SUM-PRODUCTS MOD M AND THE CONGRUENCE $a x_{1} x_{2} \cdots x_{k}+b x_{k+1} x_{k+2} \cdots x_{2 k} \equiv c(\bmod m)$

Todd Cochrane
Department of Mathematics, Kansas State University, Manhattan, Kansas
cochrane@math.ksu.edu
Sanying Shi
School of Mathematics, Hefei University of Technology, Hefei, P.R. China vera123_99@hotmail.com

Received: 1/21/20, Accepted: 8/28/20, Published: 9/11/20

Abstract

For $m \in \mathbb{N}$, and integers a, b, c with $(a b c, m)=1$, we show that the congruence $$
a x_{1} x_{2} \cdots x_{k}+b x_{k+1} x_{k+2} \cdots x_{2 k} \equiv c \quad(\bmod m)
$$ has a solution with $1 \leq x_{i} \ll m^{2 / k}$, with the implied constant depending on the number of prime factors $\omega(m)$ of m and their maximum multiplicity, generalizing a similar result for prime moduli. More precise results are given in special cases. We also establish that if $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$ are subsets of \mathbb{Z}_{m}, the ring of integers mod m, with $\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>16 \omega(m)^{2} m^{4} / p^{*}$, where p^{*} is the minimal prime divisor of m, then $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{m}^{*}$, the group of units $\bmod m$, generalizing a result of Hart and Iosevich for prime moduli.

1. Introduction

For $m \in \mathbb{N}$ and integers a, b, c with $(a b c, m)=1$, we seek small solutions of the congruence

$$
\begin{equation*}
a x_{1} x_{2} \cdots x_{k}+b x_{k+1} x_{k+2} \cdots x_{2 k} \equiv c \quad(\bmod m) \tag{1}
\end{equation*}
$$

For prime moduli, it was proven in [2] that there is a solution of (1) with $1 \leq x_{i} \ll \varepsilon$ $m^{\frac{3}{2 k}+\varepsilon}$. Let $r=\omega(m)$, the number of distinct prime factors of m, and let E denote the maximum multiplicity of any prime factor of m. Here we prove the following.

Theorem 1. For any positive integers E, k, r there is a constant $c(E, k, r)$ such that for $m>c(E, k, r)$ and any integers a, b, c with $(a b c, m)=1$, there exists a solution of (1) with

$$
1 \leq x_{i} \leq 2 m^{2 / k}, \quad 1 \leq i \leq 2 k
$$

Thus, by taking k sufficiently large, we obtain solutions of (1) with $1 \leq x_{i}<m^{\varepsilon}$, for any $\varepsilon>0$. We conjecture that there is in fact a solution of (1) with

$$
1 \leq x_{i} \ll \varepsilon, k m^{\frac{1}{k}+\varepsilon}
$$

uniformly in E and r. Such a bound is optimal aside from the possible removal of the ε. Theorem 1 is useful for classes of integers m where r and E are bounded in size. It is desirable to be able to replace the constant $c(E, k, r)$ with a value depending only on k.

Ayyad and the authors [3] established that for arbitrary m, any cube of edge length B contains a solution of (1) provided that

$$
\begin{equation*}
B \ggg_{\varepsilon} m^{\frac{1}{4}+\frac{1}{2 \sqrt{k}+3.9}+\varepsilon} . \tag{2}
\end{equation*}
$$

For $k>5$ this is a weaker bound than what is given in Theorem 1, however it applies to cubes in arbitrary position. For prime moduli $m=p$, Garaev [4, Theorem 1] improved (2) to $B \gg \varepsilon p^{\frac{1}{4}+\varepsilon}$ for $k \geq 7$.

For $k=4,5$ it was shown in [3] that any cube of edge length $B \gg_{\varepsilon} m^{\frac{3}{8}+\varepsilon}, m^{\frac{31}{84}+\varepsilon}$ respectively, contains a solution of (1).

For $k=2$ it was shown [1, Theorem 3] that there is a solution of the congruence

$$
x_{1} x_{2}+x_{3} x_{4} \equiv c \quad(\bmod m)
$$

in any cube of edge length $B \geq 2 \sqrt{m}+1$ for prime power $m, B \gg m^{\frac{1}{2}} \log ^{2} m$, for general m. For prime moduli, Garaev and Garcia [5, Theorem 4] proved a result of the same strength for boxes with edges of different lengths.

Throughout the paper we let \mathbb{Z}_{m} denote the ring of integers $\bmod m$, and \mathbb{Z}_{m}^{*} the group of units mod m.

2. Sums of Products

The key to proving the result for prime moduli p in [2] was a theorem of Hart and Iosevich [6, Remark 1.3] stating that if $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$ are subsets of \mathbb{Z}_{p}, with

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>p^{3}
$$

then $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{p}^{*}$. Let us start by investigating to what extent such a result can be extended to a general modulus.

Example 1. Let m be a positive even integer, H be the subgroup of \mathbb{Z}_{m}^{*} consisting of residue classes that are congruent to $1 \bmod 2$, so that $|H|=m / 2$ and $\mathcal{A}_{1}=\mathcal{B}_{1}=$ $\mathcal{A}_{2}=\mathcal{B}_{2}=H$. Then

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|=\frac{m^{4}}{16}
$$

and $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2}=2 \mathbb{Z}_{m}$. In particular, the sum-product set contains no element of \mathbb{Z}_{m}^{*}.

