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Abstract

For n = 0, 1, 2, . . . let Tn denote the nth triangular number n(n+1)/2. For any odd
prime p, we prove that

∏
1≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj) ≡

{
(−2)(p+3)/4 (mod p) if p ≡ 1 (mod 4),

2(p+5)/4 (mod p) if p ≡ 3 (mod 4).

Furthermore, we also prove the congruence

∑
1≤i<j≤(p−1)/2

p-Ti+Tj

1

Ti + Tj
≡ 2 +

(−1)(p
2−1)/8

2
(mod p)

in the ring of p-adic integers.

1. Introduction

Let p be an odd prime. Then, Wilson’s theorem states that

(p− 1)! =

p−1∏
n=1

n ≡ −1 (mod p).

Note that the integers

12, 22, . . . ,

(
p− 1

2

)2

are pairwise incongruent modulo p. Similar to Wilson’s theorem, it is known that

if p ≡ 3 (mod 4) then ∏
1≤i<j≤(p−1)/2

(i2 + j2) ≡ (−1)b(p+1)/8c (mod p)
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(cf. Problem N.2 of [4, pp. 364-365]). When p ≡ 1 (mod 4), we can write p in a

unique way as a2 + b2 with a, b ∈ Z and 1 ≤ a < b ≤ (p− 1)/2, and recently Sun [3]

proved that ∏
1≤i<j≤(p−1)/2

p-i2+j2

(i2 + j2) ≡ (−1)b(p−5)/8c (mod p).

Recall that the triangular numbers are given by

Tn :=
n(n + 1)

2
(n = 0, 1, 2, . . .).

For any odd prime p, it is easy to see that the triangular numbers

T1, T2, . . . , T(p−1)/2

are also pairwise incongruent modulo p. Motivated by the above work and Sun’s

conjecture (cf. [2, Conjecture 4.4]) that

−det

[(
2Ti + 2Tj

p

)]
1≤i,j≤(p−1)/2

is a quadratic nonresidue modulo any prime p ≡ ±3 (mod 8) (where ( ·p ) denotes

the Legendre symbol), we obtain the following new result on a product involving

triangular numbers.

Theorem 1.1. Let p be an odd prime. Then∏
1≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj) ≡

{
(−2)(p+3)/4 (mod p) if p ≡ 1 (mod 4),

2(p+5)/4 (mod p) if p ≡ 3 (mod 4).
(1.1)

Corollary 1.1. For any odd prime p, the product∏
1≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj)

is a quadratic residue modulo p.

Inspired by Theorem 1.1, we also establish the following result on a sum involving

triangular numbers.

Theorem 1.2. Let p be an odd prime. Then we have the congruence∑
1≤i<j≤(p−1)/2

p-Ti+Tj

1

Ti + Tj
≡ 2 +

(−1)(p
2−1)/8

2
(mod p). (1.2)

in the ring of p-adic integers.

We will prove Theorem 1.1 and Corollary 1.1 in the next section. Theorem 1.2

will be proved in Section 3.
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2. Proofs of Theorem 1.1 and Corollary 1.1

Lemma 2.1. Let p be any odd prime. Then(
p− 1

2
!

)2

≡ (−1)(p+1)/2 (mod p)

and

2(p−1)/2 ≡
(

2

p

)
= (−1)(p

2−1)/8 (mod p).

This is well known. Note that for any odd prime p we have

(p− 1)! =

(p−1)/2∏
k=1

k(p− k) ≡ (−1)(p−1)/2
(
p− 1

2
!

)2

(mod p)

and hence the first congruence in Lemma 2.1 follows from Wilson’s theorem.

Lemma 2.2. Let p be an odd prime, and let b, c ∈ Z with p - b2 − 4c. Then

p−1∑
x=0

(
x2 + bx + c

p

)
= −1.

This is also known, see, e.g., [1, p. 58].

As usual, we denote the cardinality of a set S by |S|.

Lemma 2.3. Let p be any odd prime and let

r(n) :=

∣∣∣∣{(i, j) : 0 ≤ i < j ≤ p− 1

2
and Ti + Tj ≡ n (mod p)

}∣∣∣∣
for n = 0, . . . , p− 1. Then

r

(
p(2− (−1p ))− 1

4

)
=

1 + (−1p )

2
· p− 1

4
. (2.1)

Proof. Let n = (p(2−(−1p ))−1)/4. Then 4n+1 ≡ 0 (mod p). For i, j ∈ {0, . . . , (p−
1)/2}, we have

Ti + Tj ≡ n (mod p) ⇐⇒ (2i + 1)2 + (2j + 1)2 ≡ 8n + 2 ≡ 0 (mod p).

