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Abstract

It is well-known that for a special prime number p, a recurring period of 1/p defines
a carousel number, and many such prime numbers have already been found. But
the question as to whether there exists a carousel number not defined by any prime
number has remained an open problem. In this paper, we prove that every carousel
number appears in a recurring period of 1/p for a suitable prime number p. This
is done by connecting the theory of recurring decimals and the theory of modular
exponentiation.

1. Introduction

It is well-known that for a special prime number p, a recurring period of 1/p has

a cyclicity. The smallest prime number which has such a cyclicity is 7. Let us

represent 1/7 by the recurring decimal:

1

7
= 0.1̇42857̇.

We multiply a recurring period 142857 of 1/7 by 1, 2, . . . , 6 and summarize the result

in Table 1.

1 4 2 8 5 7
× 1 1 4 2 8 5 7
× 2 2 8 5 7 1 4
× 3 4 2 8 5 7 1
× 4 5 7 1 4 2 8
× 5 7 1 4 2 8 5
× 6 8 7 1 4 2 8

Table 1

Table 1 reveals that 142857 has a cyclicity.
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In general, for integers c1, c2, . . . , cl such that l ≥ 2 and 0 ≤ c1, c2, . . . , cl ≤ 9, we

call a sequence c1c2 · · · cl a carousel number if for any natural number i such that

2 ≤ i ≤ l, there exists a natural number j such that 2 ≤ j ≤ l and i× c1c2 · · · cl =

cjcj+1 · · · clc1 · · · cj−1. Also, we call a prime number p a carousel prime number if

the recurring period of minimum length which appears in the recurring decimal of

1/p defines a carousel number. The previous discussion indicates that 7 is a carousel

prime number. It is well-known that p is a carousel prime number if the recurring

period of minimum length which corresponds to p has length p−1. By this fact, we

can easily check that the other carousel prime numbers which are less than 100 are

17, 19, 23, 29, 47, 59, 69, and 97. While a large number of carousel prime numbers

have already been found, it is not yet known whether there are infinitely many

carousel prime numbers. It has also been an open problem to determine whether

every carousel number is defined by a carousel prime number, therefore we solve

this question in this paper.

The plan of this paper is as follows. In Section 1, we prepare notation and

some well-known facts about recurring decimals. In Section 2, we show that every

carousel number is associated with a prime number. In Section 3, we prove that

for every carousel number there exists a carousel prime number p which defines

the carousel number by employing the connection between the theory of recurring

decimals and the theory of modular exponentiation. Furthermore, we prove that

the length of the carousel number equals p− 1.

2. Preparation

We call an infinite recurring decimal pure if its recurring period starts from the first

decimal place. In this paper, we consider only recurring decimals which are pure.

Let n, k, and k
′

be natural numbers such that n ≥ 2, 1 ≤ k, k
′ ≤ n− 1, (n, k) = 1,

and (n, k
′
) = 1. First, let us begin with a basic fact about the length of a recurring

period.

Lemma 1. The recurring decimal of k/n has a recurring period of length l if and

only if 10l ≡ 1 (mod n).

Proof. If the recurring decimal of k/n has a recurring period of length l, then

10lk/n− k/n is an integer. Since (n, k) = 1, we have 10l − 1 ≡ 0 (mod n), namely

10l ≡ 1 (mod n).

Conversely, let us assume that 10l ≡ 1 (mod n). We see that 10lk/n− k/n is an

integer and thus decimal parts of 10lk/n and k/n are the same. This shows that

10lk/n− k/n is a recurring period of k/n and the length of it equals l.

In what follows, we study only recurring periods of minimum lengths. By Lemma

1, we see that the lengths of recurring periods of k/n such that 1 ≤ k ≤ n− 1 and
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(n, k) = 1 are the same and they are the smallest natural number l which satisfies

10l ≡ 1 (mod n). Next, we show a criterion for pureness of a recurring decimal.

Lemma 2. The recurring decimal of k/n is pure if and only if (n, 10) = 1.

Proof. If the recurring decimal of k/n is pure, then 10l ≡ 1 (mod n) by Lemma 1.

Thus there exists an integer a such that

10l − 1 = an.

This shows that (n, 10) = 1.

Conversely, assume that (n, 10) = 1. Clearly k/n does not define a finite decimal.

If the recurring period of k/n does not start from the first decimal place, then there

exists a natural number i such that

10i+lk/n− 10ik/n

is an integer. By our assumption, we see that

10lk/n− k/n

is an integer and it shows that the recurring period of k/n starts from the first

decimal place. This is a contradiction.