Example 2. Let m be any odd positive integer, p^{*} be the minimal prime divisor of m, H be the subgroup of \mathbb{Z}_{m}^{*} consisting of residue classes that are squares $\left(\bmod p^{*}\right)$, so that $|H|=\phi(m) / 2$. Let $\mathcal{A}_{1}=p^{*} \mathbb{Z}_{m}, \mathcal{B}_{1}=\mathbb{Z}_{m}, \mathcal{A}_{2}=\mathcal{B}_{2}=H$. Then $|H|=\frac{m}{2} \prod_{p \mid m}\left(1-\frac{1}{p}\right)$,

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1} \| \mathcal{B}_{2}\right|>\frac{m^{4}}{4 p^{*}} \prod_{p \mid m}\left(1-\frac{1}{p}\right)^{2},
$$

and $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2}=H$. In particular, the sum-product set does not contain \mathbb{Z}_{m}^{*}.
Here we establish the following.
Theorem 2. Let p^{*} denote the minimal prime divisor of m and let $r=\omega(m)$. If $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$ are subsets of \mathbb{Z}_{m} with

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>16 r^{2} \frac{m^{4}}{p^{*}},
$$

then

$$
\begin{equation*}
\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{m}^{*} . \tag{3}
\end{equation*}
$$

The preceding examples indicate that without further constraints on the sets $\mathcal{A}_{i}, \mathcal{B}_{i}$, the lower bound on the product of cardinalities, of order m^{4} / p^{*}, is best possible. It may be possible to remove the dependence on r however.
Remark 1. A stronger conclusion, namely that $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{m}$ or $\mathbb{Z}_{m} \backslash\{0\}$ is not possible under the hypotheses of Theorem 2, as the following example indicates. Suppose that m has an odd prime divisor p with $p^{2} \mid m$. Let λ be a quadratic nonresidue $\bmod p, H$ be the set of residue classes $\bmod m$ that are squares $\bmod p$, $\mathcal{A}_{1}=-\lambda H, \mathcal{A}_{2}=\mathcal{B}_{1}=\mathcal{B}_{2}=H$. Then $\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>\frac{m^{4}}{16}$ but $p \notin \mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2}$.

3. A More Precise Formulation of Theorem 2

Theorem 2 follows readily from the more precise statement:
Proposition 1. Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$ be subsets of \mathbb{Z}_{m} such that

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>m^{4}\left[\prod_{p \mid m}\left(1+\frac{\sqrt{2-\frac{1}{p}}}{\sqrt{p}-1}\right)-1\right]^{2} .
$$

Then

$$
\begin{equation*}
\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{m}^{*} . \tag{4}
\end{equation*}
$$

Proof. For $a \in \mathbb{Z}_{m}^{*}$, let N be the number of solutions of the equation $x_{1} y_{1}+x_{2} y_{2}=a$ with $x_{i} \in \mathcal{A}_{i}, y_{i} \in \mathcal{B}_{i}, i=1,2$. Then

$$
\begin{aligned}
m N & =\sum_{\lambda} \sum_{\substack{x_{i} \in \mathcal{A}_{i} \\
y_{i} \in \mathcal{B}_{i}}} e_{m}\left(\lambda\left(x_{1} y_{1}+x_{2} y_{2}-a\right)\right) \\
& =\sum_{d \mid m} \sum_{\substack{\lambda=1 \\
(\lambda, m)=d}}^{m} \sum_{\substack{x_{i} \in \mathcal{A}_{i} \\
y_{i} \in \mathcal{B}_{i}}} e_{m}\left(\lambda\left(x_{1} y_{1}+x_{2} y_{2}-a\right)\right) \\
& =\sum_{d \mid m} \sum_{\substack{\lambda=1 \\
\left(\lambda^{\prime}, m / d\right)=1}}^{m / d} \sum_{\substack{x_{i} \in \mathcal{A}_{i} \\
y_{i} \in \mathcal{B}_{i}}} e_{m / d}\left(\lambda^{\prime}\left(x_{1} y_{1}+x_{2} y_{2}-a\right)\right) \\
& =\sum_{d \mid m} \sum_{\substack{\lambda=1 \\
(\lambda, d)=1}}^{d} \sum_{\substack{x_{i} \in \mathcal{A}_{i} \\
y_{i} \in \mathcal{B}_{i}}} e_{d}\left(\lambda\left(x_{1} y_{1}+x_{2} y_{2}-a\right)\right) \\
& =\prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|\left|\mathcal{B}_{i}\right|+\text { Error }
\end{aligned}
$$

say, with

$$
\begin{equation*}
\text { Error }:=\sum_{\substack{d \mid m \\ d>1}} \sum_{\substack{\lambda=1 \\(\lambda, d)=1}}^{d} \sum_{\substack{x_{i} \in \mathcal{A}_{i} \\ y_{i} \in \mathcal{B}_{i}}} e_{d}\left(\lambda\left(x_{1} y_{1}+x_{2} y_{2}-a\right)\right) \tag{5}
\end{equation*}
$$

Applying the Cauchy-Schwarz inequality and then extending the range of summation for the y_{i}, we obtain that

$$
\begin{aligned}
\mid \text { Error } \mid \leq & \sum_{\substack{d \mid m \\
d>1}}\left(\sum_{y_{i} \in \mathcal{B}_{i}} 1\right)^{1 / 2}\left(\sum_{y_{i} \in \mathcal{B}_{i}}\left|\sum_{\substack{\lambda=1 \\
(\lambda, d)=1}}^{d} \sum_{x_{i} \in \mathcal{A}_{i}} e_{d}\left(\lambda\left(x_{1} y_{1}+x_{2} y_{2}-a\right)\right)\right|^{2}\right)^{1 / 2} \\
\leq & \sum_{\substack{d \mid m \\
d>1}} \prod_{i=1}^{2}\left|\mathcal{B}_{i}\right|^{1 / 2}\left(\sum_{y_{1} \in \mathbb{Z}_{m}} \sum_{y_{2} \in \mathbb{Z}_{m}} \sum_{\substack{\lambda=1 \\
(\lambda, d)=1}}^{d} \sum_{\substack{\lambda^{\prime}=1 \\
\left(\lambda^{\prime}, d\right)=1}}^{d}\right. \\
& \left.\sum_{x_{i}, x_{i}^{\prime} \in \mathcal{A}_{i}} e_{d}\left(\lambda\left(x_{1} y_{1}+x_{2} y_{2}-a\right)-\lambda^{\prime}\left(x_{1}^{\prime} y_{1}+x_{2}^{\prime} y_{2}-a\right)\right)\right)^{1 / 2}
\end{aligned}
$$

