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Abstract

We consider partitions with parts repeated at most m times, with first differences
and smallest part at most t. Generating functions are produced for such partitions
with small t, and the question of a better form of these functions raised. Several
divisibility properties are proved for the generating function for such partitions with
largest part at most N .

1. Introduction

A partition of n is a weakly decreasing infinite sequence of nonnegative integers

λ = (λ1, λ2, . . . ) such that
∑
λi = n, in which case we say λ ` n. For all basic

terms in this subject see the reference [1]. The numbers of partitions of n, p(n),

are sequence A000041 in the On-line Encyclopedia of Integer Sequences [5], and are

given by the coefficients of the generating function

∞∑
n=0

p(n)qn =

∞∏
k=1

(1− qk)−1.

Partitions are typically identified with their Ferrers diagram, which is the array

of unit squares in the fourth quadrant, justified to the origin, in which the i-th row

below the axis contains λi squares.

The generating function above was first produced by Euler in the paper “De

Partitio Numerorum,” the first scholarly look at the subject [4]. In that work

he also proved the m = 2 case of a theorem later generalized by Sylvester, that

the number of partitions of n in which nonzero parts are repeated less than m

times, which we shall call m-distinct partitions, equals the number of partitions of

n in which nonzero parts are not divisible by m, commonly called the m-regular

partitions. A third class of partitions equal in number to these are partitions of n

in which parts differ by strictly less than m, including the final positive difference
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before the infinite sequence of trailing zeros begins. These are called m-flat. When

m = 3, for instance, the number of these is given by OEIS sequence A000726.

Sylvester’s student Glaisher produced a combinatorial map which realized the

first equality; the second is realized by conjugation, the map of reflecting the Ferrers

diagram across the main diagonal:

λ = (4, 4, 3, 1, 1, 1) ` 14 λ′ = (6, 3, 3, 2)

This clearly maps m-distinct to m-flat partitions: short vertical segments along the

southeast side of the diagram become short horizontal segments, and vice versa.

In a previous paper [3] the author considered partitions simultaneously possessing

two or more of the named characteristics. A question of particular interest was the

following:

Problem: Give a concise form of the generating function for partitions into parts

simultaneously 3-distinct and 3-flat.

The reason for interest in these among the possible combinations of conditions

is precisely because this set seems much less tractable than others. The easiest

are partitions simultaneously m-distinct and t-regular: these are the fixed points of

Glaisher’s map on those two sets (and are a subset of the fixed points of a more

general map on all partitions; see [2] for more on this), and possess the Euler product

generating function

∞∑
n=0

pm,t
D,R(n)qn =

∞∏
k=1

(1− qmk)(1− qtk)

(1− qk)(1− qmtk)
.

In contrast to this, the partitions considered in this note, those simultaneously

m-distinct and t-flat, are much more difficult to handle. They are not the fixed

points of the conjugation map, although it is easy to see that conjugation maps the

class of m-distinct t-flat partitions to those t-flat and m-distinct, and the property

of being m-distinct and m-flat is invariant under conjugation.

The generating function of the m-distinct t-flat partitions, however, has proven

remarkably difficult to write down in any compact form. The very special case t = 2

is easy to state: it is

P
(m,2)
D,F =

∞∑
k=0

q(
k+1
2 ) (qm−1; qm−1)k

(q; q)k
, (1)

which is the generating function for partitions in which all parts from 1 to the
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largest part appear at least once. Here we have used the standard notation

(a; q)k = (1− a)(1− aq) . . . (1− aqk−1) , (a; q)0 = 1.

In this note, we prove the following results for P
(m,3);≤N
D,F (q), the polynomial

generating functions for the number of m-distinct, 3-flat partitions of n with largest

part at most N .

First, we prove an interesting pattern in the divisibility properties for the case

m = t = 3, the simplest nontrivial case above the t = 2 function given in (1). This

is Theorem 1.

Theorem 1. If N ≡ i (mod 3), i ∈ {1, 2}, then

(1 + q + q2)i|
N∑
j=0

P 3,3;j
D,F (q) =: P 3,3;≤N

D,F (q)

where divisibility is determined in Z[q]. If instead N ≡ 0 (mod 3), say N = 3k,

then we have P 3,3;≤N
D,F (q) ≡ (−2)k (mod (1 + q + q2)).

A more detailed conjecture on strict divisibility appears in the final section.

Addressing the motivating problem, we can establish one form for the generating

function for the case of t = 3 and general m.

Theorem 2. The number pm,3;N
D,F (n) of partitions of n in which parts of any nonzero

size appear less than m times, parts differ by less than 3, and the largest part is

exactly N , has the following generating functions.