For recurring periods of k/n and k
′
/n, we consider that they are equivalent if

they coincide by rotations of numbers each other and write k/n ∼ k
′
/n. We can

see that k/n ∼ k
′
/n if and only if there exists a nonnegative integer i such that

10ik/n− k
′
/n is an integer, in other words, 10ik ≡ k

′
(mod n). Let us denote by e

the number of equivalence classes of recurring periods of k/n such that 1 ≤ k ≤ n−1

and (n, k) = 1.

Lemma 3. ϕ(n) = le, where ϕ(n) is Euler function.

Proof. Since k/n is pure, (n, 10) = 1 by Lemma 2. By Euler’s theorem, we have

10ϕ(n) ≡ 1 (mod n). (1)

Let Q and R be integers such that 0 ≤ R < l and

ϕ(n) = lQ + R.

By (1), we have

10lQ+R ≡ 1 (mod n).

Since 10l ≡ 1 (mod n),

10R ≡ 1 (mod n).

If R > 0, then this conflicts with the minimality of l. Thus we see that R = 0 and

l divides ϕ(n). It is clear that e = ϕ(n)/l by the definition of e.
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3. The Correspondence of a Carousel Number to a Prime Number

In this section, we discuss the recurring decimal of k/n which is associated with a

carousel number c1c2 · · · cl, namely

k

n
= 0.ċ1c2 · · · ċl.

We continue to use notation of the previous section. Our goal is to prove that n is

a prime number. First, we prepare the following lemma.

Lemma 4. The set {k, 2k, 3k, . . . , lk} is invariant under multiplication by 10 mod-

ulo n.

Proof. Since we assume that c1c2 · · · cl is a carousel number, there exist distinct

natural numbers i1, i2, . . . , il−1 such that

2k ≡ 10i1k (mod n),

3k ≡ 10i2k (mod n),

...

lk ≡ 10il−1k (mod n),

namely,

{k, 2k, 3k, . . . , lk} ≡ {k, 10i1k, 10i2k, . . . , 10il−1k} (mod n).

By Lemma 1 and the minimality of l we may assume that 1 ≤ i1, i2, . . . , il−1 ≤ l−1,

and thus we see that the set {k, 2k, 3k, . . . , lk} is invariant under multiplication by

10 modulo n.

Now, let us prove the following result.

Proposition 1. Let c1c2 · · · cl be a carousel number. If k/n = 0.ċ1c2 · · · ċl, then n

is a prime number.

Proof. We assume that there exist natural numbers a and b such that n = ab, a 6= 1,

and b 6= 1. First, let us discuss the case a ≤ l or b ≤ l. Without loss of generality,

we may assume that a ≤ l. Since k/n is associated with a carousel number of length

l, we have k/n ∼ ak/n. Thus there exists a natural number i such that

10ik ≡ ak (mod n).

Since (n, k) = 1, we have

10i ≡ a (mod n).
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This congruence relation shows that there exists a natural number j such that

a− 10i = jab.

Rearranging this equation, we obtain

a(1− jb) = 10i.

Since the recurring decimal of k/n is pure, we have (n, 10) = (ab, 10) = 1 by Lemma

2. Thus we see that 2 | 1− jb and 5 | 1− jb, namely, 10 | 1− jb by comparing both

sides of the above equation. Using induction, we see that 10i | 1− jb, and thus we

have 1− jb = 10i. This shows that a = 1, but it conflicts with our assumption.

Next, let us discuss the case a > l and b > l. Since b ≥ l + 1 we have

l(l + 1) < ab = n. (2)

By Lemma 4, we have

k + 2k + · · · lk ≡ 10k + 20k + · · ·+ 10lk (mod n),

k
1

2
l(l + 1) ≡ 10k

1

2
l(l + 1) (mod n),

kl(l + 1) ≡ 10kl(l + 1) (mod n).

Since (n, k) = 1,

l(l + 1) ≡ 10l(l + 1) (mod n),

9l(l + 1) ≡ 0 (mod n).

This congruence relation shows that there exists a natural number c such that

9l(l + 1) = cn. (3)

By (2) and (3), we have cn < 9n, namely, c < 9. Observing both sides of (3), we

see that c must be an even number, thus c must be equal to any of 2, 4, 6, and 8.

Since ϕ(n) | n− 1, there exists a natural number d such that

n− 1 = dϕ(n).

By Lemma 3, we have

n = dle + 1. (4)

By substituting (4) for (3), we have

9l(l + 1) = c(dle + 1).
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Arranging this equation, we obtain

9l2 + (9− cde)l − c = 0.

This equation shows that l is a root of the following quadratic equation of which

coefficients are integers:

9x2 + (9− cde)x− c = 0. (5)

If c = 2, then (5) must be resolved into factors as the following:

(x− 2)(9x + 1) = 0. (6)

Let us compare the coefficients of (5) to those of (6). We see that

de = 13.

Also we have l = 2 by (6), thus (4) shows that n = 27. The length of recurring

period of 1/27 = 0.0̇37̇ is 3 and this contradicts the fact that l = 2.

