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Abstract

For m ∈ N, and integers a, b, c with (abc,m) = 1, we show that the congruence

ax1x2 · · ·xk + bxk+1xk+2 · · ·x2k ≡ c (mod m)

has a solution with 1 ≤ xi � m2/k, with the implied constant depending on the
number of prime factors ω(m) of m and their maximum multiplicity, generalizing
a similar result for prime moduli. More precise results are given in special cases.
We also establish that if A1,A2,B1,B2 are subsets of Zm, the ring of integers mod
m, with |A1||A2||B1||B2| > 16ω(m)2m4/p∗, where p∗ is the minimal prime divisor
of m, then A1B1 +A2B2 ⊇ Z∗m, the group of units mod m, generalizing a result of
Hart and Iosevich for prime moduli.

1. Introduction

For m ∈ N and integers a, b, c with (abc,m) = 1, we seek small solutions of the

congruence

ax1x2 · · ·xk + bxk+1xk+2 · · ·x2k ≡ c (mod m). (1)

For prime moduli, it was proven in [2] that there is a solution of (1) with 1 ≤ xi �ε

m
3
2k+ε. Let r = ω(m), the number of distinct prime factors of m, and let E denote

the maximum multiplicity of any prime factor of m. Here we prove the following.

Theorem 1. For any positive integers E, k, r there is a constant c(E, k, r) such

that for m > c(E, k, r) and any integers a, b, c with (abc,m) = 1, there exists a

solution of (1) with

1 ≤ xi ≤ 2m2/k, 1 ≤ i ≤ 2k.
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Thus, by taking k sufficiently large, we obtain solutions of (1) with 1 ≤ xi < mε,

for any ε > 0. We conjecture that there is in fact a solution of (1) with

1 ≤ xi �ε,k m
1
k+ε,

uniformly in E and r. Such a bound is optimal aside from the possible removal of

the ε. Theorem 1 is useful for classes of integers m where r and E are bounded

in size. It is desirable to be able to replace the constant c(E, k, r) with a value

depending only on k.

Ayyad and the authors [3] established that for arbitrary m, any cube of edge

length B contains a solution of (1) provided that

B �ε m
1
4+

1

2
√
k+3.9

+ε
. (2)

For k > 5 this is a weaker bound than what is given in Theorem 1, however it applies

to cubes in arbitrary position. For prime moduli m = p, Garaev [4, Theorem 1]

improved (2) to B �ε p
1
4+ε for k ≥ 7.

For k = 4, 5 it was shown in [3] that any cube of edge length B �ε m
3
8+ε, m

31
84+ε

respectively, contains a solution of (1).

For k = 2 it was shown [1, Theorem 3] that there is a solution of the congruence

x1x2 + x3x4 ≡ c (mod m)

in any cube of edge length B ≥ 2
√
m + 1 for prime power m, B � m

1
2 log2m, for

general m. For prime moduli, Garaev and Garcia [5, Theorem 4] proved a result of

the same strength for boxes with edges of different lengths.

Throughout the paper we let Zm denote the ring of integers mod m, and Z∗m the

group of units mod m.

2. Sums of Products

The key to proving the result for prime moduli p in [2] was a theorem of Hart and

Iosevich [6, Remark 1.3] stating that if A1,A2,B1,B2 are subsets of Zp, with

|A1||A2||B1||B2| > p3,

then A1B1 +A2B2 ⊇ Z∗p. Let us start by investigating to what extent such a result

can be extended to a general modulus.

Example 1. Let m be a positive even integer, H be the subgroup of Z∗m consisting

of residue classes that are congruent to 1 mod 2, so that |H| = m/2 and A1 = B1 =

A2 = B2 = H. Then

|A1||A2||B1||B2| =
m4

16
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and A1B1 +A2B2 = 2Zm. In particular, the sum-product set contains no element

of Z∗m.

Example 2. Let m be any odd positive integer, p∗ be the minimal prime divisor

of m, H be the subgroup of Z∗m consisting of residue classes that are squares

(mod p∗), so that |H| = φ(m)/2. Let A1 = p∗Zm, B1 = Zm, A2 = B2 = H. Then

|H| = m
2

∏
p|m(1− 1

p ),

|A1||A2||B1||B2| >
m4

4p∗

∏
p|m

(1− 1
p )2,

and A1B1 +A2B2 = H. In particular, the sum-product set does not contain Z∗m.

Here we establish the following.

