#AT2 INTEGERS 20 (2020)

SUM-PRODUCTS MOD M AND THE CONGRUENCE
ari1x2 T + bTpy1Tp42 - T2 = ¢ (mod m)

Todd Cochrane
Department of Mathematics, Kansas State University, Manhattan, Kansas
cochrane@math.ksu.edu

Sanying Shi
School of Mathematics, Hefei University of Technology, Hefei, P.R. China
veral23_99@hotmail.com

Received: 1/21/20, Accepted: 8/28/20, Published: 9/11/20

Abstract
For m € N, and integers a, b, ¢ with (abe,m) = 1, we show that the congruence

ar1To - T + bTp 1Ty - Top = ¢ (mod m)

has a solution with 1 < z; < m?/*, with the implied constant depending on the
number of prime factors w(m) of m and their maximum multiplicity, generalizing
a similar result for prime moduli. More precise results are given in special cases.
We also establish that if A;, Ao, By, B are subsets of Z,,, the ring of integers mod
m, with | Ay||As||B1]|Bz| > 16 w(m)?m?*/p*, where p* is the minimal prime divisor
of m, then A; By + AsBy D Z7,, the group of units mod m, generalizing a result of
Hart and Iosevich for prime moduli.

1. Introduction

For m € N and integers a,b, ¢ with (abc,m) = 1, we seek small solutions of the
congruence
ax1Ta - T + 0T p1Tpyo - @2 = ¢ (mod m). (1)

For prime moduli, it was proven in [2] that there is a solution of (1) with 1 < z; <.
m3kTe. Let r = w(m), the number of distinct prime factors of m, and let E' denote
the maximum multiplicity of any prime factor of m. Here we prove the following.

Theorem 1. For any positive integers E k,r there is a constant c(E,k,r) such
that for m > ¢(E,k,r) and any integers a,b,c with (abc,m) = 1, there exists a
solution of (1) with

1<z <2m?*, 1<i<2k.
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Thus, by taking k sufficiently large, we obtain solutions of (1) with 1 < z; < m*®,
for any € > 0. We conjecture that there is in fact a solution of (1) with

1
1< <Le )k kare’

uniformly in E and r. Such a bound is optimal aside from the possible removal of
the e. Theorem 1 is useful for classes of integers m where r and F are bounded
in size. It is desirable to be able to replace the constant ¢(E,k,r) with a value
depending only on k.

Ayyad and the authors [3] established that for arbitrary m, any cube of edge
length B contains a solution of (1) provided that

i, 1
B>, mi avEmss e, (2)

For k > 5 this is a weaker bound than what is given in Theorem 1, however it applies
to cubes in arbitrary position. For prime moduli m = p, Garaev [4, Theorem 1]
improved (2) to B > pit for k > 7.

For k = 4,5 it was shown in [3] that any cube of edge length B >, m&+e m#ite
respectively, contains a solution of (1).

For k = 2 it was shown [1, Theorem 3] that there is a solution of the congruence

X12Z2 + 2324 = ¢ (mod m)

in any cube of edge length B > 2v/m + 1 for prime power m, B > m2 log® m, for
general m. For prime moduli, Garaev and Garcia [5, Theorem 4] proved a result of
the same strength for boxes with edges of different lengths.

Throughout the paper we let Z,, denote the ring of integers mod m, and Z, the
group of units mod m.

2. Sums of Products

The key to proving the result for prime moduli p in [2] was a theorem of Hart and
Tosevich [6, Remark 1.3] stating that if Ay, Ag, By, By are subsets of Z,,, with

| AL Az By |B2| > p°,

then 4181 + AsBs D Z;. Let us start by investigating to what extent such a result
can be extended to a general modulus.

Example 1. Let m be a positive even integer, H be the subgroup of Z}, consisting
of residue classes that are congruent to 1 mod 2, so that |H| = m/2 and A; = By =
.AQ :Bz = H. Then
mA
Bi||Bz| = —
][ Ao [Bi][Ba| =
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and A1By + A By = 27Z,,. In particular, the sum-product set contains no element
of Z7,.

Example 2. Let m be any odd positive integer, p* be the minimal prime divisor
of m, H be the subgroup of Z}, consisting of residue classes that are squares
(mod p*), so that |H| = ¢(m)/2. Let Ay = p*Zy,, By = Zy, A2 = Bo = H. Then

m4
*

| A1 A2||B1|Ba| > 1

112
H(l - ;) )
plm
and A1 By + A2By = H. In particular, the sum-product set does not contain Z,.
Here we establish the following.