Hence

(2i + 1)2 ≡ 0 (mod p) ⇐⇒ i =
p− 1

2
.
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Thus

2r(n) =

∣∣∣∣{(i, j) : 0 ≤ i, j <
p− 1

2
and (2i + 1)2 + (2j + 1)2 ≡ 0 (mod p)

}∣∣∣∣
=

∣∣∣∣{(x, y) : x, y ∈ {1, . . . , p− 1},
(
x

p

)
=

(
y

p

)
= 1 and p | x + y

}∣∣∣∣
=

∣∣∣∣{1 6 x 6 p− 1 :

(
x

p

)
=

(
−x
p

)
= 1

}∣∣∣∣
=

1 + (−1p )

2

∣∣∣∣{1 ≤ x ≤ p− 1 :

(
x

p

)
= 1

}∣∣∣∣
and hence

r(n) =
1 + (−1p )

2
· p− 1

4

as desired.

Proof of Theorem 1.1. For n = 0, . . . , p − 1, we define r(n) as in Lemma 2.3. For

n0 = (p(2 − (−1p )) − 1)/4, the value of r(n0) is given by (2.1). Now we compute

r(n) for any fixed 1 6 n 6 p− 1 with n 6= n0. Note that 4n + 1 6≡ 0 (mod p) and∣∣∣∣{0 ≤ k ≤ p− 1

2
: 2Tk ≡ n (mod p)

}∣∣∣∣
=

∣∣∣∣{0 ≤ k <
p− 1

2
: (2k + 1)2 ≡ 4n + 1 (mod p)

}∣∣∣∣ =
1 + ( 4n+1

p )

2
.

Thus

2r(n) +
1 + ( 4n+1

p )

2

=

∣∣∣∣{(i, j) : 0 ≤ i, j ≤ p− 1

2
and Ti + Tj ≡ n (mod p)

}∣∣∣∣
=

∣∣∣∣{(i, j) : 0 ≤ i, j ≤ p− 1

2
and (2i + 1)2 + (2j + 1)2 ≡ 8n + 2 (mod p)

}∣∣∣∣
=

∣∣∣∣{(x, y) : 0 ≤ x, y ≤ p− 1,

(
x

p

)
≥ 0,

(
y

p

)
≥ 0, x + y ≡ 8n + 2 (mod p)

}∣∣∣∣
=

1 + ( 8n+2
p )

2
+

∣∣∣∣{1 ≤ x ≤ p− 1 :

(
x

p

)
= 1 and

(
8n + 2− x

p

)
≥ 0

}∣∣∣∣
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and hence

2r(n) +
1− ( 2

p )

2

(
4n + 1

p

)
=

p−1∑
x=1

1 + (x
p )

2
·

1 + ( 8n+2−x
p )

2
+

p−1∑
x=1

p|8n+2−x

1 + (x
p )

2
· 1

2

=
p− 1

4
+

1

4

p−1∑
x=1

(
x

p

)
+

1

4

p−1∑
x=1

(
8n + 2− x

p

)

+
1

4

(
−1

p

) p−1∑
x=0

(
x2 − (8n + 2)x

p

)
+

1 + ( 8n+2
p )

4

=
p + ( 8n+2

p )

4
− 1

4

(
8n + 2

p

)
− 1

4

(
−1

p

)
=

p− (−1p )

4

with the aid of Lemma 2.2. Note that

1

2

(
p− (−1p )

4
+

1− ( 2
p )

2

)
=

⌊
p + 5

8

⌋
.

Therefore

r(n) =

⌊
p + 5

8

⌋
+

1 + ( 4n+1
p )

2
·

( 2
p )− 1

2
. (2.2)

Now we know the value of r(n) for each n = 1, . . . , p− 1. Observe that

∏
0≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj) =

p−1∏
n=1

nr(n)

=n
r(n0)−b p+5

8 c
0

p−1∏
n=1

nb
p+5
8 c ×

p−1∏
n=1

( 4n+1
p

)=1

n
1
2 ((

2
p )−1).

By Lemma 2.3,

n
r(n0)−b p+5

8 c
0 ≡

(
−1

4

)(1+(−1
p )) p−1

8 −b
p+5
8 c

(mod p).

Also,
p−1∏
n=1

nb
p+5
8 c = ((p− 1)!)b

p+5
8 c ≡ (−1)b

p+5
8 c (mod p)
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by Wilson’s theorem. For each n = 1, . . . , p− 1, clearly(
4n + 1

p

)
= 1 ⇔ (2k + 1)2 ≡ 4n + 1 (mod p) for some 0 6 k <

p− 1

2

⇔n ≡ k(k + 1) (mod p) for some k = 1, . . . ,
p− 3

2
.

(2.3)

Therefore ∏
0≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj)

≡
(
−1

4

)(1+(−1
p )) p−1

8 −b
p+5
8 c

(−1)b
p+5
8 c
( (p−3)/2∏

k=1

k(k + 1)

) 1
2 ((

2
p )−1)

=(−1)(1+(−1
p )) p−1

8 22b
p+5
8 c−(1+(−1

p )) p−1
4

(
2

p− 1

(
p− 1

2
!