If N ≡ 1 (mod 2), say N = 2k + 1, then, letting ~s run over (possibly empty)

increasing sequences in {1, 2, . . . , k − 1} with entries differing by at least 2,

Pm,3;N
D,F =

∞∑
n=0

pm,3;N
D,F (n)qn =

qN − qmN

1− qN

(
k∏

i=1

(
(1− q(2i−1)m)(1− q(2i)m)

(1− q2i−1)(1− q2i)
− 1

))
×

∑
~s=(s1,...,sj)

j∏
r=1

(−1)
(q2si−1 + · · ·+ q(2si−1)(m−1))(q2si+2 + · · ·+ q(2si+2)(m−1))(
(1−q(2si−1)m)(1−q(2si)m)

(1−q2si−1)(1−q2si ) − 1
)(

(1−q(2si+1)m)(1−q(2si+2)m)
(1−q2si+1)(1−q2si+2)

− 1
)
.

If N = 2k, then

Pm,3;N
D,F =

(
k∏

i=1

(
(1− q(2i−1)m)(1− q(2i)m)

(1− q2i−1)(1− q2i)
− 1

))
×

∑
~s=(s1,...,sj)

j∏
r=1

(−1)
(q2si−1 + · · ·+ q(2si−1)(m−1))(q2si+2 + · · ·+ q(2si+2)(m−1))(
(1−q(2si−1)m)(1−q(2si)m)

(1−q2si−1)(1−q2si ) − 1
)(

(1−q(2si+1)m)(1−q(2si+2)m)
(1−q2si+1)(1−q2si+2)

− 1
)


− Pm,3;N−1
D,F .
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Summed over all N , this gives the generating function for m-distinct t-flat par-

titions with unrestricted largest part.

As an answer to the Problem, we briefly discuss how “concise” this might be

considered. We conclude by considering further directions. The question for general

t is still open, and a better form of the generating functions involved is entirely

possible; a combinatorial proof of the divisibility theorems would be desirable.

2. Proof of Theorem 1

During investigation an interesting phenomenon was observed. Whatever the gen-

erating function P
(m,t);N
D,F (q) might be, its evaluation at q = 1 counts the number of

such partitions of any n which satisfy the specified conditions. In the casem = t = 3,

as N varies, we find that we obtain the OEIS sequence A077846.

This sequence has formula
∑N

i,j=0(m − 1)j
(

j
i−j
)
, which matches partitions of

the type under investigation by the following procedure. Let j sizes of part exist,

starting with the assumption that they are 1 through j. Let there be from 1 to

m − 1 repetitions of the various sizes. Insert i − j spaces consisting of additional

missing part sizes, at most one below the first or between each occupied part size,

in
(

j
i−j
)

possible ways, with i− j ranging from 0 to N − j, i.e., i ranging from j to

N . (Lower i gives zero terms.)

This sequence is well-divisible by increasing powers of 3; here we establish a

partial q-analogue of this divisibility property for P 3,3;≤N
D,F (q), those partitions of

this type with largest part at most N .

Proof. The proof is by induction. First, check the theorem computationally for

small N to establish base cases. Next, we observe the recurrence, for N ≥ 3,

P 3,3;≤N
D,F (q) = (qN + q2N )

(
P 3,3;≤N−1
D,F (q)− P 3,3;≤N−3

D,F (q)
)

+ P 3,3;≤N−1
D,F (q)

= (1 + qN + q2N )P 3,3;≤N−1
D,F (q)− (qN + q2N )P 3,3;≤N−3

D,F (q).

That is, if the largest part is at most N , then either 1 or 2 parts of size N exist,

in which case the remaining parts form a 3-distinct, 3-flat partition with largest

part at most N − 1 and more than N − 3, or parts of size N do not exist, so parts

are at most N − 1.

Now assume that the theorem holds for all values smaller than N .

When N ≡ 1 (mod 3), then

P 3,3;≤N
D,F (q) = (1 + qN + q2N )(X)− (qN + q2N )Y

where (1 + q + q2) does not divide X and (1 + q + q2)|Y .
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Next observe that when N ≡ 1 (mod 3), say N = 3k + 1, then we have

1 + qN + q2N = (1 + q + q2) ·

 2k∑
j=0

q3j −
k−1∑
j=0

(q3j+1 + q3k+2+3j)

 .

Therefore when N ≡ 1 (mod 3), we have P 3,3;≤N
D,F (q) as a sum of two terms both

divisible by (1 + q + q2).

When N ≡ 2 (mod 3), we have (1 + q + q2)|X and (1 + q + q2)2|Y . Likewise,

1 + q3k+2 + q6k+4 = (1 + q+ q2) ·

 k∑
j=0

q3j(1 + q3k+2)−
k∑

j=0

q1+3j −
k−1∑
j=0

q3k+4+3j

 .

Hence the theorem holds for N ≡ 2 (mod 3).