Theorem 2. Let p∗ denote the minimal prime divisor of m and let r = ω(m). If

A1,A2,B1,B2 are subsets of Zm with

|A1||A2||B1||B2| > 16r2
m4

p∗
,

then

A1B1 +A2B2 ⊇ Z∗m. (3)

The preceding examples indicate that without further constraints on the sets Ai,Bi,
the lower bound on the product of cardinalities, of order m4/p∗, is best possible. It

may be possible to remove the dependence on r however.

Remark 1. A stronger conclusion, namely that A1B1 +A2B2 ⊇ Zm or Zm \ {0} is

not possible under the hypotheses of Theorem 2, as the following example indicates.

Suppose that m has an odd prime divisor p with p2|m. Let λ be a quadratic

nonresidue mod p, H be the set of residue classes mod m that are squares mod p,

A1 = −λH, A2 = B1 = B2 = H. Then |A1||A2||B1||B2| > m4

16 but p /∈ A1B1+A2B2.

3. A More Precise Formulation of Theorem 2

Theorem 2 follows readily from the more precise statement:

Proposition 1. Let A1,A2,B1,B2 be subsets of Zm such that

|A1||A2||B1||B2| > m4

∏
p|m

1 +

√
2− 1

p
√
p− 1

− 1

2

.

Then

A1B1 +A2B2 ⊇ Z∗m. (4)
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Proof. For a ∈ Z∗m, let N be the number of solutions of the equation x1y1+x2y2 = a

with xi ∈ Ai, yi ∈ Bi, i = 1, 2. Then

mN =
∑
λ

∑
xi∈Ai
yi∈Bi

em(λ(x1y1 + x2y2 − a))

=
∑
d|m

m∑
λ=1

(λ,m)=d

∑
xi∈Ai
yi∈Bi

em(λ(x1y1 + x2y2 − a))

=
∑
d|m

m/d∑
λ=1

(λ′,m/d)=1

∑
xi∈Ai
yi∈Bi

em/d(λ
′(x1y1 + x2y2 − a))

=
∑
d|m

d∑
λ=1

(λ,d)=1

∑
xi∈Ai
yi∈Bi

ed(λ(x1y1 + x2y2 − a))

=

2∏
i=1

|Ai||Bi|+ Error

say, with

Error :=
∑
d|m
d>1

d∑
λ=1

(λ,d)=1

∑
xi∈Ai
yi∈Bi

ed(λ(x1y1 + x2y2 − a)). (5)

Applying the Cauchy-Schwarz inequality and then extending the range of sum-

mation for the yi, we obtain that

|Error| ≤
∑
d|m
d>1

( ∑
yi∈Bi

1
)1/2( ∑

yi∈Bi

∣∣∣ d∑
λ=1

(λ,d)=1

∑
xi∈Ai

ed(λ(x1y1 + x2y2 − a))
∣∣∣2)1/2

≤
∑
d|m
d>1

2∏
i=1

|Bi|1/2

 ∑
y1∈Zm

∑
y2∈Zm

d∑
λ=1

(λ,d)=1

d∑
λ′=1

(λ′,d)=1

∑
xi,x′i∈Ai

ed
(
λ(x1y1 + x2y2 − a)− λ′(x′1y1 + x′2y2 − a)

)1/2

,
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and so

|Error| ≤
∑
d|m
d>1

2∏
i=1

|Bi|1/2

 d∑
λ=1

(λ,d)=1

d∑
λ′=1

(λ′,d)=1

ed
(
a(λ′ − λ)

)
∑

xi,x′i∈Ai

∑
y1∈Zm

ed
(
y1(λx1 − λ′x2)

) ∑
y2∈Zm

ed
(
y2(λx2 − λ′x′2)

)1/2

= m

2∏
i=1

|Bi|1/2
∑
d|m
d>1

E
1/2
d

say, where

Ed : =

d∑
λ=1

(λ,d)=1

d∑
λ′=1

(λ′,d)=1

ed(a(λ′ − λ))

2∏
i=1

∑
xi,x
′
i
∈Ai

λxi≡λ′x′i (mod d)

1

=

d∑
ν=1

(ν,d)=1

 d∑
λ=1

(λ,d)=1

ed(aλ(ν − 1))

 2∏
i=1

∑
xi,x
′
i
∈Ai

xi≡νx′i (mod d)

1.