and so

$$
\begin{aligned}
\mid \text { Error } \mid \leq & \sum_{\substack{d \mid m \\
d>1}} \prod_{i=1}^{2}\left|\mathcal{B}_{i}\right|^{1 / 2}\left(\sum_{\substack{\lambda, 1 \\
(\lambda, d)=1}}^{d} \sum_{\substack{\left.\lambda^{\prime}=1 \\
\lambda^{\prime}, d\right)=1}}^{d} e_{d}\left(a\left(\lambda^{\prime}-\lambda\right)\right)\right. \\
& \left.\sum_{x_{i}, x_{i}^{\prime} \in \mathcal{A}_{i}} \sum_{y_{1} \in \mathbb{Z}_{m}} e_{d}\left(y_{1}\left(\lambda x_{1}-\lambda^{\prime} x_{2}\right)\right) \sum_{y_{2} \in \mathbb{Z}_{m}} e_{d}\left(y_{2}\left(\lambda x_{2}-\lambda^{\prime} x_{2}^{\prime}\right)\right)\right)^{1 / 2} \\
= & m \prod_{i=1}^{2}\left|\mathcal{B}_{i}\right|^{1 / 2} \sum_{\substack{d \mid m \\
d>1}} E_{d}^{1 / 2}
\end{aligned}
$$

say, where

$$
\begin{aligned}
E_{d}: & =\sum_{\substack{\lambda=1 \\
(\lambda, d)=1}}^{d} \sum_{\substack{\lambda^{\prime}=1 \\
\left(\lambda^{\prime}, d\right)=1}}^{d} e_{d}\left(a\left(\lambda^{\prime}-\lambda\right)\right) \prod_{i=1}^{2} \sum_{\substack{x_{i}, x_{i}^{\prime} \in \mathcal{A}_{i} \\
\lambda x_{i}=\lambda^{\prime} x_{i}^{\prime} \\
(\bmod d)}} 1 \\
& =\sum_{\substack{\nu=1 \\
(\nu, d)=1}}^{d}\left(\sum_{\substack{\lambda=1 \\
(\lambda, \lambda)=1}}^{d} e_{d}(a \lambda(\nu-1))\right) \prod_{i=1}^{2} \sum_{\substack{x_{i}, x_{i}^{\prime} \in \mathcal{A}_{i} \\
x_{i}=\left\langle x_{i}^{x}(\bmod d)\right.}} 1 .
\end{aligned}
$$

The sum over λ is a Ramanujan sum, which for any $m \in \mathbb{N}, x \in \mathbb{Z}$, satisfies

$$
\sum_{\substack{\lambda=1 \\(\lambda, m)=1}}^{m} e_{m}(\lambda x)=\mu\left(\frac{m}{(m, x)}\right) \frac{\phi(m)}{\phi(m /(m, x))} .
$$

Since $(a, d)=1$, and so $(d, a(\nu-1))=(d, \nu-1)$, we obtain

$$
\begin{align*}
E_{d} & =\sum_{\substack{\nu=1 \\
(\nu, d)=1}}^{d} \mu\left(\frac{d}{(\nu-1, d)}\right) \frac{\phi(d)}{\phi(d /(\nu-1, d))} \prod_{i=1}^{2} \sum_{\substack{x_{i}, x_{i} \in \mathcal{A}_{i} \\
x_{i}=x_{i} \\
(\bmod d)}} 1 \\
& =\sum_{e \mid d} \frac{\mu\left(\frac{d}{e}\right) \phi(d)}{\phi(d / e)} \sum_{\substack{\nu=1,(\nu, d)=1 \\
(\nu-1, d)=e}}^{d} \prod_{i=1}^{2} \sum_{\substack{x_{i}, x_{i}^{\prime} \in \mathcal{A}_{i} \\
x_{i}=\nu x_{i}^{i}}} 1 \tag{6}\\
& \leq \sum_{e \mid d} \frac{\left|\mu\left(\frac{d}{e}\right)\right| \phi(d)}{\phi\left(\frac{d}{e}\right)} \sum_{\substack{\nu=1,(\nu, d)=1 \\
\nu \equiv 1,(\bmod d) \\
(\bmod e)}}^{d} \prod_{\substack{i=1}}^{2} \sum_{\substack{x_{i}, x^{\prime} \in \mathcal{A}_{i} \\
x_{i}=\sum x_{i}(\bmod d)}} 1 .
\end{align*}
$$