Finally, when N = 3k, we have (1 + q + q2)|X and Y ≡ (−2)k−1 (mod (1 + q +

q2)). Since (1 + q + q2)|(1 − q3) and (1 − q3)|(1 − q3k), we have (q3k + q6k) ≡ −2

(mod (1 + q + q2)) and the theorem holds for N ≡ 0 (mod 3).

3. Proof of Theorem 2

Proof. Begin with the odd N case. The factor qN−qmN

1−qN expresses the existence of

anywhere from 1 to m− 1 copies of part size N .

Each term
(1− q(2i−1)m)(1− q(2i)m)

(1− q2i−1)(1− q2i)
− 1,

which we may call bin i, expresses a choice of at most m− 1 copies of parts of size

2i−1 and at most m−1 copies of parts of size 2i, with the exception that we cannot

choose zero copies of both. In essence, this term forbids the existence of one type of

violation of the “difference less than 3” condition, that in which parts 2i− 1 and 2i

do not appear but some higher part does.

With those factors alone violations are still possible, but only if two in adjacent

bins si and si + 1 we choose some parts of size 2si − 1, and parts of size 2si + 2,

but neither of the two intervening sizes. We wish to subtract off those terms of

the product in which exactly this choice occurs. The benefit of this construction

is that errors cannot “overlap”: if a partition has several errors, they must occur

in distinct pairs of bins. Therefore, we select a vector ~s of places si where errors

occur, choosing as our si the smaller of the two part sizes bounding the error; an

inclusion-exclusion argument yields the resulting product.

For the N = 2k case, the first term is simply built with this argument without

guaranteeing the existence of a part of size N ; instead, the inclusion of bin k means

that the largest part is either N or N − 1. The final subtraction removes any terms
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in which the largest part is exactly N − 1. Of course, most factors are common to

the two products, and considerable combining of terms could occur.

3.1. Remarks on Concision

Clearly this generating function is far more complicated than the simple expressions

noted earlier. It may reasonably be asked how good it is as a counting function.

Readers of Stanley [6] or Wilf [7] generally agree with the criterion that a product

form is a gold standard, and if a summation must be employed, it should have as

few terms as possible.

A very straightforward form of the generating function would be to sum products

of (qi + · · ·+ q(m−1)i) over all allowable collections of part sizes. For partitions with

largest size N , these collections are enumerated by choices of parts from 1 through

N to drop, which are sequences differing by at least 2 from the set {1, . . . , N − 1}.
These are well known to be enumerated by the Fibonacci numbers, and hence we

would require approximately 1√
5
φN−1 summands, where φ is the golden ratio.

With the generating function given in the theorem, the number of summands is

the square root of this, for we enumerate errors by pairs of bins, and thus remove

nonconsecutive sequences in {1, . . . , k} with N ≈ 2k. Although the number of

summands is still exponential, a root reduction is certainly a great savings.

A pure product form is exceedingly unlikely. Recall that P
(3,3);≤N
D,F (1) is given

by OEIS sequence A077846. The N = 14 case then yields 1605717 = 33 · 59471 as

the prime factorization; likewise, the prime 110771 divides P 3,3;18
D,F (1). This strongly

suggests the lack of a compact product form. Still, perhaps other variations might

yield better results.

The problem, then, certainly still has room for advancement. A form of the gen-

erating function with one or two simple linear indices would be a great improvement

over the present case.

4. Further Questions

Regarding Theorem 1, the following higher power congruences appear from compu-

tation to be the case but the calculations become substantially more involved.

Conjecture 1. The divisibilities in Theorem 1 are strict, and in fact

P 3,3;≤3k
D,F ≡ (−2)k−1

(
3(1− q3) ·

(
k + 1

2

)
− 2

)
(mod (1 + q + q2)2),

P 3,3;≤3k+1
D,F ≡ (1 + q + q2)

 k∑
j=0

(3j + 1)(−2)j

 (mod (1 + q + q2)2).
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Conjecture 2. We have (1 + q3 + q6)||P 3,3;≤N
D,F (q) if and only if N ≡ 7 (mod 9),

and for any k ≥ 0,

P 3,3;≤3k
D,F (q) ≡ P 3,3;≤3k+3

D,F (q) ≡ P 3,3;≤3k+6
D,F (q) (mod (1 + q3 + q6)).

(For identifying the coefficients in these conjectures the author, as is often the

case, is indebted to the OEIS.)

The following question also seems natural, given the divisibility theorems:

Problem: Give a combinatorial proof of Theorem 1, i.e., a triple matching between

partitions with largest part at most N involving sizes 3j, 3j + 1 and 3j + 2 for all

valid j when N ≡ 1 (mod 3), or nonary matching when N ≡ 2 (mod 3).

This matching cannot simply be adding 0, 1 or 2 parts of size 1, since some

3-distinct 3-flat partitions have smallest parts 1 and 3, and therefore cannot be

members of a class constructed by removing the 1s.
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