Theorem 2. Let p* denote the minimal prime divisor of m and let r = w(m). If
A1, Aa, By, By are subsets of Z,, with

m4
p*’

|A1||Az|B1|Ba| > 1612

then
Ai1By + AsBs D Z:n. (3)

The preceding examples indicate that without further constraints on the sets A;, B;,
the lower bound on the product of cardinalities, of order m*/p*, is best possible. It
may be possible to remove the dependence on r however.

Remark 1. A stronger conclusion, namely that A8y + . A2Bs D Zy, or Zy, \ {0} is
not possible under the hypotheses of Theorem 2, as the following example indicates.
Suppose that m has an odd prime divisor p with p?|m. Let A be a quadratic
nonresidue mod p, H be the set of residue classes mod m that are squares mod p,
A1 = —AH, Ay = By = By = H. Then |A; || As||Bi||Ba| > ™ but p ¢ A By +.AsBs.

3. A More Precise Formulation of Theorem 2

Theorem 2 follows readily from the more precise statement:

Proposition 1. Let Ay, Ay, By, By be subsets of Z,, such that

2
/o 1
Al aliBalBel > m | T | 1 o ) -1

plm

Then
A1B1 + AsBy O Zjn. (4)
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Proof. For a € Z7,, let N be the number of solutions of the equation z1y; +x2y2 = a
with z; € A;,y; € B;,i =1,2. Then

mN = Z Z em(Mx1y1 + 22y2 — a))

;€A
yZGB
= Z Z Z em(ANz1y1 + 2292 — a))
d|m A=1 z; €A,
(A,m)=d y,LEB
m/d
= Z Z Z em/a(N (z1y1 + 2292 — a))
dlm A=1

(A ,m/d)=1 ylGB

= Z Z Z ea(A(z1y1 + 22y2 — a))

dlm A=l @;€A;
(N, d)=1 y;€B;

2
= H |A;||B;| + Error

i=1
say, with

Error —Z Z Z ed(A(z1y1 + x2y2 — a)). (5)

d|m A=1 z; €A,
d>1 (\,d)=1 yleB

Applying the Cauchy-Schwarz inequality and then extending the range of sum-
mation for the y;, we obtain that

o < (S ) (S 3 5 cattomn s o)
(X, d)

d\ﬂi yi€B; Yy €B; AL, wicA

SEe Y Y Y Y

e~ 7 7 A=1 A =1
alm Y1E€Lm Y2E€Lm (A, d)=1 (X, d)=1

1/2

> ea(Maryr + ays — a) = X (@hyr + 2hys — a)) ;
@il €A,
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and so

|Err0r\§Zﬁ|Bi|l/2 Z Z ed — )

dlm i=1 A =1
d>1 (A d) 1 (>\’ d)=1

Z Z ea(y1(Az1 = Naz)) Z ea(y2(Awgy — N'abh))

1/2

zq,x; €Ay Y1€Lm Y2ELm,
1/2
= mH |B; |1/2 E E, /
d|m
d>1
say, where
d d 2
Eii= >, > ealW-2][ > 1
A=1 i—1 w0l CA,
(A,d)=1 (x/, d)lz ’ P25 €A

Aziz)\'m; (mod d)

d d
= E E ea(ar(v —1)) H E 1.
v=1 A=1 T, Ty E.A
(v,d)=1 (X,d)=1 L77U.1)/ (mod d)

The sum over A is a Ramanujan sum, which for any m € N,z € Z, satisfies

> enli) = (<mn7x>> d)(nf/(& )

A=1
(A,m)=1

Since (a,d) =1, and so (d,a(v — 1)) = (d,v — 1), we obtain

¢ d ¢(d) :
Ea= ) u((y—l,d))‘ls(d/(y_l’d))}:[l 2

/
zq,al €A
(v,d)=1 ,

zi=va) (mod d)

—_

eld u(=v17(1yd(§==el =t ,izz;".wle(:::;d d)
d 2
u(d)|¢(d)
< Z d Z H Z 1
eld ¢ e) v=1,(v,d)=1 ¢=1 @l €A

V=1 (mod e) @;=va! (mod d)