Now, for any choice of $x_{1}^{\prime}, x_{2}^{\prime}$ and ν, there are at most m / d choices for x_{1} and m / d choices for x_{2}. Also, the number of choices for ν is the number of t with
$1 \leq t \leq d / e$ and $(1+t e, d)=1$, which is $\phi(d) / \phi(e)$. Thus, altogether, there are at $\operatorname{most}\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right| \frac{\phi(d)}{\phi(e)} \frac{m^{2}}{d^{2}}$ choices for $\nu, x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}$, and so

$$
E_{d} \leq \sum_{e \mid d} \frac{\left|\mu\left(\frac{d}{e}\right)\right| \phi(d)}{\phi\left(\frac{d}{e}\right)}\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right| \frac{\phi(d)}{\phi(e)} \frac{m^{2}}{d^{2}}
$$

and

$$
\begin{align*}
\mid \text { Error } \mid & <m^{2} \prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|^{1 / 2}\left|\mathcal{B}_{i}\right|^{1 / 2} \sum_{\substack{d \mid m \\
d>1}} \frac{\phi(d)}{d}\left(\sum_{e \mid d} \frac{\left|\mu\left(\frac{d}{e}\right)\right|}{\phi\left(\frac{d}{e}\right) \phi(e)}\right)^{1 / 2} \\
& =m^{2} \prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|^{1 / 2}\left|\mathcal{B}_{i}\right|^{1 / 2} \sum_{\substack{d \mid m \\
d>1}} \frac{\phi(d)}{d} G(d)^{1 / 2} \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
G(d):=\sum_{e \mid d} \frac{|\mu(e)|}{\phi(e) \phi\left(\frac{d}{e}\right)} . \tag{8}
\end{equation*}
$$

Plainly, $G(d)$ is a multiplicative function with

$$
\begin{gathered}
G\left(p^{j}\right)=\frac{2 p-1}{p} \frac{p^{j}}{\phi\left(p^{j}\right)^{2}}, \\
G(d)=\frac{d}{\phi(d)^{2}} \prod_{p \mid d}\left(2-\frac{1}{p}\right) .
\end{gathered}
$$

Thus, we obtain

$$
\mid \text { Error }\left.\left|<m^{2} \prod_{i=1}^{2}\right| A_{i}\right|^{1 / 2}\left|B_{i}\right|^{1 / 2} \sum_{\substack{d \mid m \\ d>1}} \frac{1}{\sqrt{d}} \prod_{p \mid d}\left(2-\frac{1}{p}\right)^{1 / 2}
$$

If we include $d=1$, the sum over d on the right-hand side,

$$
H(m):=\sum_{d \mid m} \frac{1}{\sqrt{d}} \prod_{p \mid d}\left(2-\frac{1}{p}\right)^{1 / 2}
$$

is a multiplicative function with

$$
H\left(p^{j}\right)=1+\sqrt{2-\frac{1}{p}} \frac{1}{\sqrt{p}}\left(1+\frac{1}{\sqrt{p}}+\frac{1}{p}+\cdots+\frac{1}{(\sqrt{p})^{j-1}}\right) \leq 1+\sqrt{2-\frac{1}{p}} \frac{1}{\sqrt{p}-1} .
$$

Thus,

$$
\mid \text { Error }\left.\left|<m^{2} \prod_{i=1}^{2}\right| A_{i}\right|^{1 / 2}\left|B_{i}\right|^{1 / 2}\left[\prod_{p \mid m}\left(1+\frac{\sqrt{2-\frac{1}{p}}}{\sqrt{p}-1}\right)-1\right]
$$

which is less than the main term $\prod_{i=1}^{2}\left|A_{i}\right|\left|B_{i}\right|$ under the hypothesis of the proposition.

4. Proof of Theorem 2

The result is vacuously true for $p^{*} \leq 16 r^{2}$, and so we may assume $p^{*}>16 r^{2}$. It follows that $p^{*} \geq(2 \sqrt{2} r+1)^{2}$, and so

$$
\begin{equation*}
\frac{\sqrt{p^{*}}-1}{\sqrt{2}} \geq 2 r \tag{9}
\end{equation*}
$$

Now, for any $x \geq 2 r$, we have

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{r} \leq e^{r / x} \leq 1+\frac{2 r}{x} \tag{10}
\end{equation*}
$$

and so letting $x=\left(\sqrt{p^{*}}-1\right) / \sqrt{2}$, we have by (9) and (10),

$$
\prod_{p \mid m}\left(1+\frac{\sqrt{2}}{\sqrt{p}-1}\right) \leq\left(1+\frac{\sqrt{2}}{\sqrt{p^{*}}-1}\right)^{r} \leq 1+\frac{2 \sqrt{2} r}{\sqrt{p^{*}}-1}
$$

and

$$
\left[\prod_{p \mid m}\left(1+\frac{\sqrt{2-\frac{1}{p}}}{\sqrt{p}-1}\right)-1\right]^{2} \leq\left(\frac{2 \sqrt{2} r}{\sqrt{p^{*}}-1}\right)^{2} \leq \frac{16 r^{2}}{p^{*}}
$$

the latter inequality holding for $p^{*}>16$, which we have assumed. The theorem now follows immediately from Proposition 1.

Remark 2. For special classes of moduli, more precise versions of the proposition are available. We give a couple of examples here, prime power moduli and moduli that are products of two distinct primes.
Proposition 2. For any prime power $m=p^{l}$, we have

$$
\begin{equation*}
\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{m}^{*} \tag{11}
\end{equation*}
$$

provided that

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>m^{4} \frac{p-1}{(p-\sqrt{p})^{2}}
$$

