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Abstract
Much has been written about triangulations of convex polygons. A well known
result going back to Euler, is that the number of triangulations of a convex (n+2)-
gon is the Catalan number Cn = 1

n+1

(2n
n

)
. In this paper, we give a direct bijection

between triangulations of a convex (n + 2)-gon and ordered trees. This bijection
extends to results involving Fine numbers and Schröder numbers.

1. Introduction

The bijection between triangulations of convex polygons and complete planted bi-
nary trees is very well known and elegant; for example see [1], [2], [7] or [9]. In
this paper, we introduce a bijection from triangulations of (n+ 2)-gons to ordered
trees with n edges. In the second section, we present the bijection along with some
examples. In the third and fourth sections, we look at variations that involve the
Fine numbers and the little Schröder numbers. In our research several sequences
were found which are in the Online Encyclopedia of Integer Sequences (OEIS)[5];
the A-numbers refer to this source.

1This author acknowledges support received from the National Science Foundation via Grants
DUE-1356481 and DMS-1460023
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2. The Bijection Between Triangulations of Convex Polygons and Or-
dered Trees

Definition 1. Given a triangulation of a convex polygon, a triangle defined by 3
consecutive vertices is called an ear. We will also call the middle vertex an ear.

Given a polygon with n+ 2 vertices, we fix the lower left vertex and label it 1.
The remaining vertices will be labeled 2 through n + 2 in the clockwise direction.
Let T be a triangulation of the polygon. Note that if k − 1, k, k + 1 is a triangle
in T, then k would be an ear. We now label the vertices (clockwise) on the edges
of T that are incident to vertex 1 as v1, v2, . . . , vk, where v1 = 2 and vk = n + 2.
For 1 ≤ i ≤ k − 1, let di be the edge (1, vi). We use the edges di to subdivide the
polygon into k − 1 subpolygons each involving vertex 1. To start the construction
of our bijection, we let vertex 1 correspond to the root of the ordered tree. Every
edge of the triangulation that is incident to vertex 1 starts a subpolygon, except the
edge (1, n+ 2), which we delete. If 1 is an ear, then the degree of the root for the
corresponding ordered tree is 1 and vertex 2 is the root of the subtree corresponding
to the (n+ 1)-gon with vertices 2, 3, . . . , n+ 2. Otherwise, the degree of vertex 1 is
greater than or equal to 3. Hence, if the number of edges incident to vertex 1 is k
and k ≥ 3, then the degree of the root of the corresponding tree is k − 1. Vertex
v1 is the root of the corresponding subtree of the subpolygon from vertex v1 to
vertex v2, v2 is the root of the corresponding subtree of the subpolygon from vertex
v2 to vertex v3 , . . ., and vertex vk is the root of the corresponding subtree of the
subpolygon from vertex vk−1 to vertex vk. This gives us a partial tree that has root
labeled 1, and recursively, an ordered set of subtrees with roots v1, v2, . . . , vk−1.
Since ordered trees are defined recursively, our bijection is established.

Following are some examples.
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Figure 4: n = 3

Here is a more substantial example worked in stages.
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Figure 5: Example with 10 vertices.
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Note that an ear, other than (n + 2, 1, 2), will lead to a leaf in the associated
tree and a subsequence of the form UD in the preorder traversal bijection to Dyck
paths.

The number of ordered trees with n edges is Cn = 1
n+1

(
2n
n

)
, the nth Catalan

number. Recall that the generating function for the Catalan numbers is C(z) =∑∞
n=0 Cnzn. It is well known that

C(z) = 1 + zC2(z)

=
1

1− zC(z)

=
1−

√
1− 4z

2z
= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + · · · (A000108, [5]).

Since the Catalan numbers count the number of ordered trees, we get the following
theorem.

Theorem 1. The number of triangulations of a convex (n+ 2)-gon is the Catalan
number Cn.

Using this bijection, we can translate results about ordered trees directly to
triangulations of an (n+ 2)-gon.

Corollary 1. The number of internal diagonals at vertex 1 is one less than the root
degree of the associated tree.

Definition 2. Given an ordered tree, if a vertex v is a child of the root and has no
children, then we call the edge from the root to v a stump.

Definition 3. Let T be a triangulation of an (n+2)-gon. If the triangle (1, i, i+1)
is a triangle in T, then we call it a wedge.

i+ 1

i+ 2

i+ 3

n+ 2

1

2

Figure 6: Wedge (1, i+ 1, i+ 2)
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Note that using the bijection described in this paper, every wedge corresponds
to a stump. This, in turn, corresponds to a hill in the preorder traversal bijection
to Dyck paths, where a hill is a subsequence UD (up, down) starting and ending
on the x-axis.

3. Triangulations and the Fine Numbers

The Fine number sequence (Fn)n≥0 is a close companion of the Catalan sequence
and counts several things, such as

• Dyck paths without hills,

• Ordered trees with no leafs at height 1,

• Ordered trees where the root has even degree.