The sum over λ is a Ramanujan sum, which for any m ∈ N, x ∈ Z, satisfies

m∑
λ=1

(λ,m)=1

em(λx) = µ

(
m

(m,x)

)
φ(m)

φ (m/(m,x))
.

Since (a, d) = 1, and so (d, a(ν − 1)) = (d, ν − 1), we obtain

Ed =

d∑
ν=1

(ν,d)=1

µ

(
d

(ν − 1, d)

)
φ(d)

φ (d/(ν − 1, d))

2∏
i=1

∑
xi,x
′
i
∈Ai

xi≡νx′i (mod d)

1

=
∑
e|d

µ(de )φ(d)

φ(d/e)

d∑
ν=1,(ν,d)=1
(ν−1,d)=e

2∏
i=1

∑
xi,x
′
i
∈Ai

xi≡νx′i (mod d)

1 (6)

≤
∑
e|d

|µ(de )|φ(d)

φ(de )

d∑
ν=1,(ν,d)=1
ν≡1 (mod e)

2∏
i=1

∑
xi,x
′
i
∈Ai

xi≡νx′i (mod d)

1.

Now, for any choice of x′1, x
′
2 and ν, there are at most m/d choices for x1 and

m/d choices for x2. Also, the number of choices for ν is the number of t with
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1 ≤ t ≤ d/e and (1 + te, d) = 1, which is φ(d)/φ(e). Thus, altogether, there are at

most |A1||A2|φ(d)φ(e)
m2

d2 choices for ν, x1, x2, x
′
1, x
′
2, and so

Ed ≤
∑
e|d

|µ(de )|φ(d)

φ(de )
|A1||A2|

φ(d)

φ(e)

m2

d2
,

and

|Error| < m2
2∏
i=1

|Ai|1/2|Bi|1/2
∑
d|m
d>1

φ(d)

d

(∑
e|d

|µ(de )|
φ(de )φ(e)

)1/2

= m2
2∏
i=1

|Ai|1/2|Bi|1/2
∑
d|m
d>1

φ(d)

d
G(d)1/2, (7)

where

G(d) :=
∑
e|d

|µ(e)|
φ(e)φ(de )

. (8)

Plainly, G(d) is a multiplicative function with

G(pj) =
2p− 1

p

pj

φ(pj)2
,

G(d) =
d

φ(d)2

∏
p|d

(
2− 1

p

)
.

Thus, we obtain

|Error| < m2
2∏
i=1

|Ai|1/2|Bi|1/2
∑
d|m
d>1

1√
d

∏
p|d

(
2− 1

p

)1/2

.

If we include d = 1, the sum over d on the right-hand side,

H(m) :=
∑
d|m

1√
d

∏
p|d

(
2− 1

p

)1/2

,

is a multiplicative function with

H(pj) = 1 +

√
2− 1

p

1
√
p

(
1 +

1
√
p

+
1

p
+ · · ·+ 1

(
√
p)j−1

)
≤ 1 +

√
2− 1

p

1
√
p− 1

.

Thus,

|Error| < m2
2∏
i=1

|Ai|1/2|Bi|1/2
∏
p|m

1 +

√
2− 1

p
√
p− 1

− 1

 ,
which is less than the main term

∏2
i=1 |Ai||Bi| under the hypothesis of the propo-

sition.
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4. Proof of Theorem 2

The result is vacuously true for p∗ ≤ 16r2, and so we may assume p∗ > 16r2. It

follows that p∗ ≥ (2
√

2 r + 1)2, and so
√
p∗ − 1√

2
≥ 2r. (9)

Now, for any x ≥ 2r, we have(
1 +

1

x

)r
≤ er/x ≤ 1 +

2r

x
, (10)

and so letting x = (
√
p∗ − 1)/

√
2, we have by (9) and (10),∏

p|m

(
1 +

√
2

√
p− 1

)
≤

(
1 +

√
2√

p∗ − 1

)r
≤ 1 +

2
√

2 r√
p∗ − 1

,

and ∏
p|m

1 +

√
2− 1

p
√
p− 1

− 1

2

≤

(
2
√

2 r√
p∗ − 1

)2

≤ 16r2

p∗
,

the latter inequality holding for p∗ > 16, which we have assumed. The theorem

now follows immediately from Proposition 1.

Remark 2. For special classes of moduli, more precise versions of the proposition

are available. We give a couple of examples here, prime power moduli and moduli

that are products of two distinct primes.