Proof. Let Error denote the error term in (5). For $m=p^{l}$, the only positive contribution to E_{d} in (6) occurs when $e=d$, and so we obtain

$$
\begin{aligned}
\mid \text { Error } \mid & <m^{2} \prod_{i=1}^{2}\left|A_{i}\right|^{1 / 2}\left|B_{i}\right|^{1 / 2} \sum_{j=1}^{l} \frac{\phi\left(p^{j}\right)}{p^{j}} \frac{1}{\sqrt{\phi\left(p^{j}\right)}} \\
& =m^{2} \prod_{i=1}^{2}\left|A_{i}\right|^{1 / 2}\left|B_{i}\right|^{1 / 2} \sqrt{1-\frac{1}{p}} \sum_{j=1}^{l} \frac{1}{p^{j / 2}} \\
& \leq \frac{\sqrt{p-1}}{p-\sqrt{p}} m^{2} \prod_{i=1}^{2}\left|A_{i}\right|^{1 / 2}\left|B_{i}\right|^{1 / 2}
\end{aligned}
$$

yielding the result.
Proposition 3. For $m=p q$, with primes $p<q$, we have

$$
\begin{equation*}
\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{m}^{*} \tag{12}
\end{equation*}
$$

provided that

$$
\left|\mathcal{A}_{1}\right|\left|\mathcal{A}_{2}\right|\left|\mathcal{B}_{1}\right|\left|\mathcal{B}_{2}\right|>2 m^{3}(\sqrt{p}+\sqrt{q}+\sqrt{2})^{2}
$$

Proof. In this case, with $G(d)$ as defined in (8), we obtain from (7),

$$
\begin{aligned}
\mid \text { Error } \mid & <m^{2} \prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|^{1 / 2}\left|\mathcal{B}_{i}\right|^{1 / 2} \sum_{\substack{d \mid p q \\
d>1}} \frac{\phi(d)}{d} G(d)^{1 / 2} \\
& =m^{2} \prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|^{1 / 2}\left|\mathcal{B}_{i}\right|^{1 / 2}\left(\frac{\phi(p)}{p} \frac{\sqrt{2}}{\sqrt{\phi(p)}}+\frac{\phi(q)}{q} \frac{\sqrt{2}}{\sqrt{\phi(q)}}+\frac{\phi(p q)}{p q} \frac{2}{\sqrt{\phi(p q)}}\right) \\
& <m^{2} \prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|^{1 / 2}\left|\mathcal{B}_{i}\right|^{1 / 2}\left(\frac{\sqrt{2}}{\sqrt{p}}+\frac{\sqrt{2}}{\sqrt{q}}+\frac{2}{\sqrt{p q}}\right) \\
& =m^{\frac{3}{2}} \prod_{i=1}^{2}\left|\mathcal{A}_{i}\right|^{1 / 2}\left|\mathcal{B}_{i}\right|^{1 / 2}(\sqrt{2 q}+\sqrt{2 p}+2),
\end{aligned}
$$

and the result follows.

5. Lower Bounds on the Cardinality of Product Sets

Lemma 1. Let $l, B, P, Q \in \mathbb{N}, a_{i} \in \mathbb{Z}$, with $B \leq Q, 0 \leq a_{i}<P, 1 \leq i \leq l$, $(P, Q)=1$, and let N be the number of solutions of the congruence

$$
\begin{equation*}
\left(a_{1}+P s_{1}\right) \cdots\left(a_{l}+P s_{l}\right) \equiv\left(a_{1}+P t_{1}\right) \cdots\left(a_{l}+P t_{l}\right) \quad(\bmod Q) \tag{13}
\end{equation*}
$$

in integers s_{i}, t_{i} with $1 \leq s_{i}, t_{i} \leq B, 1 \leq i \leq l$. Then, for any $\varepsilon>0$, we have

$$
\begin{equation*}
N \lll \varepsilon\left(\frac{P^{l} B^{2 l}}{P Q}+B^{l}\right)(P B)^{l^{2} \varepsilon} \tag{14}
\end{equation*}
$$

Proof. For a given selection of t_{i}, we must solve a congruence of the type

$$
\left(a_{1}+P s_{1}\right)\left(a_{2}+P s_{2}\right) \cdots\left(a_{l}+P s_{l}\right) \equiv C \quad(\bmod Q)
$$

with $0 \leq s_{i} \leq B-1,1 \leq i \leq l$, for some nonnegative integer $C<Q$, that is,

$$
\left(a_{1}+P s_{1}\right)\left(a_{2}+P s_{2}\right) \cdots\left(a_{l}+P s_{l}\right)=C+\ell Q
$$

for some nonnegative integer $\ell \leq \frac{P^{l}(B+1)^{l}}{Q}$. Note that, for any choice of s_{i}, we have

$$
a_{1} a_{2} \cdots a_{l} \equiv C+\ell Q \quad(\bmod P)
$$

and so the value of ℓ is uniquely determined $\bmod P$. Therefore, there are at most $\frac{P^{l}(B+1)^{l}}{P Q}+1$ choices for ℓ. For any choice of ℓ, there are at most $\tau(C+\ell Q)^{l-1}<_{\varepsilon}$ $(P B)^{l^{2} \varepsilon}$ choices for the s_{i}, for any $\varepsilon>0$, and thus the total number of choices for the s_{i} is

$$
<_{\varepsilon}\left(\frac{P^{l} B^{l}}{P Q}+1\right)(P B)^{l^{2} \varepsilon} .
$$

Multiplying by the B^{l} choices for the t_{i}, we obtain the upper bound of the lemma.

Lemma 2. Under hypotheses of Lemma 1, we have
$\#\left\{\left(a_{1}+P s_{1}\right) \cdots\left(a_{l}+P s_{l}\right) \quad(\bmod Q): 1 \leq s_{i} \leq B\right\}>_{\varepsilon} \min \left\{B^{l}, \frac{Q}{P^{l-1}}\right\}(P Q)^{-l^{2} \varepsilon}$.
Proof. With N the quantity in Lemma 1, we have

$$
\begin{aligned}
\#\left\{\left(a_{1}+P s_{1}\right) \cdots\left(a_{l}+P s_{l}\right) \quad(\bmod Q)\right. & \left.: 0 \leq s_{i}<B\right\} \geq \frac{B^{2 l}}{N} \\
& >_{\varepsilon} \frac{B^{2 l}}{\left(\frac{P^{l} B^{2 l}}{P Q}+B^{l}\right)(P B)^{l^{2} \varepsilon}}
\end{aligned}
$$

and the result follows.