The generating function is given by

F (z) =
∞∑

n=0

Fnz
n = 1 + z2 + 2z3 + 6z4 + 18z5 + · · · , (A000957, [5]).

The identities

C(z) =
F (z)

1− zF (z)

and

F (z) =
C(z)

1 + zC(z)

=
1

z
· 1−

√
1− 4z

3−
√
1− 4z

relate the Fine numbers and the Catalan numbers. For more on the Fine numbers
see [3].

Theorem 2. The number of triangulations of an (n+ 2)-gon with an odd number
of diagonals at vertex 1 is the Fine number Fn.

Proof. By Corollary 1, the associated tree of an (n + 2)-gon with an odd number
of diagonals at the vertex 1 is a tree with even root degree. These are precisely the
trees counted by the Fine numbers.

Theorem 3. The number of triangulations with no consecutive vertices vk, vk+1

incident to vertex 1 is counted by the Fine numbers.
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Proof. This corresponds first to an ordered tree with no leafs at height 1 and thus
to Dyck paths with no hills.

Theorem 4. The number of triangulations of an (n+2)-gon with an even number
of diagonals at vertex 1 is given by the generating function

zC(z)

1− z2C2(z)
= zC(z)F (z) = z + z2 + 3z3 + 8z4 + 24z5 + 75z6 + · · · , (A000958, [5]).

Proof. All ordered trees have either even or odd degree at the root. Let E(z) be the
generating function counting those with even root degree and O(z) the generating
function counting those with odd root degree. Then

C(z) = E(z) +O(z)

= F (z) +O(z).

Thus

O(z) = C(z)− F (z)

=
F (z)

1− zF (z)
− F (z)

= F (z)
zF (z)

1− zF (z)

= zF (z)C(z).

Theorem 5. The number of triangulations of an (n+2)-gon with the lowest num-
bered vertex k that has an edge from vertex 1 is Ck−3Cn+2−k, where k ≥ 3.

Proof. Let vertex k be the lowest numbered vertex other than 2 with diagonal in-
cident with vertex 1. Hence, 3 ≤ k ≤ n+ 1. Because of the triangulation, there is
a diagonal (2, k). The diagonal (1, k) cuts the polygon into two subpolygons. The
subpolygon to the left of (1, k) that contains vertices 2 and k can be triangulated
Ck−3 ways and the subpolygon to the left of (1, k) that contains vertices 1 and k
can be triangulated Cn+2−k ways.
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Figure 7: Subdivision by the first internal diagonal.

When vertex 1 is an ear, then k = n+ 2. And there are Cn−1 triangulations in
which vertex 1 is an ear; see Figure 8.

k − 1
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1

2 Cn−1

Figure 8: When vertex 1 is an ear.

Example 1. The following chart gives the number of triangulations of an (n+ 2)-
gon that has vertex k as the first vertex incident to vertex 1, where k ≥ 3.

k = 3 4 5 6 7 8 9

n = 1 1
2 1 1
3 2 1 2
4 5 2 2 5
5 14 5 4 5 14
6 42 14 10 10 14 42
7 132 42 28 25 28 42 132
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The distribution of the rows approaches a U -shaped distribution similar to the
arcsine distribution; see [4].

Theorem 6. Let k be minimal with respect to (1, k) being an internal diagonal.
The probability for this is

Ck−3Cn+2−k

Cn
.

We now are interested in the distribution of the first diagonal edge that is incident
with vertex 1.

Theorem 7. As n gets large, the probability that (1, k) is the first internal diagonal
approaches Ck

4k (here k is fixed as n → ∞).

Proof. Recall that

Cn =
1

n+ 1

(
2n

n

)
.

It is well known that

Cn

Cn+1
=

n+ 2

4n+ 2
→ 1

4
as n → ∞.

Thus

Ck

( Cn−k

Cn−k+1

)(Cn−k+1

Cn−k+2

)
. . .

( Cn

Cn+1

)
→ Ck(

1

4
)(
1

4
) . . . (

1

4
) =

Ck

4k
.

Corollary 2. As n increases, the probability that vertex 3 is the lowest numbered
vertex of an (n+2)-gon with an internal diagonal from vertex 1 approaches 1

4 . This
is the same as the probability that vertex 1 has no internal diagonals.

Corollary 3. As n increases, the probability that vertex 4 is the lowest numbered
vertex of an (n + 2)-gon with an internal diagonal from vertex 1 approaches 1

16 .
This is the same as the probability that vertex n + 1 is the lowest numbered vertex
with an internal diagonal from vertex 1.