Now, for any choice of z}, 2} and v, there are at most m/d choices for x; and
m/d choices for x3. Also, the number of choices for v is the number of ¢ with
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1<t<d/e and ( + te,d) = 1, which is ¢(d)/p(e). Thus, altogether, there are at
2
most |A1||.A2| (e) o choices for v, x1, 2, 27, x5, and so
Bi<Y u(9)lo(d)

(d)m2
Ai]]A ,
2oy Lox:

and

|Error| < m? H |A; |1/2|B |1/2 Z #d (Z

(o)l )1/ 2
2 a2 g dte)
_m2H‘A|1/2|B|1/22¢ 1/2 (7)
dlm
where (o)
w(e
G(d) := —_ . (8)
2 500
Plainly, G(d) is a multiplicative function with

o) =21 P

G(d

¢ )
d 1
) B H ( - ) .
#d)? o p
Thus, we obtain

d|m

1/2
|Err0r|<m2H|A |1/2B|1/2Z\FH< —) .

d>1 ])‘d p
If we include d = 1, the sum over d on the right-hand side

o =2 I (23)

dlm pld p
is a multiplicative function with

R A

Thus,

2 91
|Error| < m? H |As| Y2 By|M/? H 1+ ?
i=1

-1/,

plm VPl
which is less than the main term H?Zl |A;||B;| under the hypothesis of the propo-
sition.

O
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4. Proof of Theorem 2

The result is vacuously true for p* < 1672, and so we may assume p* > 1672, It
follows that p* > (2\/§ r+1)2, and so

vt —1
VP 5o (9)
V2
Now, for any = > 2r, we have

1 " 'r‘/z ZT
1+-) <" <1+ —, (10)
X X

and so letting x = (y/p* — 1)/v/2, we have by (9) and (10),
V2 vz Y 227
H<1+\/§1> = <1+\/;F1> s o

2
1 2
1 H\/?*; _(2var )\ _ 16
vp—1 “\vprr-1) T op

the latter inequality holding for p* > 16, which we have assumed. The theorem
now follows immediately from Proposition 1.

and

plm

Remark 2. For special classes of moduli, more precise versions of the proposition
are available. We give a couple of examples here, prime power moduli and moduli
that are products of two distinct primes.

Proposition 2. For any prime power m = p', we have
A1B1 + AsBy O an, (11)

provided that
p—1
(p—vP)?*
Proof. Let Error denote the error term in (5). For m = p!, the only positive
contribution to E4 in (6) occurs when e = d, and so we obtain

| A As||B1 [ Bs| > m*

2 l ;
|Error| <m? [T1Al"?1Bil'/*) o) 1 :
i=1 - v o)

2 l
1 1
=m? [[IALPIBI 2 1= 20—
i=1 PP

vp—1 2
< e m2H ‘Ai|1/2|Bi‘1/27
p \/ﬁ =1
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yielding the result. O

Proposition 3. For m = pq, with primes p < q, we have
A1B1 + AsBy O an, (12)

provided that
Al A2][B1|B2| > 2m® (VP + /a + V2)*.

Proof. In this case, with G(d) as defined in (8), we obtain from (7),

2
d)
E 2 1'1/2 i1/2 ¢( d)1/2
|Error| <m E|A,| B2 o G(d)

d|pq
d>1

:mgﬁwl/z&w(qs(p) V2, 0 V2 gl 2\

i=1 P d)(p) q ¢(Q) " pq d)(pQ)
: Vi Vi
m2 11/2112.11/2
<me LA+ 5+ )

2
= m [TIAB72 (V20 + /20 +2).
i=1

and the result follows. O

5. Lower Bounds on the Cardinality of Product Sets

Lemma 1. Let |,B,P,Q € N, a; € Z, with B< Q, 0<a;, < P,1 <4<,
(P,Q) =1, and let N be the number of solutions of the congruence

(a1 + Ps1) -+ (a;+ Ps;) = (a1 + Pt1) -+ (a; + Pt;)  (mod Q), (13)
in integers s;, t; with 1 < s;,t; < B, 1 <14 <I. Then, for any ¢ > 0, we have

PlB2l
PQ

Proof. For a given selection of t;, we must solve a congruence of the type

N <. ( + Bl> (PB)"=. (14)
(a1 + Ps1)(ag + Psa) -+ (a;+ Ps;)) =C  (mod Q),
with 0 < s; < B —1,1 <14 </, for some nonnegative integer C' < @), that is,

(a1 + Psi)(az + Ps2) -+ (a + Ps;) = C + (Q,
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. Note that, for any choice of s;, we have

1 1
for some nonnegative integer ¢ < %

ajag - ap = C+4Q (mod P),

and so the value of ¢ is uniquely determined mod P. Therefore, there are at most
1 l

P(figl) + 1 choices for £. For any choice of ¢, there are at most 7(C + £Q)'~! <.