Lemma 3. Let B, P, Q be positive integers with $B<Q,(P, Q)=1$ and $B^{l} \geq$ $2^{-l} Q P^{1-l}$. Let q^{*} be the minimal prime divisor of Q and $r=\omega(Q)$. Then, for any $\varepsilon>0$ and sets $\mathcal{A}_{i}, \mathcal{B}_{i}$ of the type occurring in Lemma 2, we have $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{Q}^{*}$, provided that

$$
q^{*} \geq c^{*}(\varepsilon, l, r) P^{4 l-4}(P Q)^{4 l^{2} \varepsilon}
$$

for some constant $c^{*}(\varepsilon, l, r)$ depending on ε, l and r.
Proof. By Lemma 2, since $B^{l}>2^{-l} Q P^{1-l}$, we have

$$
\left|\mathcal{A}_{i}\right|,\left|\mathcal{B}_{i}\right| \gg_{\varepsilon, l} Q P^{1-l}(P Q)^{-l^{2} \varepsilon}
$$

$i=1,2$. Applying Theorem 2 with $m=Q$, we succeed provided that

$$
P^{4-4 l} Q^{4}(P Q)^{-4 l^{2} \varepsilon} \gg_{\varepsilon, l, r} Q^{4} / q^{*}
$$

the bound given in the lemma.

6. Proof of Theorem 1

We present the proof for the case of even k, and then note at the end the modification required for odd k. Let $k=2 l$,

$$
m=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}, \quad E=\max _{1 \leq i \leq r} e_{i}
$$

with $p_{1}<p_{2}<\cdots<p_{r}$, Fix i with $1 \leq i \leq r$, and let

$$
P_{i}:=p_{1}^{e_{1}} \cdots p_{i-1}^{e_{i-1}}, \quad Q_{i}:=p_{i}^{e_{i}} \cdots p_{r}^{e_{r}}
$$

so that $P_{i} Q_{i}=m$ and $\left(P_{i}, Q_{i}\right)=1$. For $i=1$, we have $P_{1}=1, Q_{1}=m$. Let I be the maximal i such that $P_{i}^{l}<m$. Then, for $i \leq I$, we have

$$
\begin{equation*}
P_{i}^{l-1}<Q_{i} . \tag{15}
\end{equation*}
$$

For fixed $i \leq I$, we set $B=\left\lfloor Q_{i}^{\frac{1}{l}} P_{i}^{\frac{1}{l}-1}\right\rfloor$, a positive integer satisfying $B \geq \frac{1}{2} Q_{i}^{\frac{1}{l}} P_{i}^{\frac{1}{l}-1}$, the hypothesis needed for Lemma 3.

Consider the congruence

$$
\begin{equation*}
a x_{1} \cdots x_{k}+b x_{k+1} \cdots x_{2 k} \equiv c \quad(\bmod m) \tag{16}
\end{equation*}
$$

with $(a b c, m)=1$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{2 k}\right)$ be a solution of the same congruence mod P_{i} with $0 \leq a_{i}<P_{i}, 1 \leq i \leq 2 k$. Such a solution plainly exists. Thus any point of the form $\mathbf{x}=\mathbf{a}+P_{i} \mathbf{s}$ with $\mathbf{s}=\left(s_{1}, \ldots, s_{2 k}\right)$ satisfies the congruence $\bmod P_{i}$, and so our task is to find a choice of \mathbf{s} such that \mathbf{x} satisfies the congruence $\bmod Q_{i}$ as well. Let

$$
\begin{aligned}
\mathcal{A}_{1} & =\left\{a\left(a_{1}+P_{i} s_{1}\right) \cdots\left(a_{l}+P_{i} s_{l}\right) \quad\left(\bmod Q_{i}\right): 1 \leq s_{i} \leq B\right\} \\
\mathcal{B}_{1} & =\left\{\left(a_{l+1}+P_{i} s_{l+1}\right) \cdots\left(a_{k}+P_{i} s_{k}\right) \quad\left(\bmod Q_{i}\right): 1 \leq s_{i} \leq B\right\} \\
\mathcal{A}_{2} & =\left\{b\left(a_{k+1}+P_{i} s_{k+1}\right) \cdots\left(a_{k+l}+P_{i} s_{k+l}\right) \quad\left(\bmod Q_{i}\right): 1 \leq s_{i} \leq B\right\} \\
\mathcal{B}_{2} & =\left\{\left(a_{k+l+1}+P_{i} s_{k+l+1}\right) \cdots\left(a_{2 k}+P_{i} s_{2 k}\right) \quad\left(\bmod Q_{i}\right): 1 \leq s_{i} \leq B\right\}
\end{aligned}
$$

regarded as subsets of \mathbb{Z}_{Q}^{*}. Since the constant c in (16) is relatively prime to m, to obtain a solution of $(16) \bmod Q_{i}$, it suffices to show that $\mathcal{A}_{1} \mathcal{B}_{1}+\mathcal{A}_{2} \mathcal{B}_{2} \supseteq \mathbb{Z}_{Q_{i}}^{*}$. This will yield a solution of the $\bmod m$ congruence (16) with

$$
1<x_{i}<P_{i}+P_{i} B \leq 2 P_{i} B \leq 2 Q_{i}^{1 / l} P_{i}^{1 / l}=2 m^{1 / l}, \quad 1 \leq i \leq 2 k
$$

as desired. By Lemma 3, such is the case provided that

$$
p_{i} \geq c^{*} P_{i}^{4 l-4} m^{4 l^{2} \varepsilon}=c^{*}\left(p_{1}^{e_{1}} \cdots p_{i-1}^{e_{i-1}}\right)^{4 l-4} m^{4 l^{2} \varepsilon}
$$

with $c^{*}=c^{*}(\varepsilon, l, r)$, the constant in Lemma 3.