If c = 4, then (5) must be resolved into factors as one of the following:

(x− 2)(9x + 2) = 0, (7)

(x− 4)(9x + 1) = 0. (8)

Let us compare the coefficients of (5) to those of (7). We have

4de = 25.

Since d and e are natural numbers, this is a contradiction. Next, we compare the

coefficients of (5) to those of (8). We have

de = 11.

Since l = 4 we have n = 45 by (4), and this contradicts Lemma 2.

If c = 6, then (5) must be resolved into factors as one of the following:

(x− 2)(9x + 3) = 0, (9)

(x− 3)(9x + 2) = 0, (10)

(x− 6)(9x + 1) = 0. (11)

Let us compare the coefficients of (5) to those of (9). We have

de = 4, l = 2.
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This shows that n = 9, but the length of recurring period of 1/9 = 0.1̇ is 1 and this

contradicts the fact that l = 2. By comparing the coefficients of (5) to those of (10)

and (11), we have the following respectively:

6de = 34,

6de = 62.

Since d and e are natural numbers, these are contradictions.

Finally, let us look at the case c = 8. Equation (5) must be resolved into factors

as one of the following:

(x− 2)(9x + 4) = 0, (12)

(x− 4)(9x + 2) = 0, (13)

(x− 8)(9x + 1) = 0. (14)

Let us compare the coefficients of (5) to those of (12) and (13). We have the

following respectively:

8de = 23,

8de = 43.

Since d and e are natural numbers, these are contradictions. Equation (14) shows

that

de = 10, l = 8.

This shows that n = 81. But the length of the recurring period of 1/81 =

0.0̇12345679̇ is 9, this contradicts the fact that l = 8.

4. Main Result

In order to prove our main result, we establish the next proposition, which connects

the theory of carousel numbers to the theory of modular exponentiation.

Proposition 2. Let p be a prime number such that p 6= 2, 5. If 1/p ∼ k/p, then k

is an eth power residue modulo p. Conversely, if k is an eth power residue modulo

p, then 1/p ∼ k/p.

Proof. If 1/p ∼ k/p, then there exists a natural number i such that

10i ≡ k (mod p). (15)

Let r be a primitive root modulo p and j be a natural number such that

rj ≡ 10 (mod p). (16)
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Since rjl ≡ 10l ≡ 1 (mod p) by Lemma 1, we have

p− 1 | jl.

Thus there exists a natural number j
′

such that

jl = (p− 1)j
′
.

By Lemma 3, we have

jl = lej
′
,

j = ej
′
. (17)

Equations (15), (16), and (17) show that

k ≡ 10i ≡ (rj)i ≡ (ri)ej
′

≡ (rij
′

)e (mod p).

Conversely, we assume that k is an eth power residue modulo p. There exists a

natural number i such that

k ≡ ie (mod p).

By Lemma 3 and Fermat’s little theorem, we have

kl ≡ ile ≡ iϕ(p) ≡ 1 (mod p).

Therefore we see that k is a root of the following equation:

xl ≡ 1 (mod p). (18)

On the other hand, by Lemma 1 we have 10l ≡ 1 (mod p). Thus we see that the

following are distinct roots of (18):

1, 10, 102, 103, · · · , 10l−1.

Since (18) has at most l roots, we see that there exists an integer j such that

0 ≤ j ≤ l − 1 and k ≡ 10j (mod p).

Finally, we shall prove our main result.

Theorem 1. For any carousel number c1c2 · · · cl, there exists a carousel prime

number p which defines c1c2 · · · cl. Furthermore, the length of c1c2 · · · cl equals p−1.

Proof. By Proposition 1, we may put k/p = 0.ċ for a suitable prime number p.

Since it is pure, we have p 6= 2, 5 by Lemma 2. Our assumption suggests that
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k/p ∼ 2k/p ∼ · · · ∼ lk/p. Since k/p ∼ 2k/p, there exists a natural number m1 such

that

10m1k ≡ 2k (mod p).

Since (p, k) = 1, we have

10m1 ≡ 2 (mod p).

By similar arguments, we see that there exist natural numbers m2,m3, . . . ,ml−1

such that

10m2 ≡ 3 (mod p),

10m3 ≡ 4 (mod p),

...

10ml−1 ≡ l (mod p).

These congruence relations show that 1/p ∼ 2/p ∼ · · · ∼ l/p. By Proposition 2, we

see that 1, 2, . . . , l are eth power residues modulo p. Now we assume that e ≥ 2.

2l is a eth power residue modulo p and l < 2l ≤ el = p − 1. This contradicts

Proposition 2. Thus we see that e = 1 and k/p = 1/p. By Lemma 3, we can see

that l = p− 1.
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