(PB)l26 choices for the s;, for any € > 0, and thus the total number of choices for

the s; is
P'B! 2
1) (PB)"=.
< (g +1)wn)

Multiplying by the B! choices for the t;, we obtain the upper bound of the lemma.
O

Lemma 2. Under hypotheses of Lemma 1, we have

#{(ar + Ps1)-- (@ + Ps;) (mod Q):1<s; <B}>. min {Bl, -9 } (PQ)~"=.

Proof. With N the quantity in Lemma 1, we have

2l
#{(a1 + Ps1)---(a;+ Ps;) (mod Q):0<s; < B} > %

BQl

(PIID%’H JrBz) (pB)lze’

>e

and the result follows.
O

Lemma 3. Let B, P,Q be positive integers with B < Q, (P,Q) = 1 and B! >
27'QPI=L. Let ¢* be the minimal prime divisor of Q and r = w(Q). Then, for any
€ > 0 and sets A;, B; of the type occurring in Lemma 2, we have A1 B+ AxBs D Zg,

provided that
2
q* > o* (E, l, ’I") P4l—4( PQ)4Z E’

for some constant ¢*(e,l,r) depending on €,1 and r.
Proof. By Lemma 2, since B! > 27'/QP'~!, we have
AL 1B| >0 QP'H(PQ) T,
1 =1,2. Applying Theorem 2 with m = @, we succeed provided that
PUQYPQ)TE >, QY

the bound given in the lemma. O
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6. Proof of Theorem 1

We present the proof for the case of even k, and then note at the end the modification
required for odd k. Let k = 21,

— €1 €r —
m = F = max ¢;
p] pr 9 ISiST 79

with p; < p2 < -+- < p,, Fix ¢ with 1 <17 < r, and let
Pi=p{t-pi', Q=5 p,

so that P,Q; = m and (P;,Q;) = 1. For i = 1, we have P, =1, Q; = m. Let I be
the maximal i such that P! < m. Then, for i < I, we have

Pt < Q. (15)
11 11

For fixed i < I, weset B = |Q/ P} 1J, a positive integer satisfying B > 1Q! P 1,

the hypothesis needed for Lemma 3.
Consider the congruence

axy - X +brpyr - xop = ¢ (mod m), (16)

with (abc,m) =1. Let a = (aq, ..., az;) be a solution of the same congruence mod

P; with 0 < a; < P;, 1 <1¢ < 2k. Such a solution plainly exists. Thus any point of

the form x = a+ P;s with s = (s1,..., Sax) satisfies the congruence mod P;, and

so our task is to find a choice of s such that x satisfies the congruence mod Q); as
well. Let

Ay ={a(ar + P;s1) -+ (e + Pis;) (mod Q;) : 1 <s; < B},

Bl = {(al+1 + Pi5l+1) s (ak + Pisk) (mod QZ) 1< < B},

Az = {b(ag+1 + Pisgy1) - - (ag1 + Pisga)  (mod @) : 1 < s; < B},

By = {(ar+i41 + Pisprig1) -+ (a2r + Pisok)  (mod Qi) : 1 <'s; < B},
regarded as subsets of Lg. Since the constant ¢ in (16) is relatively prime to m,

to obtain a solution of (16) mod Q;, it suffices to show that A;B; + A2B5 D Zg,-
This will yield a solution of the mod m congruence (16) with

l1<a; <P+ PB<2PB<2Q/'P/' =o2m'', 1<i<2k,
as desired. By Lemma 3, such is the case provided that

x pdl—4,_ 412 x( e ei—1\4l—4, _4l?
piZCPi m 6:5(p11"'pi_1) m e,

with ¢* = ¢*(g,l,r), the constant in Lemma 3.
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Suppose to the contrary that the latter condition fails for 1 < ¢ < I, that is, for
1<i<I,

i—1\4l—4, _4l?
pi < Ai = (pt o) T I m e

Here, \| = cmile, Observing that for any 2 <i <1,

i1 (414 1414 i—1(41-3
A= pi TN <A TN < g )

we obtain i
L N PR
and so for 1 <+¢ < I, _ v
pi <A < (et P AT

For convenience, if I =r, set P.11 = m. It follows that

I I

P = pr < H(C*mzxﬂs)E"’(le—s)"*l < (C*mu%)E’Z?{:l(ufg)i*l
i=1 i=1

< (C*m4l26)ET(4l73)r'