Suppose to the contrary that the latter condition fails for $1 \leq i \leq I$, that is, for $1 \leq i \leq I$,

$$
p_{i} \leq \lambda_{i}:=c^{*}\left(p_{1}^{e_{1}} \cdots p_{i-1}^{e_{i-1}}\right)^{4 l-4} m^{4 l^{2} \varepsilon}
$$

Here, $\lambda_{1}=c^{*} m^{4 l^{2} \varepsilon}$. Observing that for any $2 \leq i \leq I$,

$$
\lambda_{i}=p_{i-1}^{e_{i-1}(4 l-4)} \lambda_{i-1} \leq \lambda_{i-1}^{e_{i-1}(4 l-4)} \lambda_{i-1} \leq \lambda_{i-1}^{e_{i-1}(4 l-3)}
$$

we obtain

$$
\lambda_{i} \leq \lambda_{1}^{\prod_{j=1}^{i-1} e_{j}(4 l-3)}, \quad 2 \leq i \leq I
$$

and so for $1 \leq i \leq I$,

$$
p_{i} \leq \lambda_{i} \leq\left(c^{*} m^{4 l^{2} \varepsilon}\right)^{E^{i-1}(4 l-3)^{i-1}}
$$

For convenience, if $I=r$, set $P_{r+1}=m$. It follows that

$$
\begin{aligned}
P_{I+1} & =\prod_{i=1}^{I} p_{i}^{e_{i}} \leq \prod_{i=1}^{I}\left(c^{*} m^{4 l^{2} \varepsilon}\right)^{E^{i}(4 l-3)^{i-1}} \leq\left(c^{*} m^{4 l^{2} \varepsilon}\right)^{E^{I} \sum_{i=1}^{I}(4 l-3)^{i-1}} \\
& <\left(c^{*} m^{4 l^{2} \varepsilon}\right)^{E^{r}(4 l-3)^{r}}
\end{aligned}
$$

Now, by definition, $P_{I+1}>m^{\frac{1}{l}}$, and so

$$
\left(c^{*}\right)^{E^{r}(4 l-3)^{r}} m^{4 l^{2} \varepsilon E^{r}(4 l-3)^{r}}>m^{\frac{1}{l}} .
$$

If ε is chosen so that

$$
4 l^{2} \varepsilon E^{r}(4 l-3)^{r}<\frac{1}{2 l}
$$

then we obtain a contradiction if $m>\left(c^{*}\right)^{2 l r E^{r}(4 l-3)^{r}}$, a constant depending on l, r and E.

For the case of odd k, say $k=2 l+1$, we proceed as above letting $\mathcal{A}_{1}, \mathcal{A}_{2}$ be products of $l+1$ variables, and $\mathcal{B}_{1}, \mathcal{B}_{2}$ products of l variables. In this case, Lemma 3 requires

$$
q^{*} \geq c^{*} P^{4 l-2}(P Q)^{4(l+1)^{2} \varepsilon}
$$

and thus we reach the same conclusion with a slightly modified choice of ε.

7. The Cases $r=1,2$

The proof above can be refined to yield a slightly smaller exponent on m than the value $2 / k$ given in Theorem 1. We do so in the next theorem for the cases $r=1$ and $r=2$.

Theorem 3. i) If $m=p^{e}$, a prime power, then for any a, b, c with $(a b c, m)=1$, there is a solution of (1) with

$$
1 \leq x_{i} \ll \varepsilon, k, e m^{\frac{2}{k}-\frac{1}{2 e k}+\varepsilon}, \quad 1 \leq i \leq 2 k
$$

ii) If $m=p^{e} q^{f}$, a product of distinct prime powers, then for any a, b, c with $(a b c, m)=1$, there is a solution of (1) with

$$
1 \leq x_{i} \ll \varepsilon, k, e, f m^{\frac{2}{k}-\frac{1}{2 k e((k-2) f+1)}+\varepsilon}, \quad 1 \leq i \leq 2 k
$$

The estimate in part ii) reduces to the part i) estimate when $f=0$. With $e=$ $1, f=0$, both parts recover the prime moduli estimate of $[2], 1 \leq x_{i} \ll \varepsilon p^{\frac{3}{2 k}+\varepsilon}$.

Proof. i) Let $m=p^{e}$ and assume $k=2 l$. The proof follows the same argument as the proof of Theorem 1 and so we will be brief. By Theorem 2 and Lemma 2 with $P=1, Q=m$, we succeed provided that

$$
\min \left\{B^{l}, m\right\}^{4} \gg_{\varepsilon} \frac{m^{4+l^{2} \varepsilon}}{p}
$$

that is, $p>_{\varepsilon} m^{l^{2} \varepsilon}$ and $B^{4 l} \gg_{\varepsilon} m^{4+l^{2} \varepsilon} / p$. The first condition holds for $\varepsilon<\frac{1}{e l^{2}}$ and p greater than a constant depending on e and l. Since $p=m^{1 / e}$, the second condition can be rewritten $B^{4 l} \gg_{\varepsilon} m^{4-\frac{1}{e}+l^{2} \varepsilon}$, and thus the theorem follows.
ii) Let $m=P Q$ with $P=p^{e}, Q=q^{f}$ with $p<q$ primes. If we apply Theorem 2 to the congruence (1) mod m as above, then we succeed provided that

$$
\begin{equation*}
\min \left\{B^{l}, P Q\right\}^{4} \gg_{\varepsilon} \frac{m^{4+l^{2} \varepsilon}}{p} \tag{17}
\end{equation*}
$$

whereas if we apply it the congruence $(1) \bmod Q$, restricting the x_{i} to an arithmetic progression $x_{i}=a_{i}+P s_{i}$ with the a_{i} a solution to the mod P congruence with $a_{k+1}=\cdots=a_{2 k}=0$, then we succeed provided that

$$
\begin{equation*}
\min \left\{B^{l}, Q\right\}^{2} \min \left\{B^{l}, \frac{Q}{P^{l-1}}\right\}^{2} \gg_{\varepsilon} \frac{Q^{4}}{q} m^{l^{2} \varepsilon} \tag{18}
\end{equation*}
$$