We can also use triangulations to get results about ordered trees. For example,
each triangulation of an (n + 2)-gon has n − 1 internal diagonals. So the total
number of internal diagonals is (n − 1) 1

n+1

(
2n
n

)
= (n − 1)Cn. Thus the average

number of internal diagonals incident to v is 2(n−1)Cn

(n+2)Cn
= 2(n−1)

n+2 . Adding the two
boundary edges, the average number of edges incident to any vertex (except vertex
1) is 2 + 2n−2

n+2 = 4n+2
n+2 . For vertex 1, we disregard the edge (1, n+ 2), so that the

average number of edges incident to it is 1 + 2n−2
n+2 = 3n

n+2 . This corresponds to the
well known result that the average degree of the root of ordered trees goes to 3 as
n → ∞.
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Definition 4. Given a triangulation T of an (n + 2)-gon, if vertices i, i + 1, i +
2, . . . i+k are all incident with vertex 1, then (1, i, i+1, . . . , i+k) is called a k−fan.

i

i+ 1

i+ 2

i+ 3

n+ 2

1

2

Figure 9: 3-fan

Theorem 8. The number of triangulations of an (n + 2)-gon without fans is the
Fine number Fn.

Theorem 9. The number of wedges in the triangulations of an (n + 2)-gon is the
Catalan number Cn.

Proof. Each wedge corresponds to a leaf of height one in the associated tree, and
thus a hill in the corresponding Dyck path. The generating function counting these
is C(z)zC(z) = C(z)− 1.

See bijective exercise 2 in [8]. In Figure 4, the triangulations have, respectively,
3, 0, 1, 1, and 0 wedges.

Theorem 10. The number of 2 consecutive wedges in the triangulation of an n+2-
gon is Cn−1.

Proof. Consecutive hills are counted by the generating function

C(z)z2C(z) = z(C(z)− 1).
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Figure 10: z2C2 = z2 + 2z3 + 5z4 + 14z5 + ...

Definition 5. If (1, i+1), (i+1, i+2), (i+2, i+3), (1, i+3), and (i+1, i+3) are
edges in a triangulation of an (n+ 2)-gon, then it is called a kite.

i+ 1
i+ 2

i+ 3

1

z

z

Figure 11: Kite in an (n+ 2)-gon.

Note that in our bijection, kites are associated with ordered trees that have stem
height 2, and will be an UUDD starting and ending on the x-axis in a Dyck path.

Theorem 11. The generating function counting the number of ways to triangulate
an (n+ 2)-gon without kites is

C(z)

1 + z2C(z)
= 1 + z + z2 + 3z3 + 10z4 + 31z5 + 98z6 + · · · , (A114487, [5]).

Proof. Let N(z) be the generating function for Dyck paths with no UUDD subpaths
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on the x-axis. Then

C(z) = N(z) +N(z)z2N(z) +N(z)(z2N(z))2 + · · ·

=
N(z)

1− z2N(z)
,

where N(z)(z2N(z))k counts paths with k UUDD x−axis based subpaths. Solving
for N(z) gives the result.

4. Triangulations and Schröder Numbers

The little Schröder numbers sn count many objects, such as the number of ways to
insert some pairs of matching parentheses into a string of n distinct letters. The
number sn also counts the number of lattice paths in the Cartesian plane that start
at (0, 0), end at (2n, 0), do not go below the x-axis, are composed only of steps
(1, 1) (up), (1,−1) (down), and (2, 0) (horizontal), and have no horizontal steps on
the x-axis. Such paths are called little Schröder paths. These numbers appear in
the classic 1870 paper by Schröder; see [6]. The generating function for the little
Schröder Numbers is

s (z) =
1 + z −

√
1− 6z + z2

4z
= 1 + z + 3z2 + 11z3 + 45z4 + 197z5 + · · · (A001003, [5]).

We begin our investigation between triangulations and the little Schröder numbers
with the following definition.

Definition 6. A partial triangulation of an (n+2)-gon is a triangulation with some
or all of the internal diagonals removed.

Example 2. If n = 3, we get 11 triangulations and partial triangulations, which
are given in Figure 12.
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Figure 12: Triangulations and partial triangulations when n = 3.

Suppose the partial triangulation has no internal edges. Then we can consider
the following bijection between such partial triangulations and little Schröder paths
that contain one up step, followed by n level steps, followed by a down step (see
Figure 13).

,

,

Figure 13: Mapping for partial triangulation with no internal edges.

Using a recursive definition, a bijection is established between the triangulations
and partial triangulations and little Schröder paths. Hence, we get the following
theorem.

Theorem 12. There is a bijection between the triangulations and partial triangu-
lations of an (n+ 2)-gon and the little Schröder paths.

Example 3. Recall that s3 = 11. The following figure gives the mapping between
partial triangulations of a polygon to little Schröder paths when n = 3. For the
other 5 cases when we have triangulations, we simply use Figure 4 and the usual
preorder traversal from ordered trees to Dyck paths.
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,

,

,

Figure 14: Mapping from partial triangulations to little Schröder paths when n = 3.
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