Now, by definition, Pr41 > m%, and so

AT a\T 2 _ g7 a\T" 1
(c*)E (41=3)" 4B (41-3) 1

>mt.
If ¢ is chosen so that

APcET (4] — 3)" < —
eE"( 3) < g

ArE"(41=3)" "5 constant depending on I, r

then we obtain a contradiction if m > (¢*)
and F.

For the case of odd k, say k = 2]l + 1, we proceed as above letting A;, As be
products of [ + 1 variables, and B;, By products of [ variables. In this case, Lemma

3 requires
q > C*P4l_2(PQ)4(l+1)267

and thus we reach the same conclusion with a slightly modified choice of €.

7. The Cases r = 1,2

The proof above can be refined to yield a slightly smaller exponent on m than the
value 2/k given in Theorem 1. We do so in the next theorem for the cases r = 1
and r = 2.
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Theorem 3. i) If m = p®, a prime power, then for any a,b,c with (abe,m) = 1,
there is a solution of (1) with

1< @ Kepomb 25T, 1<i<2k

i) If m = p°q’, a product of distinct prime powers, then for any a,b,c with
(abc,m) = 1, there is a solution of (1) with

2 1
LS @) Lepe,p miT OIS < 2k

The estimate in part ii) reduces to the part i) estimate when f = 0. With e =
1, f =0, both parts recover the prime moduli estimate of [2], 1 < z; <, pz‘%*ﬁ,

Proof. i) Let m = p® and assume k = 2[. The proof follows the same argument as
the proof of Theorem 1 and so we will be brief. By Theorem 2 and Lemma 2 with
P =1, Q@ = m, we succeed provided that

4+1%¢
min{ B!, m}* > o P

that is, p >, m!*s and BY > m4+l25/p. The first condition holds for € < ﬁ
and p greater than a constant depending on e and I. Since p = m'/¢, the second
condition can be rewritten B* >, mA—c+le , and thus the theorem follows.

ii) Let m = PQ with P = p°, Q = ¢/ with p < ¢ primes. If we apply Theorem 2
to the congruence (1) mod m as above, then we succeed provided that
matiZe

P )

min{B', PQ}* >.

(17)

whereas if we apply it the congruence (1) mod @Q, restricting the z; to an arithmetic
progression x; = a; + Ps; with the a; a solution to the mod P congruence with

ap+1 = -+ = agr, = 0, then we succeed provided that
2 4
min{B', Q}* min {Bl, P?*l } > %ml25. (18)

We consider B! in the different ranges, Q@ < B' < PQ, % < B! < @Q and
B' < %. By Theorem 1, we may assume B! < PQ.
I. If Q < B! < PQ, then by (17) and (18), we succeed if either

m4+125 )
B>, el g > ptPmle, (19)

If the second inequality fails, that is, ¢ <. 196(21_2)ml28

constant, then

with the same implied

2
m = peqf < p°- pef(Ql*Q)ml fe Lefile pe(2fl*2f+1)rm€7
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whence p >¢ r1.c T Thus, the first inequality in (19) holds i

1
BY >, . mtT e e

yielding the result of the theorem.
II. If PZQ,I < B! < Q, then by (17) and (18) we need

4+1%e
m
B4l >, ,
p

or B2lp2%lf_l) >, %ml%? that is,
B2 >, qu—1p26(1—1)m125.
If @2 < p*e(=2+1 then m = p°q/ < p+EUel=2+D) and so
p > mm.
Thus by (20) it suffices to have
BY > mzl—WH%’

which is weaker than the inequality in case 1.
If ¢2 > p*(=2+1 equivalently

- 3 o .
q2f 1p26(l 1) < m° T Tera—2 T

then by (21) it again suffices to have (22).

13

(20)

(21)

II. If B! < Q/P'~!, then by (18) it suffices to have B >>_ q4f—1m125. Since
2
m > ¢/, it suffices to have BY >, mA= it €, which again is weaker than the lower

bound in case I.
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