We consider B^{l} in the different ranges, $Q<B^{l}<P Q, \frac{Q}{P^{l-1}}<B^{l}<Q$ and $B^{l}<\frac{Q}{P^{l-1}}$. By Theorem 1, we may assume $B^{l}<P Q$.
I. If $Q<B^{l}<P Q$, then by (17) and (18), we succeed if either

$$
\begin{equation*}
B^{4 l} \gg \varepsilon \frac{m^{4+l^{2} \varepsilon}}{p}, \quad \text { or } \quad q \ggg_{\varepsilon} p^{e(2 l-2)} m^{l^{2} \varepsilon} \tag{19}
\end{equation*}
$$

If the second inequality fails, that is, $q<_{\varepsilon} p^{e(2 l-2)} m^{l^{2} \varepsilon}$ with the same implied constant, then

$$
m=p^{e} q^{f} \leq p^{e} \cdot p^{e f(2 l-2)} m^{l^{2} f \varepsilon}<_{e, f, l, \varepsilon} p^{e(2 f l-2 f+1)} m^{\varepsilon},
$$

whence $p \gg_{e, f, l, \varepsilon} m^{\frac{1}{e(2 l f-2 f+1)}-\varepsilon}$. Thus, the first inequality in (19) holds if

$$
B^{4 l} \ggg e, f, l, \varepsilon m^{4-\frac{1}{e(2 l f-2 f+1)}+\varepsilon}
$$

yielding the result of the theorem.
II. If $\frac{Q}{P^{l-1}}<B^{l} \leq Q$, then by (17) and (18) we need

$$
\begin{equation*}
B^{4 l} \gg_{\varepsilon} \frac{m^{4+l^{2} \varepsilon}}{p} \tag{20}
\end{equation*}
$$

or $\quad B^{2 l} \frac{q^{2 f}}{p^{2 e(l-1)}} \gg_{\varepsilon} \frac{q^{4 f}}{q} m^{l^{2} \varepsilon}$, that is,

$$
\begin{equation*}
B^{2 l} \gg_{\varepsilon} q^{2 f-1} p^{2 e(l-1)} m^{l^{2} \varepsilon} \tag{21}
\end{equation*}
$$

If $q^{2}<p^{4 e(l-2)+1}$, then $m=p^{e} q^{f}<p^{e+\frac{f}{2}(4 e(l-2)+1)}$, and so

$$
p>m^{\frac{2}{4 e f(l-2)+f+2 e}} .
$$

Thus by (20) it suffices to have

$$
\begin{equation*}
B^{4 l}>m^{4-\frac{2}{4 e f(l-2)+f+2 e}+l^{2} \varepsilon} \tag{22}
\end{equation*}
$$

which is weaker than the inequality in case I.
If $q^{2} \geq p^{4 e(l-2)+1}$, equivalently

$$
q^{2 f-1} p^{2 e(l-1)} \leq m^{2-\frac{1}{4 e f(l-2)+f+2 e}}
$$

then by (21) it again suffices to have (22).
III. If $B^{l}<Q / P^{l-1}$, then by (18) it suffices to have $B^{4 l}>_{\varepsilon} q^{4 f-1} m^{l^{2} \varepsilon}$. Since $m \geq q^{f}$, it suffices to have $B^{4 l} \gg_{\varepsilon} m^{4-\frac{1}{f}+l^{2} \varepsilon}$, which again is weaker than the lower bound in case I.

References

[1] A. Ayyad and T. Cochrane, Lattices in \mathbb{Z}^{2} and the congruence $x y+u v \equiv c(\bmod m)$, Acta Arith. 132 (2008), no. 2, 127-133.
[2] A. Ayyad and T. Cochrane, The congruence $a x_{1} x_{2} \cdots x_{k}+b x_{k+1} x_{k+2} \cdots x_{2 k} \equiv c(\bmod p)$, Proc. Amer. Math. Soc. 145 (2017), no. 2, 467-477.
[3] A. Ayyad, T. Cochrane, and S. Shi, Modular hyperbolas and the congruence $a x_{1} x_{2} \cdots x_{k}+$ $b x_{k+1} x_{k+2} \cdots x_{2 k} \equiv c(\bmod m)$, Integers 18 (2018), no. A37, 1-18.
[4] M. Z. Garaev, On congruences involving products of variables from short intervals, Quarterly J. Math. 69 (2018), no. 3, 769-778.
[5] M. Z. Garaev and V. C. Garcia, The equation $x_{1} x_{2}=x_{3} x_{4}+\lambda$ in fields of prime order and applications, J. Number Theory 128 (2008), no. 9, 2520-2537.
[6] D. Hart and A. Iosevich, Sums and products in finite fields: an integral geometric viewpoint, Radon transforms, geometry, and wavelets, 129-135, Contemp. Math., 464, Amer. Math. Soc., Providence, RI, 2008.

