathcal{A}_i|^{1/2} |\mathcal{B}_i|^{1/2} \Big(\frac{\phi(p)}{p} \frac{\sqrt{2}}{\sqrt{\phi(p)}} + \frac{\phi(q)}{q} \frac{\sqrt{2}}{\sqrt{\phi(q)}} + \frac{\phi(pq)}{pq} \frac{2}{\sqrt{\phi(pq)}} \Big) \\ &< m^2 \prod_{i=1}^2 |\mathcal{A}_i|^{1/2} |\mathcal{B}_i|^{1/2} \Big(\frac{\sqrt{2}}{\sqrt{p}} + \frac{\sqrt{2}}{\sqrt{q}} + \frac{2}{\sqrt{pq}} \Big) \\ &= m^{\frac{3}{2}} \prod_{i=1}^2 |\mathcal{A}_i|^{1/2} |\mathcal{B}_i|^{1/2} \Big(\sqrt{2q} + \sqrt{2p} + 2 \Big), \end{split}$$

and the result follows.

5. Lower Bounds on the Cardinality of Product Sets

Lemma 1. Let $l, B, P, Q \in \mathbb{N}$, $a_i \in \mathbb{Z}$, with $B \leq Q$, $0 \leq a_i < P$, $1 \leq i \leq l$, (P,Q) = 1, and let N be the number of solutions of the congruence

$$(a_1 + Ps_1) \cdots (a_l + Ps_l) \equiv (a_1 + Pt_1) \cdots (a_l + Pt_l) \pmod{Q},$$
 (13)

in integers s_i, t_i with $1 \le s_i, t_i \le B$, $1 \le i \le l$. Then, for any $\varepsilon > 0$, we have

$$N \ll_{\varepsilon} \left(\frac{P^{l} B^{2l}}{PQ} + B^{l} \right) (PB)^{l^{2} \varepsilon}. \tag{14}$$

Proof. For a given selection of t_i , we must solve a congruence of the type

$$(a_1 + Ps_1)(a_2 + Ps_2) \cdots (a_l + Ps_l) \equiv C \pmod{Q},$$

with $0 \le s_i \le B - 1$, $1 \le i \le l$, for some nonnegative integer C < Q, that is,

$$(a_1 + Ps_1)(a_2 + Ps_2) \cdots (a_l + Ps_l) = C + \ell Q$$

for some nonnegative integer $\ell \leq \frac{P^{\ell}(B+1)^{\ell}}{Q}$. Note that, for any choice of s_i , we have

$$a_1 a_2 \cdots a_l \equiv C + \ell Q \pmod{P}$$
,

and so the value of ℓ is uniquely determined mod P. Therefore, there are at most $\frac{P^l(B+1)^l}{PQ}+1$ choices for ℓ . For any choice of ℓ , there are at most $\tau(C+\ell Q)^{l-1}\ll_{\varepsilon}(PB)^{l^2\varepsilon}$ choices for the s_i , for any $\varepsilon>0$, and thus the total number of choices for the s_i is

$$\ll_{\varepsilon} \left(\frac{P^l B^l}{PQ} + 1\right) (PB)^{l^2 \varepsilon}.$$

Multiplying by the B^l choices for the t_i , we obtain the upper bound of the lemma.

Lemma 2. Under hypotheses of Lemma 1, we have

$$\#\{(a_1 + Ps_1) \cdots (a_l + Ps_l) \pmod{Q} : 1 \le s_i \le B\} \gg_{\varepsilon} \min\left\{B^l, \frac{Q}{P^{l-1}}\right\} (PQ)^{-l^2 \varepsilon}.$$

Proof. With N the quantity in Lemma 1, we have

$$\#\{(a_1 + Ps_1) \cdots (a_l + Ps_l) \pmod{Q} : 0 \le s_i < B\} \ge \frac{B^{2l}}{N}$$

$$\gg_{\varepsilon} \frac{B^{2l}}{\left(\frac{P^l B^{2l}}{PQ} + B^l\right) (PB)^{l^2 \varepsilon}},$$

and the result follows.

Lemma 3. Let B, P, Q be positive integers with B < Q, (P, Q) = 1 and $B^l \ge 2^{-l}QP^{1-l}$. Let q^* be the minimal prime divisor of Q and $r = \omega(Q)$. Then, for any $\varepsilon > 0$ and sets A_i, \mathcal{B}_i of the type occurring in Lemma 2, we have $A_1\mathcal{B}_1 + A_2\mathcal{B}_2 \supseteq \mathbb{Z}_Q^*$, provided that

$$q^* \ge c^*(\varepsilon, l, r) P^{4l-4}(PQ)^{4l^2\varepsilon},$$

for some constant $c^*(\varepsilon, l, r)$ depending on ε, l and r.