)2
) 1

2 ((
2
p )−1)

≡(−1)(1+(−1
p )) p−1

8 22b
p+5
8 c−(1+(−1

p )) p−1
4

(
(−1)(p−1)/22

) 1
2 ((

2
p )−1)

(mod p)

with the aid of Lemma 2.1. Note that

(−1)(1+(−1
p )) p−1

8 + p−1
4 (( 2

p )−1) =

(
2

p

)
and

22b
p+5
8 c−(1+(−1

p )) p−1
4 + 1

2 ((
2
p )−1) = 2

1
4 (1−p(

−1
p )),

which can be easily checked by considering all the cases p ≡ 1, 3, 5, 7 (mod 8). So

we have ∏
0≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj) ≡
(

2

p

)
2

1
4 (1−p(

−1
p )) (mod p). (2.4)

Observe that
(p−1)/2∏

j=1
p-T0+Tj

(T0 + Tj) =

(p−1)/2∏
j=1

j(j + 1)

2
= 2−(p−1)/2

p + 1

2

(
p− 1

2
!

)2

≡
(

2

p

)
(−1)(p+1)/2

2
(mod p)

in view of Lemma 2.1. Combining this with (2.4) we see that

∏
1≤i<j≤(p−1)/2

p-Ti+Tj

(Ti + Tj) ≡
( 2
p )2

1
4 (1−p(

−1
p ))

( 2
p ) (−1)(p+1)/2

2

= (−1)(p+1)/221+
1
4 (1−p(

−1
p ))

≡

{
(−2)(p+3)/4 (mod p) if 4 | p− 1,

2(p+5)/4 (mod p) if 4 | p + 1.
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The proof of Theorem 1.1 is now complete.

Proof of Corollary 1.1. If p ≡ 1 (mod 4), then(
(−2)(p+3)/4

p

)
=

(
2

p

)(p+3)/4

= (−1)
p−1
4 ·

p+3
4 = 1.

If p ≡ 3 (mod 4), then(
2(p+5)/4

p

)
=

(
2

p

)(p+5)/4

= (−1)
p+1
4 ·

p+5
4 = 1.

Therefore, applying (1.1) we immediately get the desired result.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we utilize some ideas in the proof of Theorem 1.1.

Proof of Theorem 1.2. Since

(p−1)/2∑
j=1

1

Tj
= 2

(p−1)/2∑
j=1

(
1

j
− 1

j + 1

)
= 2

(
1− 2

p + 1

)
≡ −2 (mod p),

the congruence (1.2) has the following equivalent form:∑
0≤i<j≤(p−1)/2

p-Ti+Tj

1

Ti + Tj
≡ 1

2

(
2

p

)
(mod p). (3.1)

Note that

∑
0≤i<j≤(p−1)/2

p-Ti+Tj

1

Ti + Tj
=

p−1∑
n=1

r(n)

n
=

r(n0)

n0
+

p−1∑
n=1
n6n0

r(n)

n
,

where r(n) is defined as in Lemma 2.3 and n0 := (p(2 − (−1p )) − 1)/4. In view of

(2.1), we have

r(n0)

n0
=

1 + (−1p )

2
· p− 1

p(2− (−1p ))− 1
≡

1 + (−1p )

2
(mod p). (3.2)

For each n = 1, . . . , p− 1 with n 6= n0, by (2.2) we have

r(n)

n
=

⌊
p + 5

8

⌋
1

n
+

( 2
p )− 1

2
·

1 + ( 4n+1
p )

2n
.
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Thus

p−1∑
n=1
n 6=n0

r(n)

n
=

⌊
p + 5

8

⌋( (p−1)/2∑
k=1

(
1

k
+

1

p− k

)
− 1

n0

)
+

( 2
p )− 1

2

p−1∑
n=1

( 4n+1
p

)=1

1

n

≡− 1

n0

⌊
p + 5

8

⌋
+

( 2
p )− 1

2

(p−3)/2∑
k=1

1

k(k + 1)
(by (2.3))

≡4

⌊
p + 5

8

⌋
+

( 2
p )− 1

2

(p−3)/2∑
k=1

(
1

k
− 1

k + 1

)

=4

⌊
p + 5

8

⌋
+

( 2
p )− 1

2

(
1− 2

p− 1

)
. (mod p).

Combining this with (3.2), we obtain

r(n0)

n0
+

p−1∑
n=1
n 6n0

r(n)

n
≡

1 + (−1p )

2
+ 4

⌊
p + 5

8

⌋
+

3

2

((
2

p

)
− 1

)

≡1

2

(
2

p

)
(mod p)

and hence the desired (3.1) follows.

The proof of Theorem 1.2 is now complete.
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