Proposition 2. For any prime power m = pl, we have

A1B1 +A2B2 ⊇ Z∗m, (11)

provided that

|A1||A2||B1||B2| > m4 p− 1

(p−√p)2
.

Proof. Let Error denote the error term in (5). For m = pl, the only positive

contribution to Ed in (6) occurs when e = d, and so we obtain

|Error| < m2
2∏
i=1

|Ai|1/2|Bi|1/2
l∑

j=1

φ(pj)

pj
1√
φ(pj)

= m2
2∏
i=1

|Ai|1/2|Bi|1/2
√

1− 1

p

l∑
j=1

1

pj/2

≤
√
p− 1

p−√p
m2

2∏
i=1

|Ai|1/2|Bi|1/2,
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yielding the result.

Proposition 3. For m = pq, with primes p < q, we have

A1B1 +A2B2 ⊇ Z∗m, (12)

provided that

|A1||A2||B1||B2| > 2m3(
√
p+
√
q +
√

2)2.

Proof. In this case, with G(d) as defined in (8), we obtain from (7),

|Error| < m2
2∏
i=1

|Ai|1/2|Bi|1/2
∑
d|pq
d>1

φ(d)

d
G(d)1/2

= m2
2∏
i=1

|Ai|1/2|Bi|1/2
(φ(p)

p

√
2√
φ(p)

+
φ(q)

q

√
2√
φ(q)

+
φ(pq)

pq

2√
φ(pq)

)
< m2

2∏
i=1

|Ai|1/2|Bi|1/2
(√2
√
p

+

√
2
√
q

+
2
√
pq

)
= m

3
2

2∏
i=1

|Ai|1/2|Bi|1/2
(√

2q +
√

2p+ 2
)
,

and the result follows.

5. Lower Bounds on the Cardinality of Product Sets

Lemma 1. Let l, B, P,Q ∈ N, ai ∈ Z, with B ≤ Q, 0 ≤ ai < P , 1 ≤ i ≤ l,

(P,Q) = 1, and let N be the number of solutions of the congruence

(a1 + Ps1) · · · (al + Psl) ≡ (a1 + Pt1) · · · (al + Ptl) (mod Q), (13)

in integers si, ti with 1 ≤ si, ti ≤ B, 1 ≤ i ≤ l. Then, for any ε > 0, we have

N �ε

(
P lB2l

PQ
+Bl

)
(PB)l

2ε. (14)

Proof. For a given selection of ti, we must solve a congruence of the type

(a1 + Ps1)(a2 + Ps2) · · · (al + Psl) ≡ C (mod Q),

with 0 ≤ si ≤ B − 1, 1 ≤ i ≤ l, for some nonnegative integer C < Q, that is,

(a1 + Ps1)(a2 + Ps2) · · · (al + Psl) = C + `Q,
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for some nonnegative integer ` ≤ P l(B+1)l

Q . Note that, for any choice of si, we have

a1a2 · · · al ≡ C + `Q (mod P ),

and so the value of ` is uniquely determined mod P . Therefore, there are at most
P l(B+1)l

PQ + 1 choices for `. For any choice of `, there are at most τ(C + `Q)l−1 �ε

(PB)l
2ε choices for the si, for any ε > 0, and thus the total number of choices for

the si is

�ε

(
P lBl

PQ
+ 1

)
(PB)l

2ε.

Multiplying by the Bl choices for the ti, we obtain the upper bound of the lemma.

Lemma 2. Under hypotheses of Lemma 1, we have

#{(a1 + Ps1) · · · (al + Psl) (mod Q) : 1 ≤ si ≤ B} �ε min
{
Bl, Q

P l−1

}
(PQ)−l

2ε.

Proof. With N the quantity in Lemma 1, we have

#{(a1 + Ps1) · · · (al + Psl) (mod Q) : 0 ≤ si < B} ≥ B2l

N

�ε
B2l(

P lB2l

PQ +Bl
)

(PB)l2ε
,

and the result follows.

Lemma 3. Let B,P,Q be positive integers with B < Q, (P,Q) = 1 and Bl ≥
2−lQP 1−l. Let q∗ be the minimal prime divisor of Q and r = ω(Q). Then, for any

ε > 0 and sets Ai,Bi of the type occurring in Lemma 2, we have A1B1+A2B2 ⊇ Z∗Q,
provided that

q∗ ≥ c∗(ε, l, r)P 4l−4(PQ)4l
2ε,

for some constant c∗(ε, l, r) depending on ε, l and r.