Proof. By Lemma 2, since $B^l > 2^{-l}QP^{1-l}$, we have

$$|\mathcal{A}_i|, |\mathcal{B}_i| \gg_{\varepsilon, l} Q P^{1-l} (PQ)^{-l^2 \varepsilon},$$

i=1,2. Applying Theorem 2 with m=Q, we succeed provided that

$$P^{4-4l}Q^4(PQ)^{-4l^2\varepsilon} \gg_{\varepsilon,l,r} Q^4/q^*,$$

the bound given in the lemma.

6. Proof of Theorem 1

We present the proof for the case of even k, and then note at the end the modification required for odd k. Let k = 2l,

$$m = p_1^{e_1} \cdots p_r^{e_r}, \qquad E = \max_{1 \le i \le r} e_i,$$

with $p_1 < p_2 < \cdots < p_r$, Fix i with $1 \le i \le r$, and let

$$P_i := p_1^{e_1} \cdots p_{i-1}^{e_{i-1}}, \qquad Q_i := p_i^{e_i} \cdots p_r^{e_r},$$

so that $P_iQ_i = m$ and $(P_i, Q_i) = 1$. For i = 1, we have $P_1 = 1$, $Q_1 = m$. Let I be the maximal i such that $P_i^l < m$. Then, for $i \le I$, we have

$$P_i^{l-1} < Q_i. (15)$$

For fixed $i \leq I$, we set $B = \lfloor Q_i^{\frac{1}{l}} P_i^{\frac{1}{l}-1} \rfloor$, a positive integer satisfying $B \geq \frac{1}{2} Q_i^{\frac{1}{l}} P_i^{\frac{1}{l}-1}$, the hypothesis needed for Lemma 3.

Consider the congruence

$$ax_1 \cdots x_k + bx_{k+1} \cdots x_{2k} \equiv c \pmod{m},$$
 (16)

with (abc, m) = 1. Let $\mathbf{a} = (a_1, \dots, a_{2k})$ be a solution of the same congruence mod P_i with $0 \le a_i < P_i$, $1 \le i \le 2k$. Such a solution plainly exists. Thus any point of the form $\mathbf{x} = \mathbf{a} + P_i \mathbf{s}$ with $\mathbf{s} = (s_1, \dots, s_{2k})$ satisfies the congruence mod P_i , and so our task is to find a choice of \mathbf{s} such that \mathbf{x} satisfies the congruence mod Q_i as well. Let

$$\mathcal{A}_{1} = \{a(a_{1} + P_{i}s_{1}) \cdots (a_{l} + P_{i}s_{l}) \pmod{Q_{i}} : 1 \leq s_{i} \leq B\},$$

$$\mathcal{B}_{1} = \{(a_{l+1} + P_{i}s_{l+1}) \cdots (a_{k} + P_{i}s_{k}) \pmod{Q_{i}} : 1 \leq s_{i} \leq B\},$$

$$\mathcal{A}_{2} = \{b(a_{k+1} + P_{i}s_{k+1}) \cdots (a_{k+l} + P_{i}s_{k+l}) \pmod{Q_{i}} : 1 \leq s_{i} \leq B\},$$

$$\mathcal{B}_{2} = \{(a_{k+l+1} + P_{i}s_{k+l+1}) \cdots (a_{2k} + P_{i}s_{2k}) \pmod{Q_{i}} : 1 \leq s_{i} \leq B\},$$

regarded as subsets of \mathbb{Z}_Q^* . Since the constant c in (16) is relatively prime to m, to obtain a solution of (16) mod Q_i , it suffices to show that $\mathcal{A}_1\mathcal{B}_1 + \mathcal{A}_2\mathcal{B}_2 \supseteq \mathbb{Z}_{Q_i}^*$. This will yield a solution of the mod m congruence (16) with

$$1 < x_i < P_i + P_i B \le 2P_i B \le 2Q_i^{1/l} P_i^{1/l} = 2m^{1/l}, \qquad 1 \le i \le 2k,$$

as desired. By Lemma 3, such is the case provided that

$$p_i \ge c^* P_i^{4l-4} m^{4l^2 \varepsilon} = c^* (p_1^{e_1} \cdots p_{i-1}^{e_{i-1}})^{4l-4} m^{4l^2 \varepsilon},$$

with $c^* = c^*(\varepsilon, l, r)$, the constant in Lemma 3.