Proof. By Lemma 2, since Bl > 2−lQP 1−l, we have

|Ai|, |Bi| �ε,l QP
1−l(PQ)−l

2ε,

i = 1, 2. Applying Theorem 2 with m = Q, we succeed provided that

P 4−4lQ4(PQ)−4l
2ε �ε,l,r Q

4/q∗,

the bound given in the lemma.
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6. Proof of Theorem 1

We present the proof for the case of even k, and then note at the end the modification

required for odd k. Let k = 2l,

m = pe11 · · · perr , E = max
1≤i≤r

ei,

with p1 < p2 < · · · < pr, Fix i with 1 ≤ i ≤ r, and let

Pi := pe11 · · · p
ei−1

i−1 , Qi := peii · · · p
er
r ,

so that PiQi = m and (Pi, Qi) = 1. For i = 1, we have P1 = 1, Q1 = m. Let I be

the maximal i such that P li < m. Then, for i ≤ I, we have

P l−1i < Qi. (15)

For fixed i ≤ I, we set B = bQ
1
l
i P

1
l−1
i c, a positive integer satisfying B ≥ 1

2Q
1
l
i P

1
l−1
i ,

the hypothesis needed for Lemma 3.

Consider the congruence

ax1 · · ·xk + bxk+1 · · ·x2k ≡ c (mod m), (16)

with (abc,m) = 1. Let a = (a1, . . . , a2k) be a solution of the same congruence mod

Pi with 0 ≤ ai < Pi, 1 ≤ i ≤ 2k. Such a solution plainly exists. Thus any point of

the form x = a + Pis with s = (s1, . . . , s2k) satisfies the congruence mod Pi, and

so our task is to find a choice of s such that x satisfies the congruence mod Qi as

well. Let

A1 = {a(a1 + Pis1) · · · (al + Pisl) (mod Qi) : 1 ≤ si ≤ B},
B1 = {(al+1 + Pisl+1) · · · (ak + Pisk) (mod Qi) : 1 ≤ si ≤ B},
A2 = {b(ak+1 + Pisk+1) · · · (ak+l + Pisk+l) (mod Qi) : 1 ≤ si ≤ B},
B2 = {(ak+l+1 + Pisk+l+1) · · · (a2k + Pis2k) (mod Qi) : 1 ≤ si ≤ B},

regarded as subsets of Z∗Q. Since the constant c in (16) is relatively prime to m,

to obtain a solution of (16) mod Qi, it suffices to show that A1B1 +A2B2 ⊇ Z∗Qi .
This will yield a solution of the mod m congruence (16) with

1 < xi < Pi + PiB ≤ 2PiB ≤ 2Q
1/l
i P

1/l
i = 2m1/l, 1 ≤ i ≤ 2k,

as desired. By Lemma 3, such is the case provided that

pi ≥ c∗P 4l−4
i m4l2ε = c∗(pe11 · · · p

ei−1

i−1 )4l−4m4l2ε,

with c∗ = c∗(ε, l, r), the constant in Lemma 3.
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Suppose to the contrary that the latter condition fails for 1 ≤ i ≤ I, that is, for

1 ≤ i ≤ I,

pi ≤ λi := c∗(pe11 · · · p
ei−1

i−1 )4l−4m4l2ε.

Here, λ1 = c∗m4l2ε. Observing that for any 2 ≤ i ≤ I,

λi = p
ei−1(4l−4)
i−1 λi−1 ≤ λei−1(4l−4)

i−1 λi−1 ≤ λei−1(4l−3)
i−1 ,

we obtain

λi ≤ λ
∏i−1
j=1 ej(4l−3)

1 , 2 ≤ i ≤ I,

and so for 1 ≤ i ≤ I,

pi ≤ λi ≤ (c∗m4l2ε)E
i−1(4l−3)i−1

.

For convenience, if I = r, set Pr+1 = m. It follows that

PI+1 =

I∏
i=1

peii ≤
I∏
i=1

(c∗m4l2ε)E
i(4l−3)i−1

≤ (c∗m4l2ε)E
I ∑I

i=1(4l−3)
i−1

< (c∗m4l2ε)E
r(4l−3)r .

Now, by definition, PI+1 > m
1
l , and so

(c∗)E
r(4l−3)rm4l2εEr(4l−3)r > m

1
l .

If ε is chosen so that

4l2εEr(4l − 3)r <
1

2l
,

then we obtain a contradiction if m > (c∗)2lrE
r(4l−3)r , a constant depending on l, r

and E.