Suppose to the contrary that the latter condition fails for $1 \le i \le I$, that is, for $1 \le i \le I$,

$$p_i \le \lambda_i := c^* (p_1^{e_1} \cdots p_{i-1}^{e_{i-1}})^{4l-4} m^{4l^2 \varepsilon}.$$

Here, $\lambda_1 = c^* m^{4l^2 \varepsilon}$. Observing that for any $2 \le i \le I$,

$$\lambda_i = p_{i-1}^{e_{i-1}(4l-4)} \lambda_{i-1} \leq \lambda_{i-1}^{e_{i-1}(4l-4)} \lambda_{i-1} \leq \lambda_{i-1}^{e_{i-1}(4l-3)},$$

we obtain

$$\lambda_i \leq \lambda_1^{\prod_{j=1}^{i-1} e_j(4l-3)}, \quad 2 \leq i \leq I,$$

and so for $1 \leq i \leq I$,

$$p_i \le \lambda_i \le (c^* m^{4l^2 \varepsilon})^{E^{i-1} (4l-3)^{i-1}}$$

For convenience, if I = r, set $P_{r+1} = m$. It follows that

$$P_{I+1} = \prod_{i=1}^{I} p_i^{e_i} \le \prod_{i=1}^{I} (c^* m^{4l^2 \varepsilon})^{E^i (4l-3)^{i-1}} \le (c^* m^{4l^2 \varepsilon})^{E^I \sum_{i=1}^{I} (4l-3)^{i-1}}$$

$$< (c^* m^{4l^2 \varepsilon})^{E^r (4l-3)^r}.$$

Now, by definition, $P_{I+1} > m^{\frac{1}{l}}$, and so

$$(c^*)^{E^r(4l-3)^r} m^{4l^2 \varepsilon E^r(4l-3)^r} > m^{\frac{1}{l}}.$$

If ε is chosen so that

$$4l^2\varepsilon E^r(4l-3)^r<\frac{1}{2l},$$

then we obtain a contradiction if $m > (c^*)^{2lrE^r(4l-3)^r}$, a constant depending on l, r and E.

For the case of odd k, say k=2l+1, we proceed as above letting $\mathcal{A}_1, \mathcal{A}_2$ be products of l+1 variables, and $\mathcal{B}_1, \mathcal{B}_2$ products of l variables. In this case, Lemma 3 requires

$$q^* \ge c^* P^{4l-2} (PQ)^{4(l+1)^2 \varepsilon},$$

and thus we reach the same conclusion with a slightly modified choice of ε .

7. The Cases r=1,2

The proof above can be refined to yield a slightly smaller exponent on m than the value 2/k given in Theorem 1. We do so in the next theorem for the cases r=1 and r=2.

Theorem 3. i) If $m = p^e$, a prime power, then for any a, b, c with (abc, m) = 1, there is a solution of (1) with

$$1 \le x_i \ll_{\varepsilon,k,e} m^{\frac{2}{k} - \frac{1}{2ek} + \varepsilon}, \qquad 1 \le i \le 2k.$$

ii) If $m = p^e q^f$, a product of distinct prime powers, then for any a, b, c with (abc, m) = 1, there is a solution of (1) with

$$1 \le x_i \ll_{\varepsilon, k, e, f} m^{\frac{2}{k} - \frac{1}{2ke((k-2)f+1)} + \varepsilon}, \qquad 1 \le i \le 2k.$$

The estimate in part ii) reduces to the part i) estimate when f = 0. With e = 1, f = 0, both parts recover the prime moduli estimate of [2], $1 \le x_i \ll_{\varepsilon} p^{\frac{3}{2k} + \varepsilon}$.

Proof. i) Let $m = p^e$ and assume k = 2l. The proof follows the same argument as the proof of Theorem 1 and so we will be brief. By Theorem 2 and Lemma 2 with P = 1, Q = m, we succeed provided that

$$\min\{B^l, m\}^4 \gg_{\varepsilon} \frac{m^{4+l^2\varepsilon}}{p},$$

that is, $p \gg_{\varepsilon} m^{l^2 \varepsilon}$ and $B^{4l} \gg_{\varepsilon} m^{4+l^2 \varepsilon}/p$. The first condition holds for $\varepsilon < \frac{1}{\epsilon l^2}$ and p greater than a constant depending on e and l. Since $p = m^{1/e}$, the second condition can be rewritten $B^{4l} \gg_{\varepsilon} m^{4-\frac{1}{e}+l^2 \varepsilon}$, and thus the theorem follows.

ii) Let m = PQ with $P = p^e$, $Q = q^f$ with p < q primes. If we apply Theorem 2 to the congruence (1) mod m as above, then we succeed provided that

$$\min\{B^l, PQ\}^4 \gg_{\varepsilon} \frac{m^{4+l^2\varepsilon}}{p},\tag{17}$$

whereas if we apply it the congruence (1) mod Q, restricting the x_i to an arithmetic progression $x_i = a_i + Ps_i$ with the a_i a solution to the mod P congruence with $a_{k+1} = \cdots = a_{2k} = 0$, then we succeed provided that

$$\min\{B^l, Q\}^2 \min\left\{B^l, \frac{Q}{P^{l-1}}\right\}^2 \gg_{\varepsilon} \frac{Q^4}{q} m^{l^2 \varepsilon}. \tag{18}$$

We consider B^l in the different ranges, $Q < B^l < PQ$, $\frac{Q}{P^{l-1}} < B^l < Q$ and $B^l < \frac{Q}{P^{l-1}}$. By Theorem 1, we may assume $B^l < PQ$.

I. If $Q < B^l < PQ$, then by (17) and (18), we succeed if either

$$B^{4l} \gg_{\varepsilon} \frac{m^{4+l^2\varepsilon}}{p}, \quad \text{or} \quad q \gg_{\varepsilon} p^{e(2l-2)} m^{l^2\varepsilon}.$$
 (19)

If the second inequality fails, that is, $q \ll_{\varepsilon} p^{e(2l-2)} m^{l^2 \varepsilon}$ with the same implied constant, then

$$m = p^e q^f \le p^e \cdot p^{ef(2l-2)} m^{l^2 f \varepsilon} \ll_{e,f,l,\varepsilon} p^{e(2fl-2f+1)} m^{\varepsilon},$$

whence $p \gg_{e,f,l,\varepsilon} m^{\frac{1}{e(2lf-2f+1)}-\varepsilon}$. Thus, the first inequality in (19) holds if

$$B^{4l} \gg_{e,f,l,\varepsilon} m^{4-\frac{1}{e(2lf-2f+1)}+\varepsilon},$$

yielding the result of the theorem.

II. If $\frac{Q}{P^{l-1}} < B^l \le Q$, then by (17) and (18) we need

$$B^{4l} \gg_{\varepsilon} \frac{m^{4+l^2\varepsilon}}{p},\tag{20}$$

or $B^{2l} \frac{q^{2f}}{p^{2e(l-1)}} \gg_{\varepsilon} \frac{q^{4f}}{q} m^{l^2 \varepsilon}$, that is,

$$B^{2l} \gg_{\varepsilon} q^{2f-1} p^{2e(l-1)} m^{l^2 \varepsilon}.$$
 (21)

If $q^2 < p^{4e(l-2)+1}$, then $m = p^e q^f < p^{e+\frac{f}{2}(4e(l-2)+1)}$, and so

$$p > m^{\frac{2}{4ef(l-2)+f+2e}}.$$

Thus by (20) it suffices to have

$$B^{4l} > m^{4 - \frac{2}{4ef(l-2) + f + 2e} + l^2 \varepsilon},\tag{22}$$

which is weaker than the inequality in case I.

If $q^2 \ge p^{4e(l-2)+1}$, equivalently

$$q^{2f-1}p^{2e(l-1)} \le m^{2-\frac{1}{4ef(l-2)+f+2e}},$$

then by (21) it again suffices to have (22).

III. If $B^l < Q/P^{l-1}$, then by (18) it suffices to have $B^{4l} \gg_{\varepsilon} q^{4f-1} m^{l^2 \varepsilon}$. Since $m \geq q^f$, it suffices to have $B^{4l} \gg_{\varepsilon} m^{4-\frac{1}{f}+l^2 \varepsilon}$, which again is weaker than the lower bound in case I.

References

- [1] A. Ayyad and T. Cochrane, Lattices in \mathbb{Z}^2 and the congruence $xy+uv\equiv c\pmod m$, Acta Arith. 132 (2008), no. 2, 127-133.
- [2] A. Ayyad and T. Cochrane, The congruence $ax_1x_2\cdots x_k+bx_{k+1}x_{k+2}\cdots x_{2k}\equiv c\pmod p$, Proc. Amer. Math. Soc. 145 (2017), no. 2, 467-477.
- [3] A. Ayyad, T. Cochrane, and S. Shi, Modular hyperbolas and the congruence $ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod{m}$, Integers 18 (2018), no. A37, 1-18.
- [4] M. Z. Garaev, On congruences involving products of variables from short intervals, Quarterly J. Math. 69 (2018), no. 3, 769-778.
- [5] M. Z. Garaev and V. C. Garcia, The equation $x_1x_2 = x_3x_4 + \lambda$ in fields of prime order and applications, J. Number Theory 128 (2008), no. 9, 2520-2537.
- [6] D. Hart and A. Iosevich, Sums and products in finite fields: an integral geometric viewpoint, Radon transforms, geometry, and wavelets, 129-135, Contemp. Math., 464, Amer. Math. Soc., Providence, RI, 2008.