For the case of odd k, say k = 2l + 1, we proceed as above letting A1,A2 be

products of l+ 1 variables, and B1,B2 products of l variables. In this case, Lemma

3 requires

q∗ ≥ c∗P 4l−2(PQ)4(l+1)2ε,

and thus we reach the same conclusion with a slightly modified choice of ε.

7. The Cases r = 1, 2

The proof above can be refined to yield a slightly smaller exponent on m than the

value 2/k given in Theorem 1. We do so in the next theorem for the cases r = 1

and r = 2.
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Theorem 3. i) If m = pe, a prime power, then for any a, b, c with (abc,m) = 1,

there is a solution of (1) with

1 ≤ xi �ε,k,e m
2
k−

1
2ek+ε, 1 ≤ i ≤ 2k.

ii) If m = peqf , a product of distinct prime powers, then for any a, b, c with

(abc,m) = 1, there is a solution of (1) with

1 ≤ xi �ε,k,e,f m
2
k−

1
2ke((k−2)f+1)

+ε, 1 ≤ i ≤ 2k.

The estimate in part ii) reduces to the part i) estimate when f = 0. With e =

1, f = 0, both parts recover the prime moduli estimate of [2], 1 ≤ xi �ε p
3
2k+ε.

Proof. i) Let m = pe and assume k = 2l. The proof follows the same argument as

the proof of Theorem 1 and so we will be brief. By Theorem 2 and Lemma 2 with

P = 1, Q = m, we succeed provided that

min{Bl,m}4 �ε
m4+l2ε

p
,

that is, p �ε m
l2ε and B4l �ε m

4+l2ε/p. The first condition holds for ε < 1
el2

and p greater than a constant depending on e and l. Since p = m1/e, the second

condition can be rewritten B4l �ε m
4− 1

e+l
2ε, and thus the theorem follows.

ii) Let m = PQ with P = pe, Q = qf with p < q primes. If we apply Theorem 2

to the congruence (1) mod m as above, then we succeed provided that

min{Bl, PQ}4 �ε
m4+l2ε

p , (17)

whereas if we apply it the congruence (1) mod Q, restricting the xi to an arithmetic

progression xi = ai + Psi with the ai a solution to the mod P congruence with

ak+1 = · · · = a2k = 0, then we succeed provided that

min{Bl, Q}2 min

{
Bl,

Q

P l−1

}2

�ε
Q4

q
ml2ε. (18)

We consider Bl in the different ranges, Q < Bl < PQ, Q
P l−1 < Bl < Q and

Bl < Q
P l−1 . By Theorem 1, we may assume Bl < PQ.

I. If Q < Bl < PQ, then by (17) and (18), we succeed if either

B4l �ε
m4+l2ε

p
, or q �ε p

e(2l−2)ml2ε. (19)

If the second inequality fails, that is, q �ε p
e(2l−2)ml2ε with the same implied

constant, then

m = peqf ≤ pe · pef(2l−2)ml2fε �e,f,l,ε p
e(2fl−2f+1)mε,
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whence p�e,f,l,ε m
1

e(2lf−2f+1)
−ε. Thus, the first inequality in (19) holds if

B4l �e,f,l,ε m
4− 1

e(2lf−2f+1)
+ε,

yielding the result of the theorem.

II. If Q
P l−1 < Bl ≤ Q, then by (17) and (18) we need

B4l �ε
m4+l2ε

p
, (20)

or B2l q2f

p2e(l−1) �ε
q4f

q m
l2ε, that is,

B2l �ε q
2f−1p2e(l−1)ml2ε. (21)

If q2 < p4e(l−2)+1, then m = peqf < pe+
f
2 (4e(l−2)+1), and so

p > m
2

4ef(l−2)+f+2e .

Thus by (20) it suffices to have

B4l > m4− 2
4ef(l−2)+f+2e

+l2ε, (22)

which is weaker than the inequality in case I.

If q2 ≥ p4e(l−2)+1, equivalently

q2f−1p2e(l−1) ≤ m2− 1
4ef(l−2)+f+2e ,

then by (21) it again suffices to have (22).

III. If Bl < Q/P l−1, then by (18) it suffices to have B4l �ε q
4f−1ml2ε. Since

m ≥ qf , it suffices to have B4l �ε m
4− 1

f+l
2ε, which again is weaker than the lower

bound